
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Hierarchical Interconnection Networks for

Massively Parallel Computers

Author(s) M., M., Hafizur Rahman

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/981

Rights

Description Supervisor:日比野　靖, 情報科学研究科, 博士



Hierarchical Interconnection Networks for

Massively Parallel Computers

by

M.M. Hafizur Rahman

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Susumu Horiguchi

School of Information Science

Japan Advanced Institute of Science and Technology

March, 2006



c©Copyright 2006 by
M.M. Hafizur Rahman
All Rights Reserved

i



Abstract

The most critical component in determining the ultimate performance potential of
a multicomputer is its interconnection network. In this dissertation, we propose a new
hierarchical interconnection network, called the Hierarchical Torus Network (HTN) for
large scale 3D multicomputers. It consists of multiple basic modules (BMs) which are
3D-tori (m × m × m) and are hierarchically interconnected by 2D-tori (n × n). Both
the BMs and the interconnection at higher levels are toroidally connected, hence the
name Hierarchical Torus Network (HTN). To reduce the vertical links between silicon
planes, we consider higher-level networks as 2D-torus instead of 3D-torus network.We
have explored various aspects such as network diameter, cost, average distance, bisection
width, peak number of vertical links, and VLSI layout area of the HTN and compared
them with those for other networks. It is shown that the HTN possesses several attractive
features including constant node degree, small diameter, small average distance, high arc-
connectivity, better bisection width, small number of wires, a particularly small number
of vertical links, and an economic layout area.

We have used wormhole routing for switching because it has low buffering require-
ments, and more importantly, it makes latency independent of the message distance.
Deadlock-free routing is the most critical issue in wormhole-routed networks and is achieved
by using virtual channels (VCs). Since the hardware cost increases as the number of
VCs increases, the unconstrained use of VCs is cost-prohibitive. In this dissertation, we
present a deadlock-free routing algorithm for the HTN with a minimum number of VCs.
By using the dimension-order routing and various traffic patterns, we have evaluated the
dynamic communication performance of the HTN as well as other networks. HTN yields
low latency and high throughput, which are indispensable for high performance massively
parallel computers. It is also shown that the impact of non-uniform traffic patterns on
the HTN is less than on the other networks. We have also described a suite of low-cost
adaptive routers, LS, CS, and LS+CS with dimension order routing, analyzed their cost,
and evaluated the dynamic communication performance for the HTN. The hardware cost
for the LS, CS, and LS+CS algorithms is exactly equal to dimension order routing. The
only overhead imposed is router delay for header selection. The dynamic communica-
tion performance using LS+CS algorithm is better than when the other algorithms are
used. Therefore, an HTN with the LS+CS algorithm is a good choice for future massively
parallel computers.

A fault tolerant network is very essential for the reliability of massively parallel com-
puter systems. We have presented a hierarchical redundancy approach to reconfigure a
faulty node by redundant node for the HTN. With a 25% redundancy, the system yield
at the BM and second level are satisfactory. To show the suitability of the HTN, we have
discussed mapping of some commonly used advanced applications. It is shown that the
number of communication steps for applications mapping on the HTN is lower than for
conventional and other hierarchical interconnection networks.

Pruning technique reduces the wiring complexity. We have explored the 3D-WSI
implementation aspect of pruned-HTN. It is shown that the peak number of vertical links
and layout area of pruned HTN in 3D-WSI is less than that of non-pruned HTN. To show
the versatility of torus-torus combination for hierarchical networks, we have modified two
other hierarchical networks (H3D-torus and TESH) using torus-torus networks.

ii



To Taha
never dull

never boring
always beloved



Acknowledgments

First of all, I would like to thank the almighty Allah (SWT) who has again blessed
me to pass another important passage in my life.

I wish to express my sincere and profound gratitude and profuse thanks to my super-
visor Prof. Susumu Horiguchi of GSIS at Tohoku university for his constant encour-
agement and kind guidance during this research work. I am deeply grateful to him for
his enthusiasm and insight, which have made research a most enjoyable and fulfilling ex-
perience. His phenomenal depth of knowledge and ability to discern the key points of the
research problem inspire me a lot. I am deeply indebted to him for his patient supervision
and warm support. I am both incredibly proud and immensely lucky to become one of
his students.

I wish to continue my gratitude to Prof. Y. Hibino, Prof. M. Kaneko, Prof. T. Mat-
suzawa, and Prof. Y. Inoguchi for gladly agreeing to serve as members of my dissertation
committee and for providing helpful advice.

I am highly obliged to Prof. Yasushi Inoguchi of School of Information Science at
JAIST for his kindness, and valuable suggestion and discussion during the research of
sub-theme. I would like to take this opportunity to thank all the teaching staff at the
school of Information Science at JAIST, who has benefited me with a worth of knowledge.
I would also like to thank Asso. Prof. X. Jiang and Research Associate Masaru Fukushi
of Tohoku university and Ryoko Hayashi of Kanazawa Institute of Technology for their
helpful discussion, comments, and suggestions during this research work. In particular,
Mr. Fukushi has given me a lot of helpful advice to reach the valuable insights in wafer
stacked-implementation of massively parallel computers. I would like to continue my
sincere thanks to Dr. Yasuyuki Miura of Communication Research Laboratory, Tokyo for
his kind help.

I am indebted to the to the Ministry of Education, Science, Sports, and Culture,
Japan for the financial support I have been provided with for staying and studying here at
JAIST. I would like to continue thanks the japanese language teachers, especially Etsuko
Horiguchi sensei who teach me Japanese language. Without them, I would certainly have
run into much trouble. It is my great pleasure to do research work with the members of
firmware laboratory. I devote my sincere thanks and appreciation to my lab-mates. I can
not express how much I have appreciated and their support and friendship through the
years. I will keep them in my mind for their help and assistance.

Although far away from Bangladesh, I would also like to say thanks to my parents,
who encouraged me to succeed by teaching me not to fear failure. Last, but not least,
I can never hope to thank, my dear Ruba and our sweet son Taha, enough for their
continuous support and encouragement. They were putting up with many dreary evenings
and weekends when I was doing this research work. Their tolerance an understanding
made it possible for me to complete this endeavor.

iv



Contents

Abstract ii

Acknowledgments iv

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Interconnection Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivations and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contribution of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Synopsis of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Interconnection Networks for Massively Parallel Computers 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Fundamental Definitions . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Topological Characteristics of Interconnection Networks . . . . . . . 14
2.2.3 Layout Characteristics of Interconnection Networks . . . . . . . . . 15
2.2.4 Dynamic Communication Performance Metrices . . . . . . . . . . . 15

2.3 Interconnection Network Topologies . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Completely-Connected Networks . . . . . . . . . . . . . . . . . . . 16
2.3.2 Star Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Tree Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Hypercubic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Array Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Hierarchical Interconnection Network (HIN) . . . . . . . . . . . . . . . . . 26
2.4.1 Completely-Connected Network based HIN . . . . . . . . . . . . . . 27
2.4.2 Tree Network based HIN . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Hypercube Network based HIN . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Array Network based HIN . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Hierarchical Torus Network (HTN) 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Architecture of the HTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Basic Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Higher Level Interconnection . . . . . . . . . . . . . . . . . . . . . . 41

v



3.2.3 Addressing and Routing . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Static Network Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Node Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Average Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.4 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.5 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.6 Bisection Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Wafer Stacked Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 3D Stacked Implementation . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Peak Number of Vertical Links . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Layout Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.4 Maximum Wire Length . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Dynamic Communication Performance of the HTN 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Resources and Allocation Units . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Taxonomy of Routing Algorithm . . . . . . . . . . . . . . . . . . . 70
4.2.3 Primitive Considerations . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 Channel Dependency Graph . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Dimension-Order Routing (DOR) for HTN . . . . . . . . . . . . . . . . . . 81
4.3.1 Routing Algorithm for HTN . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Deadlock-free Routing . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Minimum Number of Virtual Channels . . . . . . . . . . . . . . . . 87

4.4 Dynamic Communication Performance using DOR . . . . . . . . . . . . . . 88
4.4.1 Performance of Interconnection Networks . . . . . . . . . . . . . . . 89
4.4.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.3 Traffic Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.4 Dynamic Communication Performance Evaluation . . . . . . . . . . 93
4.4.5 Effect of Message Length . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.6 Effect of the Number of Virtual Channels . . . . . . . . . . . . . . . 111

4.5 Adaptive Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.1 Link-Selection (LS) Algorithm . . . . . . . . . . . . . . . . . . . . . 114
4.5.2 Channel-Selection (CS) Algorithm . . . . . . . . . . . . . . . . . . . 117
4.5.3 Combination of LS and CS (LS+CS) Algorithm . . . . . . . . . . . 117
4.5.4 Deadlock-Free Routing . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Router Cost and Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.1 Router Gate Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.2 Router Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Dynamic Communication Performance using Adaptive Routing . . . . . . . 125
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



5 Reconfiguration Artchitecture and Application Mappings 132
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Reconfiguration Architeccture of the HTN . . . . . . . . . . . . . . . . . . 133

5.2.1 Reconfiguration Scheme . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.2 System Yield of the HTN . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Application Mappings on HTN . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.1 Converge and Diverge . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.2 Bitonic Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.3 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . 142
5.3.4 Finding the Maximum . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.5 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Pruned Hierarchical Torus Network 150
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Pruned Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Pruned Torus Network . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.2 Pruned HTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 3D-WSI Implementation of the Pruned HTN . . . . . . . . . . . . . . . . . 157
6.3.1 Peak Number of Vertical Links . . . . . . . . . . . . . . . . . . . . 157
6.3.2 Layout Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Modification of other Hierarchical Networks based on Torus-Torus In-
terconnectiuon 160
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2 Modified Hierarchical 3D-Torus Network . . . . . . . . . . . . . . . . . . . 160

7.2.1 Interconnection of the MH3DT Network . . . . . . . . . . . . . . . 161
7.2.2 Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2.3 Deadlock-Free Routing . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.4 Static Network Performance . . . . . . . . . . . . . . . . . . . . . . 166
7.2.5 Dynamic Communication Performance . . . . . . . . . . . . . . . . 168
7.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3 Modified TESH Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.1 Interconnection of the TTN . . . . . . . . . . . . . . . . . . . . . . 173
7.3.2 Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.3.3 Deadlock-Free Routing . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3.4 Static Network Performance . . . . . . . . . . . . . . . . . . . . . . 178
7.3.5 Dynamic Communication Performance . . . . . . . . . . . . . . . . 180
7.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Conclusions 184
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

vii



References 190

Publications 202

Index 204

viii



List of Figures

2.1 Completely-connected networks for N = 4, N = 8, and N = 12. . . . . . . 16
2.2 A star-connected network of nine nodes . . . . . . . . . . . . . . . . . . . . 17
2.3 Star graph network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 A 15 node binary tree network . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 A 15 node X-tree network . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 The 2D mesh-of-trees. Leaf nodes from the original grid are denoted with

black circles. Nodes added to form row trees are denoted with red squares,
and nodes added to form column trees are denoted with blue squares . . . 20

2.7 A fat-tree network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 The Binary cube networks of zero, one, two, three, and four dimensions,

the nodes are labeled using n-bit binary numbers. . . . . . . . . . . . . . . 22
2.9 (a) The 3-dimensional binary cube network (b) The 3-dimensional CCC.

Labels for individual nodes in the CCC are binary cube node label and the
adjacent link label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 A four-node linear array and ring network . . . . . . . . . . . . . . . . . . 24
2.11 A layout for a ring network which minimizes link lengths (N = 8). . . . . . 24
2.12 2D mesh and torus networks with 4 nodes in each dimension (a) 2D-mesh

(b) 2D-torus networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 3D mesh and torus networks with 4 nodes in each dimension (a) 3D-mesh

and (b) 3D-torus networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 A level-2 MFC network with 8 clusters and the cluster size is 8. . . . . . . 28
2.15 An example of 16-node swapped network with the 4-node complete graph

as its basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.16 A pyramid network of 16 node . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.17 A hierarchical clique network . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.18 Fibonacci cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.19 A HCN(2,2) network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.20 Recursive diagonal torus network . . . . . . . . . . . . . . . . . . . . . . . 33
2.21 Standard 1D-SRT consisting of 32 nodes. . . . . . . . . . . . . . . . . . . . 34
2.22 Level-2 interconnection of TESH network . . . . . . . . . . . . . . . . . . . 35
2.23 Interconnection of a Level-2 H3D-torus network . . . . . . . . . . . . . . . 36
2.24 Interconnection of a Level-2 H3D-mesh network . . . . . . . . . . . . . . . 37
3.1 Interconnection of HTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Basic module of the HTN . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Interconnection of a Level-2 HTN . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Interconnection of a Level-3 HTN . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Routing algorithm of the HTN . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



3.6 Illustration of degree of HTN . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Diameter of networks as a function of number of nodes (N) . . . . . . . . . 48
3.8 Average distance of networks as a function of number of nodes (N) . . . . 50
3.9 Average distance of various networks with 4096 nodes. . . . . . . . . . . . 50
3.10 Cost of different networks as a function of number of nodes (N) . . . . . . 51
3.11 Illustration of connectivity for 2D-mesh network. . . . . . . . . . . . . . . . 52
3.12 Bisection width of networks as a function of number of nodes (N) . . . . . 53
3.13 Structure of 3D stacked implementation . . . . . . . . . . . . . . . . . . . 55
3.14 Structure of microbridge and feedthrough . . . . . . . . . . . . . . . . . . . 55
3.15 PE array in a silicon plane for wafer stacked-implementation . . . . . . . . 56
3.16 Vertical links of 2D-mesh network in 3D wafer stacked-implementation . . 56
3.17 Vertical links of 2D-torus network in 3D wafer stacked-implementation . . 56
3.18 Interconnection scheme of 2D-torus in 3D stacked implementation . . . . . 57
3.19 A comparison of peak number of vertical links of HTN with other networks 59
3.20 Layout area of 2D-torus for N = 16, L = 4 and p = 1. . . . . . . . . . . . . 61
3.21 Normalized layout area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.22 2D-planner realization of 3D-torus network. . . . . . . . . . . . . . . . . . 65
4.1 Units of resource allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Wormhole routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 An example of the blocked wormhole-routed message . . . . . . . . . . . . 72
4.4 Time-space diagram of a wormhole-routed message . . . . . . . . . . . . . 72
4.5 An example of deadlock involving four packets . . . . . . . . . . . . . . . . 74
4.6 Virtual channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 Message blocking while physical channels remain idle . . . . . . . . . . . . 76
4.8 Virtual channel allows to pass blocked message . . . . . . . . . . . . . . . . 76
4.9 (a) A ring network with unidirectional channels. (b) The associated channel

dependency graph contains a cycle. (c) Each physical channel is logically
split into two virtual channels. (d) A modified channel dependency graph
without cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Deadlock configuration in mesh network . . . . . . . . . . . . . . . . . . . 80
4.11 Deadlock configuration in torus network . . . . . . . . . . . . . . . . . . . 81
4.12 A set of routing paths created by the dimension order routing in a 2D-mesh

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.13 Dimension-order routing algorithm for HTN . . . . . . . . . . . . . . . . . 85
4.14 An example of message routing in HTN . . . . . . . . . . . . . . . . . . . . 86
4.15 Nonuniform traffic patterns on a 8 × 8 mesh networks: (a) dimension-

reversal traffic and (b) bit-reversal traffic . . . . . . . . . . . . . . . . . . . 92
4.16 Dynamic communication performance of dimension-order routing with uni-

form traffic pattern on various networks: 1024 nodes, different virtual chan-
nels, short message, and q = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.17 Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 1024 nodes, 3 virtual channels,
short message, and q = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



4.18 Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,
short message, and q = 1 (b) 512 nodes, 3 virtual channels, short message,
and q = 1, (c) 1024 nodes, 3 virtual channels, short message, and q = 1,
(d) 1024 nodes, 3 virtual channels, medium-length message, and q = 1, (e)
1024 nodes, 3 virtual channels, long message, and q = 1,. . . . . . . . . . . 97

4.19 Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: (a) 256 nodes, 2 virtual channels,
short message, and q = 1 (b) 256 nodes, 2 virtual channels, medium-length
message, and q = 1, (c) 256 nodes, 2 virtual channels, long message, and
q = 1, (d) 1024 nodes, 2 virtual channels, short message, and q = 1, (e)
1024 nodes, 2 virtual channels, medium-length message, and q = 1, and (f)
1024 nodes, 2 virtual channels, long message, and q = 1. . . . . . . . . . . 98

4.20 Dynamic communication performance of dimension-order routing with hot-
spot traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,
5% hot-spot traffic, short message, and q = 1 (b) 512 nodes, 3 virtual
channels, 5% hot-spot traffic, short message, and q = 1, and (c) 1024
nodes, 3 virtual channels, 5% hot-spot traffic, short message, and q = 1 . . 100

4.21 Dynamic communication performance of dimension-order routing with hot-
spot traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,
2% hot-spot traffic, short message, and q = 1 (b) 256 nodes, 3 virtual
channels, 10% hot-spot traffic, short message, and q = 1, (c) 1024 nodes,
3 virtual channels, 2% hot-spot traffic, short message, and q = 1, and (d)
1024 nodes, 3 virtual channels, 10% hot-spot traffic, short message, and
q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.22 Dynamic communication performance of dimension-order routing with di-
mension reversal traffic pattern on various networks: (a) 256 nodes, 3 vir-
tual channels, 2-dimensional reversal traffic, short message, and q = 1 (b)
1024 node, 3 virtual channels, 2-dimensional reversal traffic, short message,
ands q = 1, (c) 256 nodes, 3 virtual channels, 3-dimensional reversal traffic,
short message, and q = 1, (d) 1024 nodes, 3 virtual channels, 3-dimensional
reversal traffic, short message, and q = 1. . . . . . . . . . . . . . . . . . . . 103

4.23 Dynamic communication performance of dimension-order routing with bit-
reversal traffic pattern on various networks: (a) 256 nodes, 3 virtual chan-
nels, short message, and q = 1 (b) 512 nodes, 3 virtual channels, short
message, and q = 1, (c) 1024 nodes, 3 virtual channels, short message, and
q = 1, (d) 1024 nodes, 3 virtual channels, medium-length message, and
q = 1, and (e) 1024 nodes, 3 virtual channels, long message, and q = 1. . . 105

4.24 Dynamic communication performance of dimension-order routing with com-
plement traffic pattern on various networks: (a) 256 nodes, 3 virtual chan-
nels, short message, and q = 1, (b) 512 nodes, 3 virtual channels, short
message, and q = 1, (c) 1024 nodes, 3 virtual channels, short message,
and q = 1 (d) 1024 nodes, 3 virtual channels, medium-length message, and
q = 1, and (e) 1024 nodes, 3 virtual channels, long message, and q = 1 . . . 106

xi



4.25 Dynamic communication performance of dimension-order routing with bit-
flip traffic pattern on various networks: (a) 256 nodes, 2 virtual channels,
short message, and q = 1 and (b) 1024 nodes, 2 virtual channels, short
message, and q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.26 Dynamic communication performance of large-size HTN by dimension-
order routing under various traffic patterns: 3 virtual channels, short message.109

4.27 Average message latency divided by message length vs. network through-
put of HTN: 1024 nodes, 2 VCs, and q = 1. . . . . . . . . . . . . . . . . . . 110

4.28 Dynamic communication performance of dimension-order routing with dif-
ferent virtual channels and short message on the large-size HTN: (a) hot
spot traffic, (b) bit reversal traffic, (c) 2-dimension reversal, (d) 3-dimension
reversal, and (e) complement traffic patterns. . . . . . . . . . . . . . . . . . 112

4.29 Routing messages in an 6x6 mesh from node (0, i) to node (i, 5) (for 0 ≤
i ≤ 5); (a) Using dimension order routing, five messages must traverse
the channel from (0, 4) to (0, 5), (b) Using adaptive routing, all messages
proceed simultaneously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.30 A 6 × 6 mesh with a faulty link from node (3, 2) to node (3, 3). (a) With
dimension order routing messages from dark nodes to the shaded area can-
not be delivered. (b) With adaptive routing, messages can be delivered
between all pairs of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.31 Selection of physical link by link-selection algorithm . . . . . . . . . . . . . 115
4.32 Link-selection algorithm for HTN . . . . . . . . . . . . . . . . . . . . . . . 116
4.33 Selection of virtual channels by channel-selection algorithm . . . . . . . . . 117
4.34 A block diagram of router architecture . . . . . . . . . . . . . . . . . . . . 121
4.35 Comparison of dynamic communication performance of the HTN between

DOR, LS, CS, and LS+CS algorithms with uniform traffic pattern: 1024
nodes, 3 virtual channels, and q = 1. . . . . . . . . . . . . . . . . . . . . . 127

4.36 Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with 5% hot-spot traffic pattern:
1024 nodes, 3 virtual channels, short message, and q = 1. . . . . . . . . . . 128

4.37 Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with bit-reversal traffic pattern: 1024
nodes, 3 virtual channels, 16 flits, and q = 1. . . . . . . . . . . . . . . . . . 128

4.38 Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with bit-flip traffic pattern: 1024
nodes, 3 virtual channels, short message, and q = 1. . . . . . . . . . . . . . 129

4.39 Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with perfect shuffle traffic pattern:
1024 nodes, 3 virtual channels, short message, and q = 1. . . . . . . . . . . 129

4.40 Dynamic communication performance improvement by LS+CS algorithm
over DOR algorithm (a) Maximum throughput enhancement and (b) Mes-
sage latency reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1 Hierarchical redundancy of the HTN . . . . . . . . . . . . . . . . . . . . . 133
5.2 Different switch states for reconfiguration: (a) no connect, (b) north-to-

south and east-to-west, (c) north-to-west and south-to-east, and (d) north-
to-east and south-to-west connects. . . . . . . . . . . . . . . . . . . . . . . 134

xii



5.3 Reconfiguration of a plane for the BM in the presence of 4 faulty PEs:
Diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Reconfiguration of a plane for the BM in the presence of 4 faulty PEs: Square135
5.5 Reconfiguration of a plane for the BM in the presence of 4 faulty PEs:

Concatenated L-shape and inverse L-shape . . . . . . . . . . . . . . . . . . 136
5.6 Yield for BM and Level-2 network vs. fault density without spare node . . 138
5.7 Yield for BM and Level-2 network vs. fault density with spare node . . . . 138
5.8 CONVERGE on a 4 × 4 2D-mesh . . . . . . . . . . . . . . . . . . . . . . . 141
5.9 The total number of communication steps of the bitonic merge in different

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.10 The total number of communication steps of the bitonic merge in different

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.11 The total number of communication steps of the FFT in different networks 147
5.12 The total number of communication steps for finding the maximum in

different networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1 A (4 × 4 × 4) torus network . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 A (4 × 4 × 4) pruned torus obtained by pruning along the z direction. . . 153
6.3 A (4×4×4) pruned torus obtained by pruning along the x+y +z direction. 153
6.4 A (4 × 4 × 4) pruned torus obtained by pruning along the x + y direction. 154
6.5 A (4 × 4) pruned torus obtained by pruning along the x + y direction. . . 154
6.6 HTN1 (m = 4, n = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.7 HTN2 (m = 4, n = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.8 HTN3 (m = 4, n = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.9 An illustration of Level-2 HTN3 . . . . . . . . . . . . . . . . . . . . . . . . 156
6.10 A comparison of peak number of vertical links of various HTN. . . . . . . . 158
6.11 Normalized layout area (1024 PEs, 16 Wafers, and 64 PEs/Wafer) . . . . . 158
7.1 Basic module of the MH3DT network . . . . . . . . . . . . . . . . . . . . . 161
7.2 Interconnection of a Level-2 MH3DT network . . . . . . . . . . . . . . . . 162
7.3 Routing algorithm of the MH3DT network . . . . . . . . . . . . . . . . . . 164
7.4 Dynamic communication performance of dimension-order routing with uni-

form traffic pattern on various networks: 4096 nodes, 2 VCs, 16 flits . . . . 170
7.5 Average transfer time divided by message length versus network through-

put of MH3DT network: 4096 nodes, 2 VCs, 16 flits, Buffer Size 2 flits. . . 171
7.6 Dynamic communication performance of dimension order routing with uni-

form traffic pattern on the MH3DT network: 4096 nodes, various virtual
channels,, 16 flits, Buffer Size 2 flits. . . . . . . . . . . . . . . . . . . . . . 172

7.7 Basic module of the TTN . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.8 Interconnection of a Level-2 TTN . . . . . . . . . . . . . . . . . . . . . . . 175
7.9 Routing algorithm of the TTN . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.10 Dynamic communication performance of dimension-order routing with uni-

form traffic pattern on various networks: 4096 nodes, 4 VCs, 16 flits, and
q = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.11 Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 4096 nodes, 4 VCs, 16 flits, and
q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xiii



List of Tables

2.1 A collection of types of interconnection networks used in commercial and
experimental parallel computers . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Diameter of HTN with Level-L . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Comparison of degree and connectivity for various networks . . . . . . . . 52
3.3 Parameters for layout area in 3D stacked implementation . . . . . . . . . . 63
3.4 Comparison of maximum wire length of different networks . . . . . . . . . 65
4.1 The total number of links of various networks with 1024 node . . . . . . . 94
4.2 Maximum throughput of the HTN (Flits/Cycle/Node) . . . . . . . . . . . 109
4.3 Gate counts for router modules . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4 Gate counts for HTN routers . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5 Delays for the router module . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.6 Module delay constants for a 0.8 micron CMOS process. . . . . . . . . . . 123
4.7 Module delay for a 0.8 micron CMOS process . . . . . . . . . . . . . . . . 124
4.8 Performance Improvement using selection algorithm over dimension-order

routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.1 The total number of communication steps on a network for bitonic merge,

FFT, and finding the maximum. . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1 Comparison of wiring complexity of various Level-2 HTN . . . . . . . . . . 157
7.1 Comparison of static network performance of various network with 4096

node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Comparison of static network performance of various network with 4096

node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiv



Chapter 1

“A journey of a thousands miles must begin
with a single step.”

– Lao-tzu (604 BC–531 BC)

Introduction

1.1 Introduction

Parallelism exists everywhere, in our society and in nature. For example, many workers in
an auto factory must work together (in parallel) to produce a car; a university might have
hundreds of professors and researchers simultaneously carrying out teaching and research
activities; and a student, while listening to a lecture, might at the same time be thinking
about how to have a fun party on the weekend. All these are instances in which more
than one activity, either working or thinking, is going on in parallel.

In the case of production lines in a factory, the purpose of exploiting the advantages of
parallelism by using many workers is to increase productivity or output. Two important
factors will affect the output of these parallel processes. First, everyone involved must
be doing some useful work simultaneously, so that the whole task can be completed in a
shorter time. Second, there must be proper and efficient coordination among all workers.
Without any coordination, the whole factory will in chaos, while too much coordination
or inefficient coordination, will result in lower efficiency on the production lines.

Parallel computing for solving large-scale scientific and engineering problems is also
characterized by these factors. The rationale for using parallelism in scientific computing
is to increase the throughput of a computer by making it perform more than one operation
at the same time.

A traditional sequential computer has one central processing unit (CPU) that handles
basic numerical operations sequentially, i.e., one operation at a time. But the number of
computations involved in large scale scientific problems is so huge that even the fastest
sequential computers cannot produce solutions in a reasonable amount of time. There are
basically two ways to make a computer work faster: either make a faster CPU, so that
an operation will take less time to finish, or put more than one CPU in the computer so
that multiple operations can be performed simultaneously. The latter is called parallel
processing because there are multiple processing units working in parallel in the computer.
Due to the difficulties in wire fabrication and the limit of the speed of light, it is becoming
more and more difficult to build faster single-processor computers. On the other hand it
is relatively easy to put a number of processors (not necessary the fastest) together such
that the aggregate performance is significantly increased.



1.2 Interconnection Networks 2

Research in parallel computing, both in hardware and software, has made dramatic
progress in the last decade. However, in science and engineering, there is an apparently in-
satiable demand for ever-greater processing power to solve the “grand challenges”. These
grand challenge problems include modeling global climate change over long periods, global
ocean circulation, the evolution of galaxies, the atomic structures of materials, the effi-
ciency of combustion in an engine, air flow over the surfaces of vehicles, damage due to
impacts, pollution monitoring, the behavior of microscopic electronic devices, analysis of
the human genome, and computer vision. In years to come, new grand challenges will
come into view. Even the smallest of these problems requires Gigaflops (109 floating-point
operations per second) of performance for hours at a time, while the largest requires Ter-
aflops (1012 floating-point operations per second) of performance for more than a thousand
hours at a time. Computations must be completed within a ‘reasonable’ time period; the
definition of ‘reasonable’ can vary, but obviously, an execution time of 1 year is always
unreasonable. Thus, we need not only Teraflops performance but also Petafloaps (1015

floating-point operations per second) or even Exafloaps (1018 floating-point operations
per second) of performance. Achieving this level of performance requires current parallel
computer technologies to be upgraded into massively parallel and distributed systems.
Indeed, such computers are arguably the only feasible way of achieving the enormous
computational power [1] required to solve the grand challenges of the future.

Parallel systems can be based on either a shared-memory or a distributed-memory
model. In shared-memory architectures, known as multiprocessors, all processors may
access a shared memory; in those based on the distributed-memory model, known as
multicomputers; processors communicate by interchanging messages. The latter, in par-
ticular, have experienced rapid development during the last decade [2] because of their
superior scalability. Such systems are organized as an ensemble of nodes, each with its
own processor, local memory and other supporting devices, comprising a processing ele-
ment (PE), along with a router or switching element (SE) which communicates with other
nodes via an interconnection network. The interconnection network is the key element for
building massively parallel computers consisting of thousands or millions of processors.
A major issue in designing such large-scale multiprocessor systems is the construction of
a flexible interconnection network to provide efficient inter-processor communication.

1.2 Interconnection Networks

An interconnection network is a crucial component of a multicomputer because the overall
system performance is very sensitive to network latency and throughput [3, 4]. Networks
employ a variety of topologies that can be classified into two broad categories: indirect
and direct [4, 5]. In indirect networks, the nodes are connected to other nodes (or memory
banks in a shared-memory architecture) through multiple intermediate stages of switch-
ing elements (SE). Many experimental and commercial parallel machines have employed
indirect interconnection networks [5, 6], such as Hitachi SR2201 [7, 8], Cedar [9], Cray
X/Y-MP, DEC’s GIGA switch and Cenju-3, IBM’s RP3 [10] and SP2 [11], Thinking Ma-
chine CM-5 [12] and Meiko CS-2. Examples of indirect networks include crossbar [7], bus
[13] and multistage interconnection networks (MINs) [9].

In direct networks (also called point-to-point networks) each node has a point-to-



1.2 Interconnection Networks 3

point or direct connection to some of the other nodes (known as its neighbors) for direct
communication between processors. Direct interconnection networks have been widely
employed by recent machines [5]. From the scalability point of view, direct networks
are preferred. Moreover, direct networks can exploit locality in traffic more effectively.
Consequently, most recent multicomputers employ these networks, including the Intel
iPSC [14–16], Intel Delta [17], Intel Paragon [18], Cosmic Cube [19], nCUBE [20–22],
MIT Alewife [23], J-machine [24, 25] and M-Machine [26], iWARP [27], Stanford DASH
[28], Stanford FLASH [29], Cray T3D [30], Cray T3E [31], and SGI Origin [32]. In
this study we focus on direct interconnection networks. In this dissertation, henceforth,
“interconnection network” will refer to a “direct interconnection network” unless otherwise
specified.

It is important to design parallel computers using an interconnection network topology
that can scale up to a large number of processors and that is capable of supporting fast
communication and data sharing among processors. Several aspects of interconnection
networks have been investigated. Much of the early literature deals with their topological
and functional properties. As systems with thousands of processing elements began to
emerge, many other aspects such as implementation and wiring complexity, flow control,
routing algorithms, performance evaluation, and fault tolerance issues became important
along with the topological properties. An interconnection network [5, 33, 34] is described
by its topology, routing algorithm, and flow control mechanism. To design a parallel
computer efficiently using an interconnection network, we need to study the following
issues.

Network Topology: Interconnection networks are composed of a set of shared nodes
and channels, and the topology of the network refers to the arrangement of these
nodes and channels. The topology of an interconnection network is the arrange-
ment of its nodes and channels in a graph; analogous to a roadmap . The channels
(like roads) carry packets (like cars) from one router node (intersection) to another.
Selecting the network topology is the first step in designing a network because the
routing strategy and flow control method depend heavily on the topology. The pro-
cessing nodes of a massively parallel computer exchange data and synchronize with
one another by passing messages over an interconnection network. The intercon-
nection network is often the critical component of a large parallel computer because
performance is very sensitive to network latency and throughput. The performance
of message passing in multicomputers [35] depends on the routing and switching
technique employed in their interconnection network.

Routing Algorithm: Once a topology has been chosen, there can be many possible
paths (sequences of nodes and channels) that a message could take through the
network to reach its destination. Routing determines which of these possible paths
a message actually takes. The routing algorithm [5, 33, 36] employed by a network
determines the path taken by a packet from a source node to its destination node.
In some networks there is only a single route from each source to each destination,
whereas in others, there are many possible paths. When there are many paths, a
good routing algorithm balances the load uniformly across the channel regardless of
the offered traffic pattern [6]. Continuing our roadmap analogy, while the topology
provides the roadmap, the roads and intersections, the routing method steers the



1.2 Interconnection Networks 4

car, making the decision on which way to turn at each intersection. Just as in
routing cars on a road, it is important to distribute the traffic – to balance the load
across different roads rather than having one road become congested while parallel
roads are empty.

Switching Method: An efficient and fast switching technique is a basic requirement for
getting good performance from an interconnection network. Switching is the mech-
anism that moves data from an input channel and to an output channel. Network
latencies are highly dependent on switching technique. Wormhole (WH) switch-
ing (also known as wormhole routing) [4, 37, 38] has become the dominant switching
technique used in contemporary multicomputers. This is because it has low buffering
requirements, and more importantly, it makes latency independent of the message
distance [5, 6]. In WH routing, a message is divided into flits (flow control units)
for transmission and flow control, and each channel buffer need only be one flit in
length. The first flit of a message, the header flit, includes the routing information;
it is followed by the data flits in pipelined fashion. If the header cannot be routed
in the network due to contention for resources (buffers and channels), the data flits
are also blocked in situ, keeping all the allocated buffers occupied. In WH routing
it is impossible for flits of other packets to cross the path of the current packet.

Flow Control: Flow control manages the allocation of resources to packets as they
progress along their route. The key resources in most interconnection networks are
the channels and buffers. Channels are used to transport packets between nodes.
Buffers are storage devices implemented within the nodes, such as registers or mem-
ories, which allow the packet to be held temporarily at the nodes. Continuing our
analogy: the topology determines the roadmap, the routing method steers the car,
and the flow control controls the traffic light, determining when a car can advance
over the next stretch of road (channels) or when it must pull off into a parking
lot (buffer) to allow other cars to pass. To realize the performance potential of the
topology and routing method, the flow control strategy must avoid resource conflicts
that can hold a channel idle [6].

Since wormhole routing relies on a blocking mechanism for flow control, deadlock can
occur because of cyclic dependencies over network resources during message routing.
A good flow control strategy should reduce congestion, be fair, and avoid deadlock
[6]. Virtual channels [38, 39] were originally introduced to solve the problem of
deadlock in wormhole-routed networks. Flow control concerns techniques for dealing
with contention among multiple messages for the same channels and buffers [40].
Flow control techniques are very dependent on the switching scheme employed [41];
in wormhole routing, the most common flow control strategy is the use of virtual
channels.

Fault-Tolerance: Massively parallel computer systems usually have stringent reliability
requirements because of the large investments in such systems as well as the nature of
the applications for which they are likely to be used. Fault tolerant [33] networks are
essential to the reliability of massively parallel computer systems. Interconnection
networks are often composed of thousands of components – nodes, channels, routers,
and connectors – that collectively have failure rates higher than is acceptable for the



1.2 Interconnection Networks 5

application. High availability or reliability is usually achieved by some form of fault-
tolerance, which enables the system to survive the loss of one or more components
without disruption in its operation. The specific fault-tolerance methods used in the
system play an important role in the availability, reliability, and the performance
of the overall system. A fault-tolerant network has the ability to route information
even if certain network components fail.

The failure of a network component can often bring down the entire system, unless
adequate measures are provided to tolerate such failures. Faults can occur in a mas-
sively parallel computer system in the PE, memory, I/O system, or the router and
channels of the interconnection network, and to be effective a fault tolerant scheme
must address each of these subsystems. The techniques used for network fault toler-
ance are either software-based or hardware-based. In the software-based technique,
an adaptive routing algorithm is used, which makes use of multiple paths for a given
pair of source and destination to avoid faulty components. In the hardware-based
technique, the network is enhanced by additional hardware and provides enough
redundancy [42] in the original network to tolerate a certain number of faults.

Algorithms and Applications: The interconnection network used in a massively par-
allel computer system plays a key role in determining how fast applications can
be executed on the system. Any non-trivial parallel program running on a mul-
tiprocessor requires some amount of information exchange among the processors;
in many cases, the time for such communication is a significant part of the overall
running time of the program. Therefore, it is important to design algorithms and
applications to use the interconnection network efficiently.

Performing a computational problem efficiently on a multicomputer network is a
complex task, even when the parallelism in the problem has already been identified
[33]. Some of the problems that arise in this context are: distributing shared data
among the nodes in a shared-memory machine so that they can be accessed in paral-
lel without conflicts; allocating processes (or computations) to nodes to match their
communication needs to the interconnection network; designing parallel algorithms
so that their communication requirements can be efficiently supported by the un-
derlying network; balancing the load among the processors in the system; and so
on. It should be noted that most of these problems arise because of the limitations
of the interconnection network itself, and therefore have a direct influence on the
choice of an interconnection network for a given application.

Most parallel algorithms are designed so that they have some regular types of data
movement among nodes. These data movement may involve frequently-used permu-
tations such as shuffle or matrix transpose, global communication operations such
as broadcasting, or it may be expressed in terms of more elementary operations
such as finding the maximum value, sorting, etc. How fast such a communication
operation can be executed on an interconnection networks determines the perfor-
mance of the parallel algorithm on that multiprocessor. Thus, the suitability of a
given interconnection network for certain applications can often be estimated by
studying how efficiently these common operations, such as sorting, computing the
maximum value, bitonic merge, divide-and-conquer, Fast Fourier Transform (FFT),



1.3 Motivations and Goal 6

and broadcasts, can be performed on the given network.

Implementation: Mature 3-Dimensional (3D) Integrated Circuit (IC) technology has
been employed in the development of commercial 3D memory systems. A current
challenge is to produce a 3D computer, and 3D wafer-stacked integration has been
proposed as a new technology for massively parallel computers. Little et al. [43]
developed a 3D computer consisting of a 32×32 cellular array organized as a 5-wafer
stack. The stack comprised two types of wafers called accumulator and shifter. The
die size of the array was about 1 square inch, and the throughput, at 10 MHz, was
600 MOPs (Million Operations per Second). Implementation of a wafer-stacked
prototype showed that the stacked silicon plane organization provided extremely
short paths through the logic sets on various planes of the stack. Furthermore this
prototype demonstrated that the technological problems of vertical interconnects
could be surmounted. Further development on vertical interconnects was reported
by Campbell et al. [44] and Carson [45]. Recently, Kurino et al. [46] have suggested
a highly practical 3D construction technology.

A major obstacle in the design of future 3D computers is the cost in terms of the
area required for vertical interconnects. Each vertical interconnect has an area of
300µm× 300µm. Thus, the unconstrained use of interconnects is not cost-effective
in parallel computer implementation. Clearly, an interconnection philosophy which
minimizes these vertical links can contribute to the success of a 3D implementation.
Jain et al. presented a hierarchical interconnection network called TESH (Tori
connected mESHes) [47–50], and they concluded that a hierarchical interconnection
network minimizes the vertical links for efficient 3D wafer-stacked integration.

1.3 Motivations and Goal

As sequential computers are reaching their limits, a common approach to enhancing their
performance is to design parallel computers with off-the-shelf components to exploit the
advantages of parallelism for solving problems. Parallel processing with hundreds or thou-
sands of microprocessors has become a viable alternative to conventional supercomputers
and mainframes employing a handful of expensive processors. Several commercial ma-
chines with hundreds or thousands of processors have reached the market place in the past
decade or two. The complexity of an interconnection network often determines the size of
the parallel computer that can be constructed. Likewise, the attainable performance of a
parallel computer is ultimately limited by the characteristics of the interconnection net-
work. Clearly, one of the critical design issues for parallel computers is the interconnection
network, which is the backbone for these computers.

Hundreds of various types of interconnection networks have been proposed in past
decades. No single network is optimal in all aspects of network performance. Designing
new interconnection networks remains a topic for intensive investigation, given that there
is no clear winner among those that currently exist. Careful designers try to achieve the
best out of a good trade-off. However, even such a trade-off can lead to different results
in different situations, due to emphasis on different parameters. For example, in a non-
VLSI environment, the overall performance of the mesh, the tree and the Cube Connected



1.3 Motivations and Goal 7

Cycles (CCC) is in ascending order; in VLSI implementation where layout area and wire
length are two important parameters, the overall comparison of the above three networks
shows that the reverse is true. Thus, the design of interconnection networks is still a very
active research area. We believe that this research will continue for decades since parallel
and distributed computers are the only solutions for the computational problems that will
challenge human beings in the twenty-first century.

The critical issue in designing an interconnection network is to provide efficient inter-
processor communication. An interconnection network should transfer a maximum num-
ber of messages in the shortest possible time with minimum cost and maximal reliability.
Therefore, the main task of an interconnection network is to transfer information from
the source to the destination while considering the following points:

• latency as small as possible.

• as many concurrent transfers as possible.

• cost as low as possible.

Hierarchical interconnection networks [51, 52] have attracted considerable attention
in the research community as a means of communication for multiprocessor systems. A
hierarchical design approach allows the network to be constructed incrementally, starting
from one or more basic modules. Hierarchical interconnection networks are intuitively
appealing when a large number of nodes are to be connected. The large diameter of
conventional topologies is completely infeasible for very large scale systems, while hi-
erarchical interconnection networks [51] are a cost-effective way to interconnect a large
number of nodes. A variety of hyper-cube based hierarchical interconnection networks
such as Folded Cube [53], Twisted Cube [54], Extended Cube [55], Enhanced Cube [56],
Reduced Cube [57], Generalized Hypercube [58] , and so on have been proposed, but for
large scale multicomputer systems, the number of physical links in these systems becomes
prohibitively large. To alleviate this problem, several k-ary n-cube-based hierarchical in-
terconnection networks such as TESH [47–50], H3D-Mesh [59, 60], H3D-torus [61, 62], and
Cube Connected Cycles (CCC) [63] have been proposed. However, the dynamic commu-
nication performance of these networks is still very low, especially in terms of network
throughput.

It has already been shown that a torus network has better dynamic communication
performance than a mesh network [64]. This is the key motivation that led us to consider
a hierarchical interconnection network, in which both the basic module and the intercon-
nection of higher levels have toroidal interconnections. Therefore, the first goal of this
dissertation is to propose a new hierarchical interconnection network consisting of torus
networks.

Although the theoretical foundations for constructing large interconnection networks
for massively parallel computer system have existed for a long time, the state of hardware
technology has not allowed their cost-effective realization until the last decade. However,
recent advances in VLSI technology have overcome this drawback, achieving VLSI systems
on stacked silicon planes [65, 66]. On a stacked silicon plane, part of a massively parallel
computer is implemented and these silicon planes are then interconnected. Jain et al.
[47–50] have pointed out that hierarchical interconnection networks are suitable for 3D



1.4 Contribution of the Dissertation 8

wafer-stacked integration. Hence, the second goal of this dissertation is to analyze the
proposed network’s performance on 3D wafer-stacked integration.

In massively parallel computers, an ensemble of nodes works in concert to solve large
application problems. The nodes communicate data and coordinate their efforts by send-
ing and receiving messages in the multicomputer through a router, using a routing al-
gorithm. Efficient routing, featuring low latency and high throughput, is critical to the
performance of interconnection networks, and achieving the low latency and high through-
put are indispensable for high-performance massively parallel computers. Therefore, the
third goal of this dissertation is to evaluate the dynamic communication performance of
the proposed network using both deterministic and adaptive routing algorithms. Adap-
tive routing allows paths to be chosen dynamically based on router status [67–71]. We
will assess the improvement of the dynamic communication performance of our proposed
network, using a suite of low cost adaptive routing algorithm, over the performance of a
dimension order routing algorithm.

As the interconnection network is a critical component of a multicomputer system,
methods of achieving fault tolerance in the network have special significance. The failure
of a network component can bring down the entire system, unless adequate measures
are provided to tolerate such faults. Therefore, the fourth goal of this dissertation is to
analyze the fault tolerance performance of the proposed interconnection network.

One of the desirable attributes of designing interconnection network is the convenient
mapping of applications, especially those with regularity of computations, in the designed
network [72]. Therefore the fifth goal of this dissertation is to investigate how efficiently
some common and advanced applications such as bitonic merge, finding the maximum
value, and FFT can be mapped on our proposed interconnection network.

The wiring complexity of an interconnection network is the total number of links in
the overall network. The wiring complexity of the system is an important issue, since
the silicon area is limited and networks are generally wiring intensive [73, 74]. The links
of a richly connected network can be removed in a periodic fashion by pruning, for re-
duced complexity and, hence, increased performance. Therefore, the sixth goal of this
dissertation is to prune our proposed network and analyze its 3D-WSI realization.

Finally, we will modify some other hierarchical interconnection networks using our
main idea (torus-torus hierarchical interconnection network) and evaluate both their static
network performance and dynamic communication performance. In conclusion, the main
goal of this dissertation is to develop and analyze an efficient hierarchical interconnection
network for massively parallel computer systems.

1.4 Contribution of the Dissertation

In this dissertation, we have proposed a new hierarchical interconnection network called
the Hierarchical Torus Network (HTN). The basic idea behind this new network is that
it is a hierarchical interconnection network, in which each level is connected by toroidal
interconnections.

The contributions of this dissertation can be summarized as follows:

• Introduce a new hierarchical interconnection network called HTN for massively par-
allel computers. Topological properties and the architectural structure of a HTN



1.4 Contribution of the Dissertation 9

are also presented.

• Describe various aspects of network features for 3D wafer-stacked implementation.
Wafer stacked implementation issue for HTN is also described.

• Provide a deadlock-free dimension order routing algorithm for HTN. Virtual chan-
nels are used to achieve a deadlock-free routing algorithm. Since the hardware cost
increases as the number of virtual channels increases, the unconstrained use of vir-
tual channels is not cost-effective in parallel computers. A deadlock-free routing
algorithm for our proposed HTN with a minimum number of virtual channels is
investigated.

• Simulate the dynamic communication performance of the HTN as well as for sev-
eral commonly used networks for parallel computers using dimension order routing.
We have conducted several experiments and compared its dynamic communication
performance with that of several other networks, to demonstrate the superiority of
the HTN.

• Propose a suite of low-cost adaptive routing algorithms for the efficient use of physi-
cal links and virtual channels, to improve the dynamic communication performance
of the HTN. We present a conservative estimate of hardware cost and delay for the
proposed routing algorithms and compare it with that of a dimension order routing
algorithm.

• Prove the freedom from deadlock of the proposed adaptive routing algorithms, using
3 virtual channels. To evaluate the dynamic communication performance of an HTN
we used the proposed adaptive routing algorithms under various traffic patterns
and compared the resulting performance with that of the dimension order routing
algorithm.

• Present the fault tolerance aspects of HTN. Tolerating faults is the key to system
survival. Derive a theoretical estimate of system yield for the HTN as a function of
defect density with a reconfiguration approach by hardware redundancy.

• Investigate the versatility of the HTN by mapping some primitive applications such
as bitonic merge, finding the maximum value, and FFT on it and comparing its
mapping performance to that of other conventional and hierarchical interconnection
networks.

• Prune the proposed HTN to reduce the wiring complexity, and analyze its 3D-WSI
implementation.

• Modify some other hierarchical interconnection networks using our main idea (torus-
torus hierarchical interconnection network) and analyze the cost-performance trade-
offs.



1.5 Synopsis of the Dissertation 10

1.5 Synopsis of the Dissertation

After this introductory chapter, the remaining chapters of this dissertation are organized
as follows:

• Before proposing a new hierarchical interconnection network, it is very important to
study existing network topologies, as along with studying how they can be changed
into hierarchical interconnection networks. In chapter 2, we deal with various
network topologies and provide an overview of the properties of many widely-used
interconnection networks. Different hierarchical interconnection networks are also
addressed in Chapter ??. This chapter is the literature survey and presents the
current state-of-the-art of k-ary n-cube based hierarchical interconnection networks.

• In Chapter 3, we present a new hierarchical interconnection network called Hierar-
chical Torus Network (HTN). In this chapter, we describe the architectural details
of the HTN, including addressing of nodes. This chapter discusses many properties
and technology-independent measures commonly used to evaluate and compare dif-
ferent network topologies, and provides a detailed analysis of these properties for
HTN. We then discuss the 3D wafer-stacked implementation for our proposed HTN.

• Because interconnection networks are used for communication and coordination
between nodes, routing is probably the most important problem in analyzing in-
terconnection networks. Chapter 4 presents an in-depth analysis of the routing
algorithm of our proposed HTN. We describe deadlock free dimension order routing
and a suite of low-cost adaptive routing algorithms for the HTN. An investigation
of the minimum number of virtual channels required for deadlock-free routing in an
HTN is also described. The dynamic communication performance of an HTN is eval-
uated using dimension-order routing and our proposed adaptive routing algorithms
under various traffic patterns. We present a conservative estimate of hardware costs
and router delay for the proposed adaptive routing algorithms and compare it with
a dimension order routing algorithm.

• The interconnection network is a critical component of a multicomputer system and
must therefore be designed with some degree of fault-tolerance. In Chapter 5,
the reconfiguration of faulty nodes by redundant nodes is presented for the HTN.
A hierarchical redundancy approach is explored, in which redundancy is provided
at each level of the network. An expression for yield is presented considering the
redundant circuit and estimate the yield of the HTN. For a network to be useful,
it must accommodate a large class of applications. At the end of Chapter 5, we
discuss some advanced applications such as bitonic merge, FFT, and finding the
maximum value on HTN.

• Next, in Chapter 6, we prune our proposed HTN to reduce the total number
of physical links. The architecture of the pruned HTN and its 3D wafer-stacked
implementation issue are discussed in detail.

• Chapter 7 contains some modified hierarchical interconnection networks based
on our main idea (torus-torus hierarchical interconnection network). The basic



structure, addressing of nodes, routing of messages, static network performance,
and dynamic communication performance of those modified networks are presented
in this chapter.

• In Chapter 8, we conclude this dissertation with some perspectives and outline
some directions for future work, considering areas that might be worthy of further
research.



Chapter 2

“Science is a wonderful thing if one does not
have to earn ones’ living at it”

– Albert Einstein (1879–1955)

Interconnection Networks for
Massively Parallel Computers

2.1 Introduction

Network topology refers to the static arrangement of channels and nodes in an intercon-
nection network – the road over which the packet travel. Selecting the interconnection
network topology is the first step in designing a multicomputer network because routing
strategy and flow-control method depend heavily on the network topology. A roadmap is
needed before a route can be selected and the traversal of that route scheduled.

Interconnection networks are used in massively parallel computers to allow cooperation
between several nodes (processing elements). The research literature on interconnection
networks embodies studies of a large number of interconnection networks, ranging from a
simple bus to hierarchical interconnection networks. They have been proposed in terms
of their graph theoric properties. Interconnection networks can be broadly divided into
two classes: direct and indirect. In the direct (or static) networks, point to point links
interconnect the nodes according to network topology. In the indirect (or dynamic) net-
work nodes are not directly connected; the communication between any two nodes has
to be carried through some switches. In this dissertation, we have concentrated only on
direct networks.

In a message-passing multicomputer [35], multiple computers or nodes are connected
by an interconnection network and operate under an integrated operating system. Each
node is directly connected to a subset of other nodes in the network. Each node is a pro-
grammable computer with its own processor, local memory, and other supporting devices.
These nodes may have different functional capabilities. For example, the set of nodes may
contain vector processors, graphics processors, and I/O processors. A common component
of these nodes is a router, which handles message passing among nodes. Each router has
direct links to the router of its neighbors. Usually, two neighboring nodes are connected
by a pair of unidirectional channels in opposite directions. A bidirectional channel may
also be used to connect two neighboring nodes. Although the function of a router can be
performed by the local processor, dedicated routers have been used in high-performance
multicomputers, allowing overlapped computation and communication within each node.
As the number of nodes in the system increases, the total communication bandwidth,



2.1 Introduction 13

memory bandwidth, and processing capability of the system also increase, Thus, direct
networks have been a popular interconnection network architecture for massively paral-
lel computers. In this dissertation, henceforth, unless specified, the term computer or
processor refers to a node.

Direct network topologies are derived from graphs in which nodes represent processors
and edges represent the dedicated links between processors. A network is symmetric if it
is isomorphic to itself with any node labeled as origin. Almost all direct networks studied
in the literature have some degree of symmetry. Such a symmetric network has many
advantages. First, it allows the network to be constructed from simple building blocks
and expanded in a modular fashion. Second, a symmetric network facilitates the use of
simple routing algorithms. Third, it is easier to develop efficient computational algorithms
for multiprocessor interconnected by a symmetric network. Finally, it makes the network
easier to model and analyze.

An important advantage of many regular static interconnection networks is their mod-
ularity. The degree of a node in these networks either remains fixed regardless of the size of
the network, or grows very slowly with network size (e.g. as a logarithmic function). This
allows very large networks to be constructed from simple building blocks. Due to their
regularity and modularity, direct interconnection networks are often used in massively
parallel computers. Some of these networks have been used in commercial multicomput-
ers or research prototype. Table 2.1 lists the types of interconnection network employed
in several representative commercial and experimental machines.

Machine Network Topology
Connection Machine CM-5 [12] Fat-Tree
Connection Machine CM-2 Hypercube
Intel iPSC-2 [15, 16] Hypercube
nCUBE [20–22] Hypercube
SGI Origin 2000 [32] Hypercube
Intel Paragon [18] 2D mesh
Intel Touchstone Delta [17] 2D mesh
MIT Reliable Router [75] 2D mesh
Stanford DASH [28] 2D mesh
MIT J-Machine [24, 25] 3D mesh
MIT M-Machine [26] 3D mesh
Michigan HARTS Hexagonal mesh
KSR first level ring [5] Ring
Illinois Illiac IV 2D torus
Chaos Router [76] 2D torus
iWARP [27] 2D torus
Cray T3D [30] 3D torus
Cray T3E [31] 3D torus
Tera Computer Incomplete 3D torus

Table 2.1: A collection of types of interconnection networks used in commercial and
experimental parallel computers



2.2 Definitions 14

The main focus of this dissertation is on hierarchical interconnection networks for
massively parallel computers. This is why this chapter provides a survey of various types
of interconnection networks which have been proposed through the years and pointing
out their potential shortcomings. The rest of this chapter is organized as follows: Section
2.3 outlines the architecture and properties of the most common interconnection network
topologies. Hierarchical interconnection networks are the subject of Section 2.4. Finally,
conclusions are pointed out in Section 2.5.

2.2 Definitions

In distributed-memory architectures, processing elements are linked together by an in-
terconnection network. In this section, we define the terminology which will be used
throughout the discussion of interconnection networks.

2.2.1 Fundamental Definitions

Definition 2.1 (Node) A node is that basic functional unit from which a massively
parallel computer system is constructed. Nodes consist of its processing element, local
memory, other supporting devices, and a router.

Definition 2.2 (Communication Link) A communication link is a direct connection
from one node to another node. Communication links may unidirectional or bidirectional.

Definition 2.3 (Buffers) Buffers are the memory reserved at each node for data ele-
ments which require transmission over the network. Injection buffers hold data waiting
to enter the network (from local memory). Delivery buffers hold data waiting to leave the
network (to local memory).

Definition 2.4 (Interconnection Network) An interconnection network is a graph
in which the vertices are nodes and the edges are communication links. The edges are
directed if the communication links are undirectional; they are undirected if the links are
bidirectional.

These definitions form the basis for the discussion of interconnection networks. In
this dissertation, we will often use the term node, link, and network as shorthand for
processing element, communication link, and interconnection network. We now define
some topological characteristics of interconnection networks.

2.2.2 Topological Characteristics of Interconnection Networks

The definitions in this section are well known characteristics of interconnection networks.
More details about the topological characteristics will be provided in Chapter 3.

Definition 2.5 (Degree) The degree of a network is the maximum number of links orig-
inating from any node.



2.2 Definitions 15

Definition 2.6 (Distance) The distance between a pair of nodes is the smallest number
of links that must be traversed to get from one node to the other.

Definition 2.7 (Diameter) The network diameter is the maximum distance between
any pair of nodes.

Definition 2.8 (Bisection Width) The bisection width of the network is the minimum
number of links that must be removed to split the network into two equal halves.

A low degree for each node (i.e., a small number of connections) is a requirement for
scalability. A small diameter is desirable because it is the lower bound for worst-case
node-to-node communication time. A large bisection width is desirable because it defines
the maximum bandwidth available between two halves of the network. These features
will be used later to assess the benefits of different interconnection networks.

2.2.3 Layout Characteristics of Interconnection Networks

While the topological characteristics provide useful information with respect to routing
algorithm about the underlying graph for a network, layout characteristics provide insight
into fabrication cost and scalability.

Definition 2.9 (Maximum Edge Length) The maximum edge length (wire length) is
the longest link between a pair of nodes when the network is laid out in a plane (or in a
3D volume)

Definition 2.10 (Network Area (or Volume)) This is the minimum area (or vol-
ume) consumed by the network when laid out in a plane (or in a 3D volume)

Definition 2.11 (Link Width) The link width is the width in bits of each link connect-
ing a pair of nodes.

In VLSI and other technologies, a small maximum edge length is desirable in order
to avoid long signal propagation delays. Similarly, a small area is desirable to limit
fabrication costs. For a fixed fabrication cost, the number of nodes (and the achievable
parallelism) is higher for networks with a smaller network area, assuming fabrication cost
is proportional to area.

2.2.4 Dynamic Communication Performance Metrices

The dynamic communication performance of an interconnection network depends on the
routing algorithm. We now define several metrices for mrasuring the performance of a
routing algorithm.

Definition 2.12 (Latency) Latency is the time a packet spends in the network, exclud-
ing the time it waits in the injection and delivery buffers. Latency is measured in clock
cycles.

Definition 2.13 (Throughput) Throughput describes the rate of data transfer. It is the
number of flits accepted by delivery buffers per cycle per node, at steady state.

In general, latency and throughput are used to describe the performance of routing
algorithms in an interconnection network.



2.3 Interconnection Network Topologies 16

2.3 Interconnection Network Topologies

The choice of a particular interconnection network for a massively parallel computer
system is based on various factors. One must begin by considering the types of problems
for which it will be used. If a specific problem is targeted, an ideal network may exist.
However, if the goal is to solve any problem, a more general network may be appropriate.

Depending on the scalability requirements, the topological and layout characteristics
of the network can create performance and fabrication cost constraints. Obviously, the
degree of scalability required also depends on the computational capacity required for the
system and the power of the individual processing elements.

Of course, the routing algorithm for an interconnection network will also affect the
decision. We will discuss the routing algorithm details in Chapter 4.

In this section, we present some important interconnection networks used in massively
parallel computers and discuss their properties. There are many more networks than we
present here, so we will limit our descriptions to some of the more common ones.

2.3.1 Completely-Connected Networks

In a Completely-connected network [77], each node is directly connected to every other
node. For an N node network, each node has degree N − 1. The diameter is 1 and the
bisection width is

⌈

N
2

⌉

×
⌊

N
2

⌋

. The small diameter and the large bisection width are very
desirable. But the high degree of each node makes these networks impractical for more
than a few nodes (an N node network has N × (N − 1) unidirectional links. As a result,
sparse networks are used for all large scale parallel computers. Figure 2.1 shows some
examples of completely connected networks.

Figure 2.1: Completely-connected networks for N = 4, N = 8, and N = 12.

2.3.2 Star Networks

Star-Connected Network

In a Star-connected network [77], one node acts as the central node. Every other node
has a communication link connecting it to this node. Figure 2.2 shows a star-connected



2.3 Interconnection Network Topologies 17

Figure 2.2: A star-connected network of nine nodes

network of nine nodes. For an N node network, the terminal nodes are only linked to the
central node so their degree is 1. The central node is linked to all the other processors,
so its degree is N − 1. The diameter and bisection width are 2 and 1, respectively.
Communication between any pair of nodes is routed through the central node. Hence,
the central node is a bottleneck in the star-connected network. The bottleneck at the
central node makes it impractical to have many nodes. Another, more serious, problem is
that if the central node fail, the whole network fails, along with all access to peripherals.

Star Graph Network

A star graph [78, 79] can be informally described as follows. The vertices of the graph are
labeled by permutations of n different symbols, usually denoted as 1 to n. A permutation
is connected to every other permutation that can be obtained from it by interchanging
the first symbol with any of the other symbols. A star graph has N = n! nodes and
node degree is equal to (n − 1). The diameter is

⌊

(3n−1)
2

⌋

. Figure 2.3 shows a star graph
obtained by permutations of four symbols. The degree and the diameter of the star graph
grow at a much slower rate with the number of nodes. It is vertex and edge symmetric,
maximally fault tolerant, and strongly resilent. The main disadvantage of the star graph
is that the routing of message in the star graph is more complex.

2.3.3 Tree Networks

A tree network [5, 77] is one in which there is only one path between any pair of nodes.
This topology has a root node connected to a certain number of descendant nodes. Each
of these nodes is in turn connected to a disjoint set of descendants. A node with no
descendants is called leaf node. A characteristic property of trees is that every node
but the root has a single parent node. Therefore, tree network contains no cycles. The
connectivity for a complete binary tree with N = 2d − 1 nodes is:

i →
{

(2i, 2i + 1) for 0 ≤ i < (2d − 1) (2.1)



2.3 Interconnection Network Topologies 18

Figure 2.3: Star graph network

Figure 2.4 shows a binary tree network with 15 nodes. Networks based on trees can
be used to achieve diameters which are logarithmic in N . The diameter of a binary tree
network is

(

2 ×
⌊

logN
2

⌋)

. Unfortunately the bisection width is 1, making it difficult to
move data across the network. However, the network used in an early parallel computer
DADO is based on the binary-tree network [77].

A related network, the X-tree network, improves the bisection width to
⌈

logN
2

⌉

by
connecting the nodes at each level, as shown in Figure 2.5. It also improves nearest-
neighbor communication, for some cases. The connectivity is:

i →
{

(2i, 2i + 1) for 0 ≤ i < (2d − 1)
(i + 1) for 2j ≤ i < (2j+1 − 1), 1 < j < d)

(2.2)

Several other networks are also based on binary tree. The mesh-of-trees network
[80, 81] is formed by placing binary trees on the top of each row and column of a mesh
and then deleting the original edges of the mesh. Meshes of trees have both small diameter
and large bisection width. Figure 2.6 provides an example of mesh-of-tree. The tree-of-
mesh [80] is a binary tree with the nodes replaced by meshes and the edges replaced by
links between the nodes of the meshes.

The most important drawback of tree networks is that the root node and the nodes
close to it suffers from a communication bottleneck. Additionally, there are no alternative
paths between any pairs of nodes. The bottleneck can be removed by allocating a higher
channel bandwidth to channels located close to the root node. The shorter the distance to
the root node, the higher the channel bandwidth. However, using channels with different



2.3 Interconnection Network Topologies 19

8 9 10

4 5 6 7

2

1

3

11 12 13 14 15 Leaf

Root

Figure 2.4: A 15 node binary tree network

8 9 10

4 5 6 7

2

1

3

11 12 13 14 15

Figure 2.5: A 15 node X-tree network

bandwidth is not practical, specially when message transmission is pipelined. Fat-tree
[82] , based on the tree-of-meshes network, offer a good solution to the communication
bottleneck by providing more link bandwidth closer to the root of the tree. Also, fat-trees
are area universal, meaning that a fat-tree which uses VLSI layout area A can emulate
any other network using the same area with at most polymorphic slowdown. Figure 2.7
provides an example of a binary fat tree. The network used in the Connection Machine
CM-5 is based on the fat-tree [12].

2.3.4 Hypercubic Networks

The hypercubic family of networks provides both a small diameter and a large bisection
width. All of the hypercubic networks are derived from the binary cube1. The hypercu-
bic networks have been studied for several decades. In [83], Schwartz reviews the early
literature on these networks. In [81], Leighton provides an excellent descriptions of the

1Binary cubes are also known as boolean cubes or hypercubes



2.3 Interconnection Network Topologies 20

(c) nodes and edges added 
to form column trees

(d) the N x N mesh-of-trees

(b) nodes and edges added 
to form row trees

(a) N x N grid of nodes

Figure 2.6: The 2D mesh-of-trees. Leaf nodes from the original grid are denoted with
black circles. Nodes added to form row trees are denoted with red squares, and nodes
added to form column trees are denoted with blue squares

Figure 2.7: A fat-tree network



2.3 Interconnection Network Topologies 21

major types of hypercubic networks and their properties.

The Binary Cube Network

Generally, the binary cube network is well known as hypercube network. It is one of the
most versatile and efficient networks yet discovered for parallel computation. It is well
suited for both special-purpose and general purpose tasks, and it can efficiently simulate
any other network of the same size. The n-dimensional binary cube (hypercube) [58, 77, 83]
has N = 2n nodes with the following connectivity:

i →
{

(i ⊕ 2j) for 0 ≤ i < 2n, 0 ≤ j < n (2.3)

The symbol ⊕ denotes the bitwise exclusive-OR operation. Nodes are labeled using
n-bit binary numbers 0 to 2n − 1. Two nodes are connected by a direct link if and only
if the binary representation of their labels differ at exactly one bit position. A binary
cube can be constructed recursively. A zero-dimensional binary cube is a single node; a
one-dimensional binary cube is constructed by connecting two zero-dimensional binary
cube; a two-dimensional binary cube is constructed by connecting two one-dimensional
binary cube, and so on. In general, a (n + 1)-dimensional binary cube is constructed
by connecting two d-dimensional binary cube. Figure 2.8 illustrates the binary cubes of
dimension zero to four.

The key advantages of the binary cube are its small diameter (logN
2 ) and its large

bisection width
(

N
2

)

. Again binary cube allows efficient implementation of a large number
of parallel algorithms. However, it has several drawbacks. The degree of the nodes is
(logN

2 ), and although it grows fairly slowly with N , the degree is not bounded. Also, the
large number of links per node tend to limit the link width, as compared to mesh and
torus networks. Lastly, it requires large fabrication area, so scaling the network to large
sizes is very costly.

Despite difficulties involved in the fabrication of binary cubes, several systems have
been based on this architecture. These include systems from Intel IPSC [14, 15], nCUBE
[20–22] and Thinking Machines (CM-1, CM-2)

Remark: Note that the n-dimensional binary cube is actually an k-ary n-cube with
the extent of each dimension equal to two, i.e., it is 2-ary n-cube network.

In order to circumvent the difficulties associated with the node degree in binary cubes,
several variants of hypercube have been devised that have similar computational prop-
erties but bounded degree. These are the butterfly, the cube-connected cycles, and the
Benes network.

The Cube-Connected Cycles Network

The cube-connected cycles (CCC) [63] has fixed degree and preserves many of the prop-
erties of the binary cube. It can be constructed from the binary cube by replacing each
node with an n node ring, resulting in an n2n node network. Each node in in the ring is
linked to a different dimension. The nodes are labeled by a pair consisting of the original
binary cube node label and the position of the ring. The connectivity is:



2.3 Interconnection Network Topologies 22

0001

0000

0011

0010

0101

0100

0111

0110

1001

1000

1011

1010

1101

1100

1111

1110

1

0

01

00

11

10

001

000

011

010

101

100

111

110

(e) 4-D Hypercube

(a) 0-D Hypercube (b) 1-D Hypercube (c) 2-D Hypercube (d) 3-D Hypercube

Figure 2.8: The Binary cube networks of zero, one, two, three, and four dimensions, the
nodes are labeled using n-bit binary numbers.

(i, j) →
{

(i ⊕ 2j, j) for 0 ≤ i < 2n, 0 ≤ j < n
(i, (j ± 1) mod n) for 0 ≤ i < 2n, 0 ≤ j < n

(2.4)

Figure 2.9 illustrates an example of the CCC network and the corresponding binary
cube network. In this figure, two links are connected to neighbors in the ring, and one
link is connected to a node in another ring through one of the dimensions of the binary
cube (hypercube). The diameter of the n-dimensional CCC network is 2n− 1 +

⌊

n
2

⌋

, and

the bisection width is N
2
.

Other Hypercubic Network

There are many other hypercubic networks. One class, shuffle-type networks, includes
shuffle-exchange and de-Bruijn networks. A larger class, butterfly-type networks, includes
the omega, flip, baseline, banyan, and delta networks, as well as several butterfly variants.
These are indirect networks, which is out of scope of this dissertation.

2.3.5 Array Networks

Array networks are the simplest networks for parallel computation. They support a rich
class of interesting and important parallel algorithms. Low dimensional arrays are a



2.3 Interconnection Network Topologies 23

1

1

2

2

00

2

0

1

2

1

0

(a)

101

100

111

110

001

000

011

010

(b)

1

1

2

2

00

2

0

1

2

1

0

Figure 2.9: (a) The 3-dimensional binary cube network (b) The 3-dimensional CCC.
Labels for individual nodes in the CCC are binary cube node label and the adjacent link
label.

common network because they scale well and provide a natural mapping for many data
structures.

Linear Array and Ring Networks

A linear array [77] is the simplest sparse network. Each node (except the nodes at the
ends) has a direct communication link to two other neighboring nodes. Nodes are linked
together in a straight line. The interconnection rules for an N node linear array is:

i →











i + 1 for i = 0
i ± 1 for 0 < i < N − 1
i − 1 for i = N − 1

(2.5)

The degree, diameter, and bisection width for an N node linear array are 2, (N − 1),
and 1, respectively. The network scale well, but the diameter is large and the bisection
width is small. The linear array is inherently unreliable as a failure of a single node or
link disconnects the network. By linking the first and last nodes by an wraparound link,
we can form a ring [77] network . The interconnection rules for an N node ring becomes:

i →
{

(i ± 1) mod N for 0 ≤ i < N − 1 (2.6)

Here, the degree, diameter, and bisection width for an N node ring network are 2,
(⌊

N
2

⌋)

, and 2, respectively. The diameter of a ring network is smaller and the bisection
width is larger than those of linear array network; however, the diameter is still large and
the bisection width is small. Unfortunately, the large diameter and small bisection width



2.3 Interconnection Network Topologies 24

(a) Linear Array (b) Ring

Figure 2.10: A four-node linear array and ring network

0 1 7 2 6 3 5 4

0 1 2 3 4 5 6 7

Figure 2.11: A layout for a ring network which minimizes link lengths (N = 8).

are still significant drawbacks for this type of network. Figure 2.10 shows an example of
linear arrays and rings. The ring is employed in KSR 1st-level ring [5].

A potential problem with ring networks is signal propagation time. The obvious layout
shown in Figure 2.10 will have one link with length proportional to the number of nodes.
One could set up the nodes in a circle, but this too may become impractical as N increases.
A better solution is shown in Figure 2.11, which limits the length of links without affecting
scalability.

n–Dimensional Mesh and Torus Networks

Networks based on linear arrays and rings suffer from a large diameter and a small bisec-
tion width. These problems can be reduced by extending the network to more than one
dimension In fact, linear arrays and rings are actually special cases of the more general
n–dimensional mesh and torus networks.

The n–dimensional mesh [84] is defined by a set of extents, k0, k1, k2, ... ..., kn−1 and
has N = k0 × k1 × k2 × ... ..., ×kn−1 nodes. Nodes are labeled by n-tuples, with values
corresponding to node’s offset in each dimension with respect to node (0, 0, ..., 0). Node
X = (x0, x1, ..., xn−1) is valid node if 0 ≤ i < ki, for 0 ≤ i < n. In dimension i, 0 ≤ i < n,
the interconnection for node X is:

(x0, x1, ..., xi, ..., xn−2, xn−1) →
{

(x0, x1, ..., xi+1, ..., xn−2, xn−1) if xi < ki − 1
(x0, x1, ..., xi−1, ..., xn−2, xn−1) if xi > 0

(2.7)

If we assume the extents of all of the mesh’s dimensions have the same even value (i.e.,
ki = k, for 0 ≤ i < n), then the kn node mesh network will have a diameter of n(k − 1)
and a bisection width of kn−1.



2.3 Interconnection Network Topologies 25

(a) 2D-Mesh (b) 2D-Torus

Figure 2.12: 2D mesh and torus networks with 4 nodes in each dimension (a) 2D-mesh
(b) 2D-torus networks

The nodes at the periphery in the mesh network are connected by wraparound links.
Such a mesh network is called a wraparound mesh or a torus network [6, 77]. Thus, the n–
dimensional torus is identical to the mesh, except for some additional connectivity. Unlike
the mesh, with these wraparound links, every node is connected to its 2n neighbors. In
dimension i, 0 ≤ i < n, the interconnection for node X is:

(x0, x1, ..., xi, ..., xn−2, xn−1) →
{

(x0, x1, ..., (xi+1) mod ki, ..., xn−2, xn−1)
(x0, x1, ..., (xi−1) mod ki, ..., xn−2, xn−1)

(2.8)

If we assume the extents of a torus all have the same, even value (i.e., ki = k, for

0 ≤ i < n), then the kn node torus network will have a diameter of
(

n × k
2

)

and a

bisection width of (2 × kn−1).
Figure 2.12 and 2.13 provide some examples of mesh and torus networks. In theory,

higher dimensional mesh and torus networks should be very desirable, at least from the
perspective of diameter and bisection width. However in practice, engineering constraints
such as the network area (or volume) and the link width become a problem at higher
dimensions. As a result, mesh and torus networks with n > 3 are not common in parallel
system, with the exception of network architectures based on the binary cube. Many
commercially available parallel computers are based on low dimensional mesh and torus
networks. These include 2D-mesh such as Intel Paragon [18] and Touchstone Delta [17],
MIT Reliable Router [75], and Stanford DASH [28]; 3D-mesh such as MIT J-Machine
[24, 25] and M-Machine [26]; 2D-torus such as Chaos Router [76] and CMU iWARP [27];
and 3D-torus such as Cray T3D [30] and Cray T3E [31].



2.4 Hierarchical Interconnection Network (HIN) 26

(a) 3D-Mesh (b) 3D-Torus

Figure 2.13: 3D mesh and torus networks with 4 nodes in each dimension (a) 3D-mesh
and (b) 3D-torus networks

k-ary n-cube Networks

A k-ary n-cubes [64] is defined as a cube with n dimensions and k nodes in each dimension.
Here, let n be the dimension of the cubes, k be the radix, and N be the total number of
nodes. Dimension, radix, and number of nodes are related by the equation N = kn. Torus
networks are the isomorphic with k-ary n-cubes. 2D-torus and 3D-torus are k-ary 2-cubes
and k-ary 3-cubes, respectively. k-ary n-cube network is also known as n-dimensional k-
torus [85]. In recent literature, the k-ary n-cube refers to the n-dimensional torus with
k nodes in every dimension. k-ary n-cubes have many desirable topological properties
including ease of implementation, modularity, symmetry, low diameter and node degree,
plus an ability to exploit locality exhibited by many parallel applications [86]. k-ary
n-cubes are suited to a variety of applications including matrix computation, image pro-
cessing and problems whose task graphs can be embedded naturally into the topology
[87]. Figure 2.12(b) and 2.13(b) represent 4-ary 2-cube and 4-ary 3-cube networks, re-
spectively. A binary n-cube2 is also an example of a k-ary n-cube with the extent of each
dimension equal to 2.

2.4 Hierarchical Interconnection Network (HIN)

Interconnection networks usually suffer from Little’s Law: low cost implies low perfor-
mance and high performance is obtained at high cost [51]. However, hierarchical intercon-
nection networks [51] provide high performance at low cost by exploring the locality that
exists in communication patterns of massively parallel computers. A hierarchical inter-
connection network (HIN) provides a plausible alternative way in which several topologies

22-ary n-cube is well known as hypercube.



2.4 Hierarchical Interconnection Network (HIN) 27

can be integrated together. HINs have attracted considerable attention in the research
community during the past few years as a means of communication for multicomputer
systems. They take advantage of the locality of reference in the communication pattern.
For massively parallel computers with millions of nodes, the total number of physical
links and large diameter of conventional topologies are completely infeasible. Hierarchical
interconnection networks [51, 52] are a cost-effective way to interconnect a large number
of nodes. They are also suitable for 3D wafer-stacked implementations.

The HIN can be seen as an attempt to combine the advantages of various conven-
tional interconnection network topologies together. We have classified the conventional
networks as completely-connected, array, tree, and hypercubic networks. It is very hard to
categorize the HINs like the conventional ones because it combines a variety of networks
together. However, we have classified the HINs as completely-connected network based
HIN, array based HIN, tree based HIN, and hypercube network based HIN.

In this section, we present some important HINs for massively parallel computers and
discuss their properties. There are many more HINs than we present here, so we will limit
our descriptions to some of the more common ones.

2.4.1 Completely-Connected Network based HIN

Multi-level Fully-Connected Networks

A Multi-level Fully-Connected (MFC) networks [88] begin with N2 identical copies of a
nucleus with N1 nodes, where N2 ≤ N1+1 and the nucleus may be any connected-network
or hyper-network. Each nucleus copy is viewed as a level-2 cluster and connected to each
other level-2 cluster via at least one inter-cluster link. The resultant network is called
level-2 MFC network. To construct a level-L MFC network, we use NL identical copies of
a level-(L − 1) MFC network with

∏L−1
i=1 (Ni) nodes as level-L clusters, and connect each

level-L cluster to each of the other level-L clusters via at least one level-L inter-cluster link,
where NL ≤ ∏L−1

i=1 (Ni) + 1. According to this recursive construction, an arbitrarily large
MFC networks using any type of nucleus can be constructed. A level-L MFC network
based on nucleus G is denoted by MFC(L, G), in particular, MFC(1, G) is the nucleus G.
The MFC is superior over fully-connected network, however, the wiring complexity is still
very high. Figure 2.14 illustrates a level-2 MFC network with N1 = N2 = 8.

Swapped Network

A major characteristics of swapped network [89] is that the address of each neighbor of
a node is obtained by swapping two equal-length bit-strings in the node address. The
use of bit-string swapping as the rule for connectivity establishes swapped networks as a
sub-class of multi-level fully-connected (MFC) networks.

The swapped network Sw(G), derived from the n-node nucleus or basis graph G, is
an n2-node graph with n copies of G (clusters) numbered 0 to n − 1, so that node i in
cluster j (Ni,j) is connected to node j of cluster i (Nj,i) for all i 6= j and 0 ≤ i, j ≤ n− 1.

A swapped network is characterized by its nucleus graph, number of hierarchical levels,
number of clusters in each level, and the number of links connecting each pair of clusters.
A swapped network that has L levels and uses the graph G as its nucleus is called a G-
based level-L swapped network, and is denoted by SN(L, G). The nucleus or basis graph



2.4 Hierarchical Interconnection Network (HIN) 28

Figure 2.14: A level-2 MFC network with 8 clusters and the cluster size is 8.

02

00

03

01

12

10

13

11

22

20

23

21

32

30

33

31

Figure 2.15: An example of 16-node swapped network with the 4-node complete graph as
its basis.



2.4 Hierarchical Interconnection Network (HIN) 29

may be any kind of network such as hypercube, completely-connected network, mesh, and
etc. Figure 2.15 shows a 16-node swapped network with the 4-node complete graph as its
basis.

2.4.2 Tree Network based HIN

Pyramid Network

A pyramid network [90] is a 4-ary tree where each level is connected as a mesh network. It
is an attempt to combine the advantages of mesh networks with those of tree networks. A
pyramid network of size k2 is a complete 4 ary rooted tree of height d(=logk

2) augmented
with additional interprocessor links so that the nodes in every tree levels form a 2D-mesh
network [91]. A pyramid of size k2 has at its base a 2D-Mesh network containing k2 nodes.
The total number of nodes in a pyramid of size k2 is N = 4k2−1

3
organized in d + 1 levels.

The levels of the pyramid are numbered in ascending order such that the base has level
number 0, and the single processor at the apex of the pyramid has level number d. Every
interior node is connected to nine other nodes: one parent at level-(i + 1) (provided that
i ≤ d − 1), four mesh neighbors at the same level, and and four children at level-(i − 1)
(provided that i ≥ 1). Figure 2.16 illustrates a pyramid network of size 16.

The node degree is constant and it is 9. The advantage of the pyramid over the 2D-
mesh is that the pyramid reduces the diameter of the network. When a message must
travel from one side of the mesh to the other, fewer link traversal are required if the
message travels up and down the tree rather than across the mesh. The diameter of
a pyramid of size k2 is 2 logk

2. The addition of tree links does not give the pyramid a
significantly higher bisection width than a 2D-mesh network. The bisection width of a
pyramid of size k2 is 2k. In addition, the length of the longest link in the pyramid network
is an increasing function of the network size.

Level-0

Level-1

Level-2Apex

Base

Figure 2.16: A pyramid network of 16 node



2.4 Hierarchical Interconnection Network (HIN) 30

Hierarchical Cliques Network

Hierarchical Cliques (HiC) network [92] incorporates positive features of the completely-
connected network and tree network. It is a k-ary tree, modified to enhance local connec-
tivity in a hierarchical, modular fashion.

HiC(k,h) is a k-ary tree of height h modified so that groups of nodes on the same level
form cliques. Figure 2.17 illustrates the structure and addressing scheme of an HiC with
k = 4 and h = 3. The root node has 4 children which form a clique; in Figure 2.17 nodes
of a clique are shown enclosed in dotted oval. The key features of the hierarchical cliques
are low degree, low diameter (logarithmic), self routing, versatile embedding, good fault
tolerance, and strong resilience. However, the upper level networks are still congested
because of tree network.

141 142 143 144

241 242 243 244

341 342 343 344

441 442 443 444

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

1 2 3 4

represents a single connection between two nodes

represents connections forming a clique among enclosed nodes

Figure 2.17: A hierarchical clique network



2.4 Hierarchical Interconnection Network (HIN) 31

2.4.3 Hypercube Network based HIN

Fibonacci Cube

Fibonacci cube [93] is a type of incomplete hypercube networks. They are subgraphs of
hypercube networks induced by nodes that have no two consecutive 1’s in their binary
representation. More precisely, a Fibonacci cubes Γn of dimension n is an undirected
network of fn nodes, each labeled by n − 2 binary numbers such that no two 1’s occur
consecutively (where fn is the n-th Fibonacci number defined as follows: f0 = 0, f1 = 1,
and fn = fn−1 +fn−2 for n ≥ 2). Two nodes are connected if and only if their labels differ
in exactly one bit position. Fibonacci cubes Γn is a network recursively connecting two
disjoint subgraphs Γn−1 and Γn−2. Each node in Γn−2 is connected to a counterpart node
in Γn−1. As the basis, Γ0 is an empty graph and Γ1 is a graph with a single node. Figure
2.18 illustrates the interconnection of Fibonacci cubes.

Fibonacci cube has very attractive recurrent structure which are essential in developing
fault-tolerant schemes. It contains about 1

5
fewer links than the hypercube for the same

number of nodes. Thus it reduces the wiring complexity of hypercube. Therefore, it
requires less layout area for VLSI/WSI implementation. One potential shortcoming of the
Fibonacci cube is that (unlike the hypercube) its node degrees are not homogeneous, which
results implementation difficulties. The asymmetry in structure and relative sparsity in
connections, the communication delay is higher than that of the hypercube network.

0 0 0 1 0 1 2

Γ1 Γ2 Γ3 Γ4

5 6 70 1 2 3 4

Γ6

0 1 2 3 4

Γ5

Figure 2.18: Fibonacci cubes

Hierarchical Cubic Networks

To resolve the non-planarity and inability to grow incrementally, a new class of intercon-
nection network, called Hierarchical Cubic Networks (HCN) [94] has been proposed.



2.4 Hierarchical Interconnection Network (HIN) 32

An HCN uses hypercubes as basic modules (BM). BM also referred to as a cluster.
The HCN(n, n) has 2n clusters, where each cluster is a n-dimensional hypercube. Each
node in the HCN(n, n) has (n + 1) links connected to it. Among these, n links (local
links) are used within the cluster to form the hypercube. The additional link (external
link) is used to connect the clusters. Each node is represented using a pair of numbers
(I, J), where I is a n-bit cluster number, and J is a n-bit address of the node within a
cluster. Clusters are interconnected using the external links to form the HCN(n, n) using
the following rules:

for I = 0 to (2n − 1) do
for J = 0 to (2n − 1) do

if (I 6= J) then
connect ((I, J)(J, I));
/* non-diameter link */

else
connect ((I, I)(Ī, Ī));
/* diameter link */

Ī is the bitwise complement of the n-bit value of I. The external link between nodes
(I, I) and (Ī, Ī), where 0 ≤ I ≤ (2n − 1), is called a diameter link. An external link
that is not a diameter link is called non-diameter link. Figures 2.19 depicts a HCN(2, 2)
network.

The HCN has about three-fourths the diameter of a comparable hypercube, although
the number of links per node is about half of the hypercube. However, the total number
of links (22n−1 × (n + 1)) of the HCN is still very high for thousands of nodes.

Cluster
Number

Node
Number
within
Cluster

Diameter
Links

Non-
diameter

Links

Global Node Number: 10,11

00 01

10 11

01

00

11

10

01

00

11

10

01

00

11

10

01

00

11

10

Figure 2.19: A HCN(2,2) network



2.4 Hierarchical Interconnection Network (HIN) 33

2.4.4 Array Network based HIN

Recursive Diagonal Torus Network

The name Recursive Diagonal Torus (RDT) [95] itself expresses its characteristics clearly.
This novel class of network is composed of a series of recursively structured meshes (tori)
with increasing size in the diagonal directions. At first, a 2D square mesh (torus) will
serve as the basis of RDT. Figure 2.20 shows an RDT network structure. It is a class of
network which makes use of the advantages of mesh (tori) structures and greatly improves
the performance of meshes (toruses) when the number of nodes reaches tens of thousands
of nodes.

The RDT possesses several attractive features including a small diameter that is almost
half that of the hypercube. Although the congestion on upper rank torus sometimes
degrades the performance under random traffic, the RDT provides much better dynamic
communication performance than that of the 2D/3D torus in most cases even under hot-
spot traffic. The main drawback of the RDT is that due to presence of diagonal links, it
is difficult to implement a fault-tolerant network.

Figure 2.20: Recursive diagonal torus network

Shifted Recursive Torus Network

The RDT has a simple architecture and its dynamic communication performance is high.
However, the wiring of the RDT is complex and it is difficult to implement a fault tolerant
RDT due to diagonal links. To reduce the wiring complexity and to achieve a simple fault



2.4 Hierarchical Interconnection Network (HIN) 34

Level-0 Node
Level-1 Node
Level-2 Node

Level-3 Node
Level-4 Node
Level-5 Node

Figure 2.21: Standard 1D-SRT consisting of 32 nodes.

tolerant network, a new hierarchical network called Shifted Recursive Torus (SRT) [96]
has been proposed.

The Shifted Recursive Torus (SRT) [96] consisting of mesh-tori and bypasses the links
to shift the tori recursively. The simplest torus interconnection is a ring network. To
improve the performance of ring networks, bypass links are added to the ring network
under the constraint that every node has fixed number of links. Figure 2.21 shows a basic
interconnection of a standard 1D-SRT consisting of 32 nodes. 1D-SRT can be extended
to 2D-SRT. The SRT has a smaller diameter with limited number of links per node than
the hypercube. It is also an wire-efficient network for VLSI implementation.

TESH Network

The TESH (Tori connected mESHes) [47–50] is a hierarchical interconnection network
which consists of basic module (BM) and the BMs are hierarchically interconnected for
higher level networks. At the lowest tier, the Level-1 network – also called BM, consists
of a mesh network of size (2m × 2m), where m is a positive integer. Successively higher
level networks are built by recursively interconnecting the immediate lower-level (2m×2m)
subnetworks in the form of a 2D-torus. Figure 2.22 illustrates a Level-2 TESH network
considering m = 2. It is a 2D-torus (4 × 4) network of 16 BMs. The Level-3 network is



2.4 Hierarchical Interconnection Network (HIN) 35

also a 2D-torus, built with (2m ×2m) Level-2 subnetworks. A similar interconnection rule
is applied for higher level network.

TESH possesses several attractive features including low degree, small diameter, and
low average distance. Particularly, it has smaller number of vertical links between silicon
wafers. TESH is a suitable network for 3D wafer-stacked integration. Also in 3D-WSI, it
shortens the longest links of the higher level networks. However, the main demerit of the
TESH network is that the dynamic communication performance of the TESH network is
lower than conventional torus network, especially in terms of network throughput.

PE

BM

Figure 2.22: Level-2 interconnection of TESH network

H3D-Torus Network

TESH network is a suitable network for medium size network (N ≤ 4096) and requires
the smallest number of vertical links in 3D wafer-stacked implementation [47, 50]. It has
been shown that TESH possesses several attractive features including small diameter,
small number of wires (particularly, small number of vertical links), and low layout area
for a few thousands of nodes [47]. However, the restriction in vertical links increases
the diameter of the TESH network for tens of thousands of nodes. H3D-torus network
overcomes this problem.

An Hierarchical 3-Dimensional torus (H3D-torus) [61, 62] has been put forward as a
new interconnection network for large-scale 3D multicomputers. The H3DT network con-
sists of multiple basic modules (BM) which are 3D-mesh of size (m × m × m). The BMs
are hierarchically interconnected by a 3D-torus of size (n × n × n) to build higher level



2.4 Hierarchical Interconnection Network (HIN) 36

networks. Nodes at the four vertical edges of the BM are used for higher level intercon-
nection. As illustrated in Figure 2.23, a Level-2 H3D-torus network, for example, can be
formed by interconnecting 64 BMs as a (4 × 4× 4) 3D-torus network. The Level-3 inter-
connection is also a 3D-torus connection of 64 Level-2 modules. A similar interconnection
rule is applied for higher level networks.

Figure 2.23: Interconnection of a Level-2 H3D-torus network

In [62], it is shown that H3D-torus network possesses several attractive features in-
cluding small diameter, small number of wires – in particular small number of vertical
links, and economic layout area for tens of thousands of nodes. The diameter is far better
than any other conventional and hierarchical networks. The layout area of the H3D-torus
in 3D-WSI is amenable to 3D implementation. However, the restricted use of physical
links between basic modules in the higher level networks reduces the dynamic communica-
tion performance of this network. Its dynamic communication performance, especially in
terms of network throughput, is far lower than that of conventional and other hierarchical
networks [97].

H3D-Mesh Network

Due to restricted use of physical links between basic modules in the higher level networks,
the inter-BM links are concentrated, which in turn reduces the network throughput. If
we increase the inter-BM links, then the benefit (smaller number of vertical links and
economic layout area for 3D-WSI) of H3D-torus network reduces and even vanishes. H3D-
mesh network overcomes this problem. The inter-BM links of the H3D-mesh network is
higher than that of the H3D-torus network. To reduce the peak number of vertical links



2.4 Hierarchical Interconnection Network (HIN) 37

between silicon planes, 2D-mesh have been considered as higher level network instead of
3D-torus network.

The Hierarchical 3-Dimensional mesh (H3D-mesh) network [59, 60] is defined as a
hierarchical interconnection network, which consists of basic modules (BM) and the BMs
are hierarchically interconnected by a 2D-mesh (n × n) for higher-level interconnection.
The BM of the H3D-mesh is a 3D-torus network of size (m × m × m). Nodes at the
contours of the xy-plane of the BM are used for higher-level interconnection. Figure 2.24
illustrates the interconnection of a Level-2 H3D-mesh network. As shown in Figure 2.24,
the mesh at Level-2 interconnects the BMs in a (4 × 4) 2D-mesh.

Figure 2.24: Interconnection of a Level-2 H3D-mesh network

Four links in the north (N), south (S), east (E), and west (W) directions on each
contour are interconnected for higher-level networks. Using the links in the N -direction
and S -direction, the y-direction of the mesh at Level-2 is interconnected. Similarly, using
the links in the E -direction and W -direction, the x-direction of the mesh at Level-2 is
interconnected. Then the mesh interconnection between BMs at Level-2 is complete. The
Level-3 interconnection is also a 2D-mesh connection of 16 Level-2 modules. A similar
interconnection rule is applied for higher-level networks.

In [59], it is shown that H3D-mesh network possesses several attractive features in-
cluding small diameter, small number of wires – in particular small number of vertical
links, and economic layout area. The layout area of the H3D-torus in 3D-WSI is amenable
to 3D implementation. However, they are worse than those of H3D-torus network. In
[60], we have evaluated the dynamic communication performance of the H3D-mesh net-
work by computer simulation. It is seen that the throughput of H3D-mesh is better than
that of H3D-torus network. However, it is still lower than that of conventional and other
hierarchical networks.

Beside these, a lot of hierarchical interconnection networks have been proposed in the
literature. For example, based on completely connected network Complete Connection of
Torus hyperCube (CCTCube), based on tree network Folded Fat H-Tree [98], based on star
network Star-Connected Cycle [99], based on hypercube network Crossed Cube, Folded
cube [53], Twisted hypercube [54], Extended hypercube [55], Enhanced hypercube [56],
Reduced cube [57], Hierarchical hypercube [100], Metacube [101], and Extended Fibonacci
cube [102], based on cube-connected cycles Extended Cube Connected Cycles (ECCC)



2.5 Conclusions 38

[103], based on de-Bruijn network de-Bruijn Cube (dBCube) [104], Hyper deBruijn [105],
and de-Bruijn Connected Torus (BCT) [106], based on ring network chordal ring [107],
barrel shifter, and Recursive circulant [108], based on k-ary n-cube network Express Cube
[109], Polymorphic torus [110], Recursive Torus Network (n-RTN), and Ring Tree on Mesh
(RTM) have been proposed in the literature.

2.5 Conclusions

In this chapter, we have described a variety of interconnection networks which have been
proposed, and in some cases, implemented for distributed-memory parallel computers. In
particular, a number of recently developed systems have been based on mesh and torus
networks. The binary cube, though no longer as popular as a few years ago, remains well-
suited for a myriad of efficient algorithms, and thus remains a topology of interest. Using
mesh, torus, and hypercube a large number of hierarchical interconnection networks have
been proposed to minimize the cost and maximize the performance. Over the past few
years, hierarchical interconnection networks have begun to receive a great deal of interest.

It can be seen that the topological properties of each interconnection network is differ-
ent from the others, and they are trying to make a trade-off between performance and cost
in various aspects. No single network is optimal in all aspects of network performance.
Thus, the design of a new interconnection network is an important issue for massively
parallel computer system and certainly worthy of research effort.



Chapter 3

“There are three principal means of acquir-
ing knowledge... observation of nature, reflec-
tion, and experimentation. Observation collects
facts; Reflection combines them; Experimenta-
tion verifies the result of that combination.”

– Denis Diderot (1713–1784)

Hierarchical Torus Network (HTN)

3.1 Introduction

Hundreds of interconnection networks have been proposed in the last two decades. Some
networks are better than other in some aspects, but worse in others. There is no one
ultimate network which is better than all others in all aspects. Designing new networks
still remains a topic for intensive investigation, given that there is no clear winner among
existing ones. Careful designers would try to achieve the best out of a good trade-off. But
even such a trade-off can lead to different results due to emphasis on different parameters
in different situations. For example, in a non-VLSI environment, the overall performance
of mesh, tree and Cube-Connected Cycles (CCC) is in ascending order while in VLSI
implementation where layout area and wire length are two important parameters, the
overall comparison of the above three networks shows that the reverse is true [112].

Although the theoretical foundations for constructing large scale interconnection net-
works have existed for a long time, the state of hardware technology did not allow their
cost-effective realization. Recent progress in VLSI technology can achieve a VLSI system
on stacked silicon planes. A 3D stacked implementation has been proposed as a new tech-
nology for the realization of massively parallel computers. A part of a massively parallel
computer is implemented on a silicon plane and some of these planes are interconnected
by vertical links. Jain et al. [47–50] have pointed out that hierarchical interconnection
networks are suitable for 3D stacked implementations.

It has already been shown that a torus network has better dynamic communication
performance than that of a mesh network [64]. This is the key motivation for us to
consider a hierarchical interconnection network, in which both the basic module and the
interconnection of higher levels have toroidal interconnections. In this chapter, we propose
a new hierarchical interconnection network called Hierarchical Torus Network (HTN).
Architectural details of the HTN and its addressing and routing are discussed. We also
explore various aspects of showing the superiority of the HTN over several commonly used
networks for parallel computers.



3.2 Architecture of the HTN 40

This chapter is organized as follows: Section 3.2 describes the basic structure of the
HTN, including addressing and routing. A brief discussion on static network performance
of the network is given in Section 3.3. VLSI implementation issues including 3-D con-
struction are addressed next in Section 3.4. Finally, some concluding remarks are given
in Section 3.5.

3.2 Architecture of the HTN

The HTN is a hierarchical interconnection network consisting of BM that are hierarchically
interconnected for higher level networks. The BM consists of a 3D-torus network. In
this dissertation, unless specified otherwise, BM refers to a Level-1 network. Successive
higher level networks are built by recursively interconnecting lower level subnetworks
in a 2D-torus. Both the basic modules and the higher level networks have a toroidal
interconnection. Hence, we use the name “Hierarchical Torus Network (HTN)”. To reduce
the peak number of vertical links between silicon planes, we consider higher-level networks
as 2D-toroidal connections instead of 3D-toroidal connections, despite the fact that a 3D-
torus has better performance than a 2D-torus network. Moreover, in [111], it is shown that
lower dimensional k-ary n-cubes outperform their higher dimensional counterparts under
a bisection bandwidth constraint for deterministic routing and uniform traffic. The HTN
is attractive since its hierarchical architecture permits systematic expansion of millions
of nodes. Figure 3.1 shows the interconnection philosophy of HTN. This figure illustrates
the interconnection of a Level-2 HTN using basic modules, where the BM is a 3D-torus
of size (4 × 4 × 4) and Level-2 network is a 2D-torus of size (4 × 4).

Figure 3.1: Interconnection of HTN

3.2.1 Basic Module

According to the definition, the BM of the HTN is a 3D-torus network of size (m×m×m),
where m is a positive integer. m could be any value, however, the preferable one is m = 2p,
where p is also a positive integer.

The BM, a (4× 4× 4) torus, is shown in Figure 3.2, has some additional free ports at
the contours of the xy-plane. These free ports are used for higher level interconnection.



3.2 Architecture of the HTN 41

Figure 3.2: Basic module of the HTN

All free ports, typically one or two, of the exterior Processing Elements (PEs) are used
for inter-BM connections to form higher level networks. All ports of the interior PEs are
used for intra-BM connections. PEs at the contours of an xy-plane are assigned to higher
levels as gate nodes. Four links in the North (N), South (S), East (E), and West (W)
directions on each contour are interconnected with higher levels. As shown in Figure 3.2,
the BM has four links in each direction as defined by:

G =

[

00S, 01S, 02S, 03S; 00W , 10W , 20W , 30W ;
30N , 31N , 32N , 33N ; 03E, 13E, 23E, 33E

]

where, G is the gate node. This equation represents the free links of the BM, which
are used for higher level interconnection. (0, 1, 2, 3 for m = 4) represents PEs at the
contours of an xy-plane, where the first digit represents the x-axis and the second digit
represents the y-axis. The suffix is used to represent which direction of links is used
for higher level connection. N -direction and S -direction links are used in the y-axis
interconnection of higher level network. E -direction and W -direction links are used in
the x axis interconnection of Level-2.

3.2.2 Higher Level Interconnection

According to the interconnection rule of the HTN, successive higher level networks are
built by recursively interconnecting lower level subnetworks in a 2D-torus of size (n× n),
where n is also a positive integer. Figure 3.3 shows the Level-2 subnetwork, which consists
of a (4× 4) torus and can be formed by interconnecting 16 BMs. As shown in Figure 3.3,
each BM is connected by using G nodes to its logically adjacent BMs.

The torus at Level-2 interconnects between the gate nodes in the N -direction and those
in the S-direction, as well as between the gate nodes in the E-direction and those in the
W -direction. The links at Level-2 interconnects between gate nodes [30N , 31N , 32N , 33N ]
and gate nodes [00S, 01S, 02S, 03S], and between gate nodes [03E, 13E, 23E, 33E] and gate
nodes [00W , 10W , 20W , 30W ].



3.2 Architecture of the HTN 42

Figure 3.3: Interconnection of a Level-2 HTN

Figure 3.4: Interconnection of a Level-3 HTN

Similarly, a Level-3 network can be formed by interconnecting 16 Level-2 subnetworks,
and so on. Thus, Level-L is interconnected as a 2D-torus, in which Level-(L − 1) is used
as subnets. Level-3 or higher level network interconnects many BMs. BMs with the same
co-ordinate position in each Level-2 subnetwork are interconnected by a 2D-torus in a
Level-3 interconnection. A similar interconnection rule is applied for higher levels. Figure
3.4 shows the interconnection of Level-3 HTN. As mentioned earlier, a Level-2 network
is used as the subnet module of a Level-3 network. In this connection, the first BM i.e.,
the BM(0, 0) from every Level-2 network is selected for the interconnection of a Level-3
HTN.

A BM with m = 4 and the higher levels with n = 4 is perhaps the most interesting
network size because it has better granularity than the larger sizes. With m = 8, the size
of the BM becomes (8× 8× 8) with 512 nodes. Correspondingly, with n = 8, the second
level would have 64 BMs. In this case, the total number of nodes in a Level-2 network is
32, 768. Clearly, the granularity of the family of networks is rather coarse. In addition,
the matter of redundancy and reconfiguration becomes more difficult.

Note that the choice of the subnetworks to build a higher level is quite natural. This
choice maintains the regularity of the network and, for reasons which will become appar-



3.2 Architecture of the HTN 43

ent in the next section, makes addressing convenient. Several lemmas are stated below,
without proof. The proofs are straightforward, and are omitted for the sake of brevity.

Lemma 3.1 A (m × m × m) basic module has 4 × m2 free ports for higher level inter-
connection.

It is useful to note that for each higher level interconnection, a BM must use 4m(2q)
of its free links. 2m(2q) free links for y-direction interconnections and 2m(2q) free links
for x-direction interconnections. Here, q ∈ {0, 1, ....., p}, is the inter-level connectivity,
where p = blogm

2 c. q = 0 leads to minimal inter-level connectivity, while q = p leads to
maximum inter-level connectivity. As shown in Figure 3.2, for example, the (4 × 4 × 4)
BM has 64 free ports. If we chose q = 0, then 16 of the free ports and their associated
links are used for each higher level interconnection. According to the interconnection
philosophy of the higher level network, if q = 0, as seen in Figure 3.2, free ports and their
associated links at each contour of the xy-plane are used for each higher level network.

Lemma 3.2 The highest level network which can be built from (m×m×m) basic module
is Lmax = 2p−q + 1.

If the size of the BM is (4×4×4) then p = blog4
2c = 2. With q = 0, Lmax = 22−0+1 = 5.

Level-5 is the highest possible level that (4 × 4 × 4) BM can be interconnected.

Lemma 3.3 If the size of the BM is (m×m×m) and the size of the higher level network

is (n × n), then the total number of nodes in a Level-L network is N =
[

m3 × n2(L−1)
]

.

If m = 4, and n = 4, Level-2 and Level-3 networks have 1024 and 16384 nodes,
respectively. The maximum number of nodes in a network having (m×m×m) BMs and

(n×n) higher level networks is Nmax =
[

m3 × n2(Lmax−1)
]

. Lmax = (2p−q + 1) denotes the

highest level of the network. Putting the value of Lmax, Nmax =
[

m3 × n2(2p−q)
]

.
The limitation of having maximum possible highest level network is not a serious

constraint. For the case just considered (4 × 4 × 4) BM with q = 0, the highest level of
the HTN is Level-5. However, this level-5 network consists of 4.2 millions nodes.

3.2.3 Addressing and Routing

PEs in the BM are addressed by three base-m numbers, the first representing the x-axis,
the second representing the y-axis, and the last representing the z-axis. PEs at Level-L
are addressed by two base-n numbers, the first representing the x-axis and the second
representing the y-axis. The address of a PE at Level-L HTN is represented as shown in
Equation 3.1.

AL =

{

(az)(ay)(ax) if L = 1, i.e., BM
(aL

y )(aL
x ) if L ≥ 2

(3.1)

Here, (az, ay, ax = 0, 1, ..., m−1) and (aL
y , aL

x = 0, 1, ..., n−1). More generally, in a Level-L
HTN, the node address is represented by:



3.2 Architecture of the HTN 44

A = ALAL−1AL−2 ... ... ... A2A1

= aα aα−1 aα−2 aα−3 ... ... ... a3 a2 a1 a0

= a2L a2L−1 a2L−2 a2L−3 ... ... ... a3 a2 a1 a0

= (a2L a2L−1) (a2L−2 a2L−3) ... ... ... ... ... (a4 a3) (a2 a1 a0) (3.2)

Here, the total number of digits is α = 2L + 1, where L is the level number. The
first group contains three digits and the rest of the groups contain two digits. Groups
of digits run from group number 1 for Level-1, i.e., the BM, to group number L for the
L-th level. In particular, i-th group (a2i a2i−1) indicates the location of a Level-(i − 1)
subnetwork within the i-th group to which the node belongs; 2 ≤ i ≤ L. In a two-level
network, for example, the address becomes A = (a4 a3) (a2 a1 a0). The last group of
digits (a4 a3) identifies the BM to which the node belongs, and the first group of digits
(a2 a1 a0) identifies the node within that BM.

Routing of messages in the HTN is performed from top to bottom. That is, it is
first done at the highest level network; then, after the packet reaches its highest level
sub-destination, routing continues within the subnetwork to the next lower level sub-
destination. This process is repeated until the packet arrives at its final destination.
When a packet is generated at a source node, the node checks its destination. If the
packet’s destination is the current BM, the routing is performed within the BM only. If
the packet is addressed to another BM, the source node sends the packet to the outlet
node which connects the BM to the level at which the routing is performed.

In general, multiple paths exist for routing a packet in the network. Routing a packet
at a given level can be performed in different ways. These multiple paths can be useful
for an adaptive routing algorithm, where the router may use information about the state
of the network and act accordingly. However, a good routing algorithm should be easy
to implement in hardware. Deterministic, dimension order routing algorithm is used by
most existing multicomputers due to its simplicity. We have also considered the dimension
order routing algorithm for the HTN. Routing at the higher level is performed first in the
y-direction and then in the x-direction. In a BM, the routing order is initially in the
z-direction, next in the y-direction, and finally in the x-direction.

Suppose a packet is to be transported from a source node 0000000 to destination node
1131230. In this case, we see that routing should first be done at Level-3, therefore the
source node sends the packet to the Level-3 outlet node 0000130, whereupon the packet is
routed at Level-3. After the packet reaches the (1, 1) Level-2 network, then routing within
that network is continued until the packet reaches the BM (3, 1). Finally, the packet is
routed to its destination node (2, 3, 0) within that BM.

Routing in the HTN is strictly defined by the source node address and the destination
node address. Let a source node address be sα, sα−1, sα−2, ..., s1, s0, a destination node
address be dα, dα−1, dα−2, ..., d1, d0, and a routing tag be tα, tα−1, tα−2, ..., t1, t0, where ti =
di−si. The source node address of HTN is expressed as s = (s2L, s2L−1), (s2L−2, s2L−3), ...,
(s2, s1, s0). Similarly, the destination node address is expressed as d = (d2L, d2L−1),
(d2L−2, d2L−3), ..., (d2, d1, d0). Figure 3.5 shows the routing algorithm for the hierarchi-
cal torus network.



3.2 Architecture of the HTN 45

Routing HTN(s,d);
source node address:sα, sα−1, sα−2, ..., s1, s0

destination node address: dα, dα−1, dα−2, ..., d1, d0

tag: tα, tα−1, tα−2, ..., t1, t0
for i = α : 3

if (i/2 = 0 and (ti > 0 or ti = −(n − 1))), routedir = North; endif;
if (i/2 = 0 and (ti < 0 or ti = (n − 1))), routedir = South; endif;

if (i%2 = 1 and (ti > 0 or ti = −(n − 1))), routedir = East; endif;
if (i%2 = 1 and (ti < 0 or ti = (n − 1))), routedir = West; endif;

while (ti 6= 0) do
Nz = outletz(s, d, L, routedir)

Ny = outlety(s, d, L, routedir)
Nx = outletx(s, d, L, routedir)
BM Routing(Nz, Ny, Nx)

if (routedir = North or East), move packet to next BM; endif;
if (routedir = South or West), move packet to previous BM; endif;

if (ti > 0), ti = ti − 1; endif;
if (ti < 0), ti = ti + 1; endif;

endwhile;
endfor;
BM Routing(tz, ty, tx)

end
BM Routing (t2, t1, t0);

BM tag t2, t1, t0 = receiving node address (r2, r1, r0) − destination (d2, d1, d0)
for i = 2 : 0

if (ti > 0 and ti ≤ m
2
) or (ti < 0 and ti = −(m − 1)), movedir = positive; endif;

if (ti > 0 and ti = (m − 1)) or (ti < 0 and ti ≥ −m
2
), movedir = negative; endif;

if (movedir = positive and ti > 0), distance = ti; endif;
if (movedir = positive and ti < 0), distance = m + ti; endif;
if (movedir = negative and ti < 0), distance = ti; endif;

if (movedir = negative and ti > 0), distance = −m + ti; endif;
endfor

while(t2 6= 0 or distance2 6= 0) do
if (movedir = positive), move packet to +z node; distance2 = distance2 − 1; endif;

if (movedir = negative), move packet to −z node; distance2 = distance2 + 1; endif;
endwhile;

while(t1 6= 0 or distance1 6= 0) do
if (movedir = positive), move packet to +y node; distance1 = distance1 − 1; endif;
if (movedir = negative), move packet to −y node; distance1 = distance1 + 1; endif;

endwhile;
while(t0 6= 0 or distance0 6= 0) do

if (movedir = positive), move packet to +x node; distance0 = distance0 − 1; endif;
if (movedir = negative), move packet to −x node; distance0 = distance0 + 1; endif;

endwhile;
end

Figure 3.5: Routing algorithm of the HTN



3.3 Static Network Performance 46

3.3 Static Network Performance

The topology of an interconnection network determines many architectural features of
that parallel computer and affects several performance metrics. Although the actual per-
formance of a network depends on many technological and implementation issues. Several
topological properties and performance metrics can be used to evaluate and compare dif-
ferent network topologies in a technology-independent manner. Most of these properties
are derived from the graph model of the network topology. In this section, we discuss
some of the properties and performance metrics commonly used to evaluate and compare
interconnection networks. These include symmetry and regularity, distance measures,
connectivity and reliability, and scalability and expandability.

In this section, we discuss the static network performance that characterize the cost
and performance of an interconnection network. Desirable properties of an interconnection
network include low degree, low diameter, symmetry, low congestion, high connectivity,
high fault tolerance, and efficient routing algorithms. We evaluate the node degree, di-
ameter, cost (= degree × diameter), average distance, bisection width, and connectivity
to show the superiority of the HTN over various conventional and hierarchical intercon-
nection networks for massively parallel computers.

3.3.1 Node Degree

The Node Degree (ND), simply degree, is defined as the number of physical channels
emanating from a node. The degree of a network is the maximum of all node degrees
in the network. This attribute is a measure of the I/O complexity of a node. In an
interconnection network, the degree of a node can be constant or a function of the number
of nodes in the network. For example, in a 2D-torus each node has degree 4, and in an
nD-hypercube the degree of each node is n.

Figure 3.6: Illustration of degree of HTN

The degree relates the network topology to its hardware cost. The node degree should
kept constant and as small as possible. Constant degree means that the cost of the network
interface of a node remains unchanged with increasing size of the network. Small degree



3.3 Static Network Performance 47

allows simple and low cost routers which amortizes the design cost. Constant degree
networks are easy to expand and are often suitable for efficient VLSI implementation.
On the other hand, small node degree implies less links and lower connectivity, which in
turns implies larger distances. A high degree has high theoretical power but a low degree
is more practical. For HTN, the node degree is constant. Since each node has eight links,
therefore the degree of a node is 8. This is illustrated in Figure 3.6.

3.3.2 Diameter

In an interconnection network, communication between two nodes that are not directly
connected must take place through other nodes. The length of a communication path from
a given source node to a given destination node is the number of links traversed along the
path between the two nodes. Most common network topologies provide multiple paths
between pairs of nodes; since the delay is likely to increase with the length of the path,
the shortest path is usually preferred for communication. Thus, the length of the shortest
path between a given pair of nodes becomes an important metric in the evaluation of
the interconnection network. This is network diameter, and is defined as the maximum
among the lengths of shortest paths between all possible pairs of nodes.

In an interconnection network, the diameter can be computed by finding the maximum
among the lengths of the shortest paths between all possible pairs of nodes. Diameter
represents the worst-case distance that any message in the network may have to travel if
routing is always along the shortest paths. Message delay is proportional to the number
of links traversed. In fact, the diameter, sometimes (but not always), sets the lower bound
for the running time of an algorithm performed on the network. Although diameter does
not completely characterize the performance of an interconnection network with respect
to their power to perform certain operations. For example, the diameter of a network
directly affects the time for broadcasting a message from one node to all the nodes. The
lower the diameter of a network the shorter the time to send a message from one node to
the node farthest away from it.

Since reducing the diameter is likely to improve the performance of an interconnec-
tion network, the problem of designing interconnection networks with low diameter has
received considerable attention in the literature. In this section, we evaluate the diameter
of the HTN and compare it with other networks. To evaluate the diameter of the HTN,
define the maximum number of steps of routing in each level as follows:

• Dto y−gate−L
BM : The maximum number of steps from source node in the BM to the

gate node at Level-L in the y-axis.

• D2D−torus: The maximum number of steps for an (n × n) 2D-torus.

• Daxis move
BM : The maximum number of steps between the gate nodes during a dimen-

sion change from the x-axis to y-axis and vice versa.

• DLevel move
BM : The maximum number of steps between the gate PE in the x-axis and

the gate PE in the x-axis at Level-L.

• Dto x−gate−2
BM : The maximum number of steps between the gate nodes in the x-axis

at Level-2 in the BM.



3.3 Static Network Performance 48

Table 3.1: Diameter of HTN with Level-L

Level (L) 2 3 4 5
No. of PEs 210 214 218 222

Diameter (D) 19 34 49 64

D
ia

m
et

er
 (

D
)

Number of Nodes (N)

2DT

 3DT

H3DM

HTNTESH

H3DT

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
4

2
5

2
6

2
7

2
8

Figure 3.7: Diameter of networks as a function of number of nodes (N)

The routing algorithm gives the diameter of the HTN as follows:

D = Dto y−gate−L
BM + (L − 1) × D2D−torus + (2L − 3) × Daxis move

BM +

(L − 2) × DLevel move
BM + Dto x−gate−2

BM (3.3)

If we choose, m = 4 and n = 4, then the values of each distance in the HTN are given
by Dto y−gate−L

BM = 6, D2D−torus = 4, Daxis move
BM = 3, DLevel move

BM = 5, and Dto x−gate−2
BM = 6.

The diameter of the HTN with Level-L is summarized in Table 3.1.
After simplification, the diameter D in terms of Level-L is D = 15L − 11. The total

number of PEs of the HTN with Level-L is:

N = 64
(

16L−1
)

= 64
(

16
D+11

15
−1
)

= 64
(

16
D−4

15

)

D = 15
(

log16

N
64

)

+ 4

D = O
(

log16

N
64

)

≈ O
(

log16
N
)

≈ 1

4
O
(

log2
N
)



3.3 Static Network Performance 49

D ≈ O (log N) (3.4)

Therefore, the diameter of the HTN is of O (log N).
Figure 3.7 shows a comparison of network diameter for HTN with several networks.

For evaluation of diameter for HTN, we have considered the size of BM is (4 × 4 × 4)
and the size of higher level network is (4 × 4). The ordinate indicates the diameter of
a network for different size. Each curve stands for a particular family of networks. It is
shown that HTN has much smaller diameter than that of conventional k-ary 2-cube [64]
and H3D-mesh network [59] and also smaller than that of TESH network[47–50] for a
medium-sized network.

3.3.3 Average Distance

Although the diameter is used to compare the network performance of various inter-
connection networks, it may not always be indicative of the actual performance of the
networks. One reason is that a node in a multicomputer network communicates with
many other nodes during the execution of the program; hence, on an average, shorter
paths than the diameter will be used. Thus, in practice it is more important to measure
the distance traveled by an ‘average’ message. This is captured in the mean inter-node
distance or average distance which is defined as the average of the lengths of all paths
followed by messages in the network. While the diameter depends only on the topology of
the network, the average distance also depends on the distribution of the messages among
the nodes. The simplest message distribution used to compare the average distance is
the uniform distribution where each node sends message to every other nodes with equal
probability.

The distance between two nodes is defined by the number of hops in the shortest
path between those nodes. And the average distance is the mean distance between all
distinct pairs of nodes in a network. For communication-intensive parallel applications,
the blocking time, consequently, the communication latency is expected to grow with
path length. A small average distance allows small communication latency, especially for
distance-sensitive routing, such as store and forward. By waiting for the entire packet to
arrive at a router before forwarding to the next hop, store and forward routing results
in long delays at each hop. Therefore, a smaller average distance of an interconnection
network yields a smaller communication latency of that network. But it is also crucial
for distance-insensitive routing, such as wormhole routing, since short distances imply the
use of fewer links and buffers, and therefore less communication contention.

We have evaluated the average distance for different conventional topologies by the
corresponding formula and of different hierarchical networks by simulation. Figure 3.8
shows a comparison of network average distance between the HTN and several other
networks. Figure 3.9 also shows a comparison of average distance of various networks
with 4096 nodes. It is seen that HTN has the smaller average distance than that of TESH
[47–50], H3D-mesh [59, 60], and conventional k-ary n-cube [64] networks.

Although the communication performance of a program on a multicomputer depends
on the actual times taken for data transfer, diameter and average distance are useful
metrics for technology-independent analyses.



3.3 Static Network Performance 50

 4

 8

 16

 32

 64

A
ve

ra
ge

 D
is

ta
nc

e

Number of Nodes (N)

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2DT

2DM

3DM

 3DT

HTN

H3DM

Figure 3.8: Average distance of networks as a function of number of nodes (N)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

A
ve

ra
ge

 D
is

ta
nc

e

 H3DT  H3DM HTN  TESH  2DM 3DM 3DT  2DT

 12.74  17.16 13.30  17.80  42.67 16.00 12.00  32.00

Figure 3.9: Average distance of various networks with 4096 nodes.



3.3 Static Network Performance 51

3.3.4 Cost

Inter-node distance, message traffic density, and fault-tolerance are dependent on the
diameter and the degree of a node. The product (diameter×degree of a node) is a good
criterion to measure the relationship between cost and performance of a multiprocessor
system [55, 58]. An interconnection network with a large diameter has a very low message
passing bandwidth and a network with a high node degree is very expensive. In addition,
a network should be easily expandable; there should be no changes in the basic node
configuration as we increase the number of nodes.

Figure 3.10 shows a comparison of cost for HTN with several other networks. The
ordinate indicates the cost of a network for different sized networks. Each curve stands
for a particular family of networks. It is seen that HTN has much smaller cost than
conventional k-ary n-cube [64] and H3D-mesh network [59].

C
os

t 
(C

)

Number of Nodes (N)

2DT

 3DT

H3DM

HTN

TESH

H3DT

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
6

2
11

2
10

2
9

2
8

2
7

Figure 3.10: Cost of different networks as a function of number of nodes (N)

3.3.5 Connectivity

The arc connectivity , simply connectivity, measures the robustness of a network. It is
a measure of the multiplicity of paths between nodes. The connectivity of a network
is defined to be the minimum number of links whose removal causes the network to be
disconnected into two or more components. For symmetric networks, the connectivity is
usually the same as the degree of nodes. For example, a 2D-torus network has connectivity
4 and a hypercube with N nodes has connectivity log N . Connectivity cannot exceed
the degree, since the network can be partitioned by removing all neighbors of a specific



3.3 Static Network Performance 52

node. High connectivity implies a large number of node-disjoint paths between pairs of
nodes; and it improves performance during normal operation by avoiding congested links.
Figure 3.11 portrayed that removal of 2 links disconnects the 2D-mesh network into two
parts. This is the minimum value of links to disconnect the 2D-mesh network. Thus,
the connectivity of 2D-mesh network is 2. The connectivity of various networks including
the HTN is shown in Table 3.2. It is shown that the connectivity of the HTN is higher
than that of mesh, TESH, and H3D-torus networks and equal to that of k-ary n-cube and
H3D-mesh networks.

A network is said to be maximally fault-tolerant if its connectivity is equal to the degree
of the network. High connectivity of a network improves its fault tolerance. Connectivity
is considered to be a qualitative measure of fault tolerance. Thus, quantitative measure
is required for certain level of fault-tolerance of a network. As shown in Table 3.2, in
comparison with degree and connectivity, the fault-tolerance performance of HTN is better
than that of mesh, TESH, and H3D-torus networks and equal to that of H3D-mesh
network and worse than that of k-ary n-cube network.

Node

Link

Figure 3.11: Illustration of connectivity for 2D-mesh network.

Table 3.2: Comparison of degree and connectivity for various networks

2DM 2DT 3DM 3DT TESH H3DM HTN H3DT

Degree 4 4 6 6 6 8 8 6

Connectivity 2 4 3 6 2 6 6 3



3.3 Static Network Performance 53

3.3.6 Bisection Width

The bisection width (BW ) is an important topological parameter for interconnection
networks and is crucial to their cost of VLSI layout and performance. The bisection
width of a network is defined as the minimum number of links that have to be removed
to partition the network into two equal halves. A network with odd number of nodes,
one half will have one more node than the other after the bisection. Bisection width is
a measure of the volume of traffic that can be handled by the network. It is also useful
in estimating the area required for a VLSI implementation of the network. The bisection
width of a 2D-mesh with N nodes is

√
N and that of a n-dimensional hypercube with

N = 2n nodes is N
2
. The bisection width of the HTN is calculated by:

BW (HTN) = 2q+1 × (m × n) (3.5)

It is calculated by counting the number of links that need to be removed to partition
the highest level (Level-L) torus. This equation is valid for higher level networks. We
don’t consider here the interconnection of basic modules. The basic module is simply a
3D-torus network so its bisection width is 2m2.

H3DM

H3DT

2DT

 3DT

HTN

TESH

Number of Nodes (N)

2
12

2
13

2
14

2
15

2
16

2
17

2
18

B
is

ec
ti

on
 W

id
th

 (
B

W
)

2
2

2
12

2
10

2
8

2
6

2
4

2DM

 3DM

Figure 3.12: Bisection width of networks as a function of number of nodes (N)

Many problems can be solved in parallel using binary divide-and-conquer : split the
input data set into two halves and solve them recursively on both halves of the inter-
connection network in parallel, and then merge the results in both halves into the final
result. A small bisection width implies low bandwidth between both halves and it can
slowdown the final merging phase. A large bisection width enables faster data and infor-
mation exchange and implies high degree of fault tolerance. Thus, in one hand, a large



3.4 Wafer Stacked Implementation 54

bisection width is preferable. A large bisection width requires a larger layout area for
VLSI implementation of an interconnection network. Thus, on the other hand, a small
bisection width is preferable for efficient VLSI realization. Therefore, a network with
moderate bisection width is necessary for both faster data exchange and efficient VLSI
implementation.

Figure 3.12 shows a comparison of bisection width between the HTN and several
other networks. The ordinate indicates the bisection width of a network for different
sized networks. Each curve stands for a particular family of networks. It is seen that
the bisection width of the HTN is larger than that of TESH [47–50] and H3D-mesh
[59]networks, equal to that of H3D-torus network, and smaller than that of conventional
k-ary n-cube [64] networks. Therefore, in context of bisection width, HTN is superior to
other networks.

3.4 Wafer Stacked Implementation

3.4.1 3D Stacked Implementation

M. Little et.al. [43] developed a 3D-computer made of a 32 × 32 cellular array and or-
ganized as a 5 wafer stack containing two types of wafers. A three dimensional stacked
implementation is attractive for massively parallel computers [44]. Figure 3.13 illustrates
the structure of a 3D stacked implementation. The vertical links between wafers inter-
connect PEs on adjacent silicon planes. To implement a network in 3D stacked silicon
planes, a part of the network is mapped to a silicon plane and all parts of the network
are interconnected by vertical links between silicon planes. The vertical links between
adjacent silicon planes are implemented by wafer feedthroughs and microbridges [43, 44].
The structure of microbridge and feedthrough are shown in Figure 3.14.

Vertical links (composed of feedthroughs and microbridges) realize the shortest pass
between planes. However, the area required for vertical links is about hundred of µm2.
Thus, unconstrained use is prohibited. An efficient 3D interconnection requires reducing
the number of vertical links.

3.4.2 Peak Number of Vertical Links

An important consideration in the design of a new network is the feasibility of 3D-
implementation. In the implementation of an interconnection network on 3D stacked-
planes, one of the most important parameters is the peak number of vertical links Cpeak

between adjacent silicon planes . The word peak here refers to the bulge due to the
crowding of wires running between various planes.

As shown in Figure 3.15, the PEs are placed on a square array on each silicon plane.
Let h be the number of silicon planes, M be the number of PEs on each plane, and N be
the total number of PEs. The relation between the h, M , N is as follows:

N = h × M (3.6)

Figure 3.16 illustrates the 3D stacked-implementation of a 2D-mesh network with 16
PEs on 4 stacked-planes. According to Eq. 3.6, here, N = 16, M = 4, and h = 4.



3.4 Wafer Stacked Implementation 55

(3D Computer,1989)

Vertical Links
   (Micro-Bridges)

Between Wafers
(Feed-Throughs)

WSIWafer

5mm

0.5mm

Figure 3.13: Structure of 3D stacked implementation

Wafer

Feed Through

Micro Bridge

300   m (3D-neuro,1993)m

Figure 3.14: Structure of microbridge and feedthrough

Peak Number of Vertical Links for 2D-Torus Network

2D-torus network provides additional wrap-around links for end-to-end node connections
to that of 2D-mesh network. In this section, we discuss the peak number of vertical links
of 2d-torus network in 3D stacked implementation. The simplest mapping scheme is the
row (or column) major scheme. For the row (or column) major scheme, the peak number
of vertical links is given by:

Cpeak =

{

2
√

N + 2 N > 4
4 N = 4

(3.7)

Figure 3.17 illustrated the vertical links for a 2D-torus network in 3D stacked im-
plementation by row major scheme with 16 nodes on four stacked planes. The row (or
column) major scheme is difficult to realize 2D-torus in 3D stacked-implementation in
context of the longest links for massively parallel computers. Figure 3.18(a) illustrates
the row major scheme and the interconnection of vertical links of 2D-torus network. The
link between Node(0) and Node(12) is one of the longest links of 2D-torus network in 3D
stacked implementation.



3.4 Wafer Stacked Implementation 56

PE 

Figure 3.15: PE array in a silicon plane for wafer stacked-implementation

00

01

10

11

Cmax = 4

PE

00 01

10 11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

Figure 3.16: Vertical links of 2D-mesh network in 3D wafer stacked-implementation

00

01

10

11

Cmax = 8

PE

00 01

10 11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

Figure 3.17: Vertical links of 2D-torus network in 3D wafer stacked-implementation



3.4 Wafer Stacked Implementation 57

wafer

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 0 1 23

4

12

7 5 6

15

8 10911

13 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

3

1

2

12

15

13

14

8

10

9

11

4

7

5

6

(a) Row major (b) Inline 

Figure 3.18: Interconnection scheme of 2D-torus in 3D stacked implementation

Figure 3.18(b) illustrates the in-line scheme [59]for 2D-torus network in 3D stacked
implementation. The longest link in in-line scheme is shorter than that of row major
scheme. The in-line scheme for a 2D-torus network is given by

I(N, i) =

{

i
2

i : even
N − d i

2
e i : odd

(3.8)

PE(k, j) = PE(I(n, k), I(n, j))

The peak number of vertical links in the in-line scheme for a 2D-torus network with
bidirectional links is given by:

Cpeak =

{

2
√

N + 2
√

m h = N
m

6= 4
4
√

m h = N
m

= 4
(3.9)

If we consider N = 16, M = 4, and h = 4, then m = 4. The peak number of vertical
links for a 2D-torus network is 8.



3.4 Wafer Stacked Implementation 58

Peak Number of Vertical Links for 2D-Mesh Network

The peak number of vertical links for a 2D-mesh network with bidirectional links is given
by:

Cpeak =

{ √
N +

√
m h = N

m
> 4√

N h = N
m

= 4
(3.10)

If we consider N = 16, M = 4, and h = 4, then m = 4. The peak number of vertical
links for a 2D-mesh network is 4.

In mesh network, the peak number of vertical links is just half to that of 2D-torus
network, because of the absence of wraparound links. Thus, the peak number of vertical
links of an interconnection network depends upon the architecture of the network. The
illustrations shown here uses bi-directional links. The peak number of vertical links using
unidirectional links becomes twice as much as that using bidirectional links.

Peak Number of Vertical Links for HTN

In this section, we evaluate the peak number of vertical links for our proposed Hierarchical
Torus Network. The PEs are placed on a square array on each silicon plane. In a
hierarchical interconnection network such as HTN, let n be the number of PEs in a BM, g
be the number of sub-networks at the Level-(i−1) , where i ≤ L. Let Ld =

(

1 +
⌊

logg
M
n

⌋)

be the highest level on a plane, and s =
(

m mod ngLd−1
)

be the number of hierarchies

at Ld. The BM of the HTN is a 3D-torus network. It consists of (m × m × m) PEs. For
instance, if m = 4, the BM consist of 64 PEs and is implemented on a silicon plane. Then
the mapping of the HTN is given as follows:

1. HTN (L) is divided into h subnets in the address order.

2. Level-Ld are mapped on s silicon planes. Since interconnection between PEs at
higher level is a 2D-torus, the in-line scheme is applied to alignment of PEs.

3. The mapping process is repeated until Level-L is reached.

Since HTN interconnects PEs at higher levels through subnets, the peak number of
vertical links at Level-L is obtained by summing the peak number of vertical links at
lower levels. Therefore, the peak number of vertical links Cpeak is the summation of the
peak number when one subnet of Level-i (1 ≤ i ≤ L) is assigned on a silicon plane. HTN
interconnects subnets at different levels using a 2D-torus with the same size as the number
of BMs in the subnet. The peak number of vertical links Cpeak of Level-Li is given by:

Cpeak = Cpeak (2D − torus,16, SLi)

=







10
(

16Li−2
)

SLi = 1

12
(

16Li−2
)

SLi = 4
(3.11)

where, SLi is the number of subnets on a silicon plane of Level-Li. Thus, the peak number
of vertical links Cpeak of HTN is given by:



3.4 Wafer Stacked Implementation 59

 3DT

HTN

H3DT

Number of PEs (N)

2DT

2
4

2
6

2
8

2
10

2
12

2
14

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

TESH

H3DM

P
ea

k 
N

o.
 o

f 
V

er
ti

ca
l L

in
ks

 (
C

   
   

 )
pe

ak

Figure 3.19: A comparison of peak number of vertical links of HTN with other networks

Cpeak = Cpeak (2D − torus,16, s) 16Ld−2 +
L
∑

Li=Ld+1

Cpeak (2D − torus,16, 1) 16Li−2

= Cpeak (2D − torus,16, s) 16Ld−2 +
L
∑

Li=Ld+1

5
(

16Li−2
)

(3.12)

Cpeak is calculated for the number of planes h = 16. The ordinate indicates the peak
number of vertical links Cpeak needed for different sized networks. Each curve stands for
particular set of networks. The 3D-torus network requires the largest Cpeak among the
evaluated 3D networks.

Figure 3.19 shows that the peak number of vertical links Cpeak for an HTN is less
than that of the k-ary n-cube network and exactly same as that of the TESH network.
It is more than that of H3D-mesh and H3D-torus networks; the wrap-around links for a
2D-torus network in the higher dimensional HTN results these additional vertical links.
HTN is suitable for medium-sized networks.

A more quantitative way to compare different network families would be to use a figure
of merit such as f = N/ (Cpeak × D) [47, 50], where N denotes the total number of nodes,
Cpeak is the peak number of vertical links, and D is the network diameter of the network.



3.4 Wafer Stacked Implementation 60

3.4.3 Layout Area

To discuss a suitable network for 3D stacked-implementation, layout area of network has
to be evaluated. The following defines formulations of layout area for interconnection
networks in 3D stacked-implementations.

Let WPE × WPE be the chip size of a PE, WMB × WMB be the size of a microbridge,
Wline be the width of a line, and p be the number of lines per link. Figure 3.20 illustrates
the layout area of a 2D-torus for the case of N = 16, L = 4, and p = 1.√

m×√
m PEs are implemented on a silicon plane, where the total number of PEs is N .

The total area on a silicon plane is
√

mWPE ×√
mWPE . For easy layout,

√

m
L
×
√

m
L

PEs

are allocated in
√

L ×
√

L blocks on a silicon planes. From the viewpoint of mechanical
reliability and thermal cycling of 3D stacked-implementation, vertical links between planes
should be uniformly distributed. To implement microbridge in each block, wiring space
to connect microbridges of vertical links in blocks. Let SDMB,x and SDMB,y be wiring
space to connect for interconnection of microbridge on L blocks in row and in column of
PE array.

SDMB,x = CpeakpWline (3.13)

SDMB,y = CpeakpWline (3.14)

For regular layout on a silicon plane, wiring space of interconnection links between
PEs is same in PEs array and does not depend on the location in a block.

Fukuda and Horiguchi [72] proposed the layout for CCC (Cube-Connected Cycles)
using HC links (Hypercube links) in a 3D stacked implementation. The HC links are
comprised of the 2k − 1 = N − 1 links of a k-hypercube. Since m PEs are allocated into√

m × √
m on a silicon plane, tx = ty =

√
m − 1. The wiring space is subjected to the

maximum number of links in a row and column of the PE array. Let tx and ty be the
maximum number of links in rows and columns, respectively. The wiring spaces of the
links between PE arrays in x-direction and y-direction are as follows:

STL,x =
√

mtxpWline (3.15)

STL,y =
√

mtypWline (3.16)

The same scheme is applied to HTN. The maximum number of torus links tx, ty in
xy-plane depends on the number of levels on a silicon plane. For one BM on a silicon
plane, we have tx = ty = 8. Links connected Level-2 are not counted into tx and ty. For
levels higher than Level-3, the same number of links are required for a 2D-torus consisting
of number of BMs in a subnet. The maximum number of torus links for levels higher than
3 is proportional to the number of BMs in a subnet at each level. Therefore, tx, ty for the
HTN are given by:



3.4 Wafer Stacked Implementation 61

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

     
     
     
     

Figure 3.20: Layout area of 2D-torus for N = 16, L = 4 and p = 1.



3.4 Wafer Stacked Implementation 62

Le =
⌈

log16

m

64

⌉

(3.17)

tx = ty =















8 Le ≤ 2

8 + 2
L
∑

i=Le

(

4i−2
)

Le > 2
(3.18)

All the parameters needed to calculate the layout area in 3D wafer stacked imple-
mentation are summarized in Table 3.3. Let us consider an interconnection network with
4096 PEs. For this network, the designer may implement a TESH in 16 silicon planes,
and each plane has 16 Level-2 networks. Then, 16 silicon planes are required to build a
stack with a total of 4096 nodes. For simplicity of presentation we will ignore the redun-
dancy at various levels in this subsection. These issues are considered in [46]. Suppose
the PEs are medium grained processors each with 2.00mm × 2.00mm effective area and
3.00mm × 3.00mm tile area in a 1µm CMOS technology. The total area required in the
plane is 4.8cm × 4.8cm. Clearly, a large ULSI chip or a small wafer can easily support
the sub-network and its associated control and power wiring.

Two or more high level subnets of the hierarchical network can be placed on larger
silicon devices, which would correspondingly reduce the number of silicon planes in the
stack. In particular, we assume a part of Level-2 sub-network per plane. Sixteen such
planes would require building a stack with 4096 nodes. Given below is an estimation of
the vertical wiring needed to interconnect the planes.

• Link width = ω bits

• Number of BM in each Level-2 network = 16

• Peak number of Level-3 links per BM = 10

• Number of vertical links = 16 × 10 = 160

• Number of vertical wires= 160 × ω

For stacked planes the wiring pitch on an area basis is approximately 300µm×300µm.
Since the vertical channel includes multiplexers to connect vertical links between silicon
planes, we compute the area needed for the vertical connections of network using 500µm×
500µm.

Clearly, the silicon plane described earlier can easily support the wiring needed for
the vertical connections. For comparison, the number of vertical wires required for the
2D-torus, 3D-torus, TESH, and HTN with 4096 nodes are considered.

Figure 3.21 shows a normalized layout area by 2D-torus for comparison with several
other networks. HTN can be implemented on a smaller silicon area (about 84%) than
the silicon area of the 2D-torus; the layout area of the HTN is almost equal to that of
H3D-mesh [59] network. The peak number of vertical links for an HTN is exactly same
as the TESH network [47–50], but the layout area is around 17% less.



3.4 Wafer Stacked Implementation 63

Table 3.3: Parameters for layout area in 3D stacked implementation

Parameter Expression

Size of a PE WPE × WPE

Size of a microbridge WMB × WMB

No. of lines per links p

No. of blocks
√

L ×
√

L
Peak number of links in R & C tx, ty
Size of a PE array on a plane SPE,x =

√
mWPE,

SPE,y =
√

mWPE

Wiring space of links between PEs STL,x =
√

mtxpWline,
STL,x =

√
mtxpWline

Wiring space of links between micro SDMB,x = CpeakpWline,
SDMB,y = CpeakpWline

Size of a block without microbridge W ′
x = SPE,x + STL,x + SDMB,x,

W ′
y = SPE,y + STL,y + SDMB,y,

Block size without microbridge W ′
B,x = W ′

x√
L
, W ′

B,x = W ′

x√
L

Area of microbridge in a block wy = d cpWMB

WB,y
eWMB

Block size with microbridge WB,x = W ′
B,x, WB,x = W ′

B,x + wy

Total layout size Wx = WB,x

√
L,

Wy = WB,y

√
L

Total layout area A = Wx × Wy

 0

 0.2

 0.4

 0.6

 0.8

 1.2

 1.4

 1.0

R
at

io

 H3DT  H3DM  HTN  3DT 2DT  TESH

 0.6  0.834  0.837  1.0  1.01  1.307

Figure 3.21: Normalized layout area



3.4 Wafer Stacked Implementation 64

3.4.4 Maximum Wire Length

The cost of VLSI system is predominantly that of connecting wires, and the performance
is limited by the delay introduced by these interconnections. Thus, to achieve the required
performance, the network must make efficient use of the available wires. The length of the
longest wire [59] is an important parameter in the design of an interconnection network.
The performance of a network is strongly influenced by the longest links.

The operating speed of a network is limited by the physical length of its links. Thus,
the maximum length of a wire can be used to describe and compare the maximum physical
speeds that the various networks can attain. The length of the longest wire may become
more important than the diameter of the network. We will assume that all networks have
a planar implementation. The formula commonly used to describe the wire length [64] of
k-ary n-cubes is:

LENMAX(k, n) = k
n
2
−1 (3.19)

This assumes a square layout of nodes with each side having
√

N nodes. The above
formula underestimates the maximum length because it does not take into account the
length of the wrap-around link. For a regular layout, the length of the wrap-around link
is given by:

LENMAX(k, n) =
√

N −
√

N

k
= k(n

2
−1)(k − 1) (3.20)

A similar formula can be developed for the HTN. The maximum wire length in a
regular layout, representing the length of wrap-around links of the highest level torus is

LENMAX(HTN) =
(

nL−1
)

(m − 1) +
(

nL−1 − 1
)

(3.21)

The formula shown in Eq. 3.21 is a conservative estimation. Here we assume that
the basic module is realized plane-by-plane as the physical interconnection of a 3D-torus.
This is not a real 2D-planner realization. The real 2D-planner realization of a 3D-torus
network is shown in Figure 3.22. Our intuition is that a 3D wafer stacked implementation,
can be considered, for brevity, by the equation shown in 3.21.

A comparison of the maximum wire length of different networks with the HTN is
shown in Table 3.4 for 256, 1024 and 4096 nodes. It is shown that the maximum wire
length of HTN is smaller than other networks.

An important advantage of a 3D implementation is the reduction of the length of the
interconnects. The longest wire in a planar Level-3 network are the wraparound wire
which interconnect the physically farthest Level-2 subnetwork, and it is 63. The length of
this longest interconnect is 63×width of a processor(in tile) = 63×3.0 mm = 18.90 cm.
However in the 3D wafer stacked implementation of a Level-3 network, these long wires run
vertically and the longest vertical wire has a length of 16t where t is the thickness of a wafer
plus the length of the microbridge between wafers. The thickness of the wafer is about
0.02 inch = 0.051 cm and the length of the microbridge is 0.002 inch = 0.005 cm [44].



3.4 Wafer Stacked Implementation 65

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.22: 2D-planner realization of 3D-torus network.

Table 3.4: Comparison of maximum wire length of different networks

No. of nodes Network Maximum Wire Length

2D-Torus 15
Binary 8-cube 8

256 8 × 25 CCC 8
TESH (2,2,0) 12
HTN 7

2D-Torus 31
Binary 10-cube 16

1024 x x
x x
HTN 15

2D-Torus 63
Binary 12-cube 32

4096 16 × 28 CCC 32
TESH (2,3,0) 48
HTN 31



3.5 Conclusions 66

Thus, t is about 0.056 cm and the longest vertical wire has a length of 0.90 cm. Clearly, in
3D-stacked implementation the longest wires are the horizontal wires within the Level-2
subnetworks. For the HTN, the longest wire has a length of 15 × 3.0 mm = 45 mm =
4.5 cm which gives rise to a factor of 4.20 improvement over the planar implementation.

Using the HTN, millions of nodes can be interconnected together while maintaining
good static network performance.

3.5 Conclusions

In this chapter, we have presented a new hierarchical interconnection network, called
Hierarchical Torus Network (HTN) for massively parallel computer systems. The archi-
tecture of the HTN, routing of messages, static network performance, and 3D-integration
issues were discussed in detail. From the static network performance, it can be seen that
the HTN possesses several attractive features. These include constant node degree, small
diameter, small average distance, high connectivity, and better bisection width. Using
the HTN, millions of nodes can be interconnected together while maintaining good static
network performance.

The network is well suited for 3D stacked implementations. It is shown that the
peak number of vertical links in 3D-stacked implementation is quite low for HTN as
compared to other conventional and hierarchical networks. Thus, HTN permits efficient
VLSI/ULSI/WSI realization. The layout area of HTN in 3D stacked-implementation is
amenable to 3D implementation. In part, this is due to the fewer numbers of vertical
wires needed than almost all other multi-computers networks. 3D-WSI implementation
reduces the longest wire length 4.20 times over the planar implementation.



Chapter 4

“Science is nothing but developed perception,
interpreted intent, common sense rounded out
and minutely articulated.”

– George Santayana (1863–1952)

Dynamic Communication
Performance of the HTN

4.1 Introduction

The design of an interconnection network for a multiprocessor or multicomputer inevitably
involves trade-offs between performance and cost. The goal in the design of an intercon-
nection network is to achieve the highest performance at a given cost, or to minimize
the cost subject to given performance constraints. Thus, there is a requirement to esti-
mate the performance of the network before it is actually constructed or integrated into
the system. Performance evaluation techniques are also needed to compare two or more
networks, evaluate design trade-offs, determine the optimal value of design parameters.

Performance evaluation broadly includes modeling and measurements. Modeling can
be performed analytically or by computer simulation. Analytical modeling involves de-
velopment of a mathematical model to describe the behavior of the system to the desired
degree of detail, and solving the model to obtain its performance. A simulation model
captures the behavior of the system in a computer program. Simulation models can ac-
commodate details that are difficult to model analytically, but are time consuming to
develop and difficult to validate. In the case of interconnection networks, computer sim-
ulations are often used to evaluate their performance and verify the validity of analytical
models.

Measurements are performed for benchmarking, that is to determine the performance
of the system with respect to a standard workload. Unfortunately, there is no widely
accepted workloads or programs existing for benchmarking the performance of intercon-
nection networks; in addition, the performance of an interconnection network can be ex-
pected to vary significantly with the communication behavior of the workload. For these
reasons, measurement-based studies for interconnection networks are relatively rare.

Performance evaluation of an interconnection networks includes: hardware cost, av-
erage message latency, network throughput, potential for fault tolerance, embedding ca-
pability, and partitioning capability. In an interconnection network, the hardware cost is
expressed in terms of number of links and node degree. The details of hardware cost is



4.2 Routing Algorithm 68

addressed in Chapter 3. This chapter deals with the dynamic communication performance
issue of Hierarchical Torus Network (HTN).

The basic function of an interconnection network is to transfer information among
the nodes of a multicomputer in an efficient manner. Routing Algorithm determines the
path from a source node to a destination node in a particular network. The dynamic
communication performance of a specific network is dependent on a routing algorithm.
By developing a good routing algorithm, both throughput and latency can be improved.
Careless design of routing algorithm may cause various problems such as deadlock. Once
a deadlock has occurred, the dynamic performance is drastically reduced. Therefore, a
deadlock free routing is very essential to achieve good communication performance. The
most important issues in the design of a routing algorithm are high throughput, low
message latency, freedom from deadlocks, livelocks, and starvation [36].

This chapter is organized as follows: Some preliminaries of routing algorithms and its
freedom from deadlock are present in Section 4.2. The deadlock free routing for HTN
and investigation of minimum number of virtual channels to make the HTN deadlock
free using dimension order routing algorithm are described in Section 4.3. Section 4.4
discusses the dynamic communication performance of HTN as well as its applicability
to several commonly used networks for parallel computers. A suite of low-cost adaptive
routing algorithms is proposed in Section 4.5. The router cost and speed of these routing
algorithms are presented in Section 4.6. Section 4.7 discusses the dynamic communica-
tion performance of HTN using the proposed adaptive routing algorithms; provides their
superiority over dimension order routing algorithm. Finally, some concluding remarks of
this chapter are given in Section 4.8.

4.2 Routing Algorithm

An interconnection network must allow every node to send message to every other node.
In the absence of complete topology, routing determines the path selected by a message
to reach its destination. Routing is the act of transferring information across the inter-
connection network from a source to destination. In a broad sense, routing refers to the
communication methods and algorithms used to implement this function. The basic issues
of routing include: how to set up a communication path in the network, how to choose a
path from many alternatives, and how to handle contention for resources in the network.

In a multicomputer network, routing can be accomplished through centralized or dis-
tributed control. In centralized routing, the designated node or controller makes the
routing decision from knowledge of the status of all nodes in the network. It is possible
for every node to have such global knowledge, in which case the source node can compute
the best possible route. Such centralized routing can be used if a host computer performs
routing decisions. The main problems with centralized routing are the need for a powerful
central node to handle routing requests from all nodes and its vulnerability to failures.
A centralized routing scheme is possible for very small network; for large network, it is
impractical. This is why, most of the interconnection networks use distributed routing.
In distributed routing, the path is determined in a distributed manner while the message
travels across the network. Messages move from node to node, and routing decisions
are made by intermediate nodes as messages move through these nodes. The distributed



4.2 Routing Algorithm 69

algorithm works with only local information about neighboring nodes. Each node, upon
receiving a packet, decides whether it should be delivered to the local node or forwarded
to a neighboring node. In this case, the routing algorithm invoked to determine to which
neighbor the packet should be sent.

In a practical router design, the routing decision process must be as fast as possible to
reduce the network latency. A good routing algorithm should also be easily implemented
in hardware. Furthermore, the decision process usually does not require global state
information of the network. Providing such information to each router creates additional
traffic and requires additional storage space in each router.

Many properties of the interconnection network are a direct consequence of the routing
algorithm used. Among these properties the most important ones are as follows:

• Connectivity: Ability to route packets from any source node to any destination
node.

• Deadlock and livelock freedom: Ability to guarantee that packets will not block or
wander across the network forever.

• Adaptivity: Ability to route packets through alternative paths in the presence of
contention or faulty components.

• Fault tolerance: Ability to route packets in the presence of faulty components.
Although it seems that fault tolerance implies adaptivity, this is not necessarily
true. Fault tolerance can be achieved without adaptivity by routing a packet in two
or more phases, storing in some intermediate nodes. Fault tolerance also requires
some additional hardware mechanisms.

4.2.1 Resources and Allocation Units

To traverse an interconnection network, a message must be allocated resources: control
state, channel bandwidth, and buffer capacity. When a packet arrives at a node, it must
first be allocated some control state. The control state tracks the resources allocated to
the packet within the node and the state of the packet’s traversal across the node. To
advance to the next node, the packet must be allocated bandwidth on an output channel
of the node. Finally, a packet arrives at a node, it is temporarily held in buffer while
awaiting channel bandwidth. Figure 4.1 shows the units in which network resources are
allocated.

A message is a logically contiguous group of bits that are delivered from a source node
to a destination node. Because messages may be arbitrarily long, resources are not directly
allocated to messages. Instead, messages are divided into one or more packets that have
fixed length. A packet is the smallest unit of data with complete routing information.
Packets consist of one or more header flits and a number of data flits. The packet header
includes routing information (RI) and, if needed, a sequence number (SN). The routing
information is used to determine the route taken by the packet from source to destination.
The sequence number is needed to record the packets of a message if they may get out of
order in transit. This may occur, for example, if different packets follow different paths
between the source and destination. If packet can be guaranteed to remain in order, the



4.2 Routing Algorithm 70

Message

Packet Body flit Tail flitRI SN

Header flit

Header

Flit PhitType VC

Head, Body,
Tail, or H&T

Figure 4.1: Units of resource allocation.

sequence number is not needed. A packet is further divided into flow control digits or
flits . Flit is the smallest unit of data that a link can accept for transmission, i.e., a unit
of bandwidth and storage allocation. Flits carry no routing and sequencing information
and thus must follow the same path and remain in order. However, flits may contain a
virtual channel identifier to identify which packets the flit belongs to in system where
multiple packets may be in transit over a single physical link at the same time. A flit is
itself subdivided in one or more physiacl transfer digits or phits . A phit is the unit of
information that can be transferred across a physical link in a single clock cycle. It is the
number of bits that can be transferred in parallel in a single cycle.

There is no hard and fast rules about sizes. However, phits are typically between 1
bit and 64 bits in size, with 8 bits being typical. Flits usually range 16 bits (2 bytes) to
512 bits (64 bytes), with 64 bits (8 bytes) being typical. Finally, packets usually range
from 128 bits (16 bytes) to 512 Kbits (64) Kbytes, with 1 Kbit (128 bytes) being typical.

The relationship between the size of phits, flits, and packets differs across machines.
Many machines have the phit size equivalent to the flit size. In the IBM SP2 switch [11],
a flit is 1 byte and is equivalent to a phit. Alternatively, in the CRAY T3D [30], a flit
is comprised of eight 16-bit phits. The specific choices reflect trade-offs in performance,
reliability, and implementation complexity.

4.2.2 Taxonomy of Routing Algorithm

Definition 4.1 (Routing Algorithm) A routing algorithm determines the path a packet
takes as it travels through the network from its source to its destination.

Routing algorithms can be classified according to several criteria. Such as, adaptivity,
progressiveness, minimality, number of paths, and so on.



4.2 Routing Algorithm 71

Definition 4.2 (Deterministic Routing) A routing algorithm is deterministic if the
path taken by a packet is determined only by the source and destination of the packet.
For a given pair of source and destination, the same path is always used even if there are
multiple paths. It is also called oblivious routing.

Definition 4.3 (Adaptive Routing) A routing algorithm is adaptive if the path taken
by a packet is determined by dynamic network condition (e.g., the presence of other packets
in the network and presence of congested & faulty channels).

Definition 4.4 (Progressive Routing) A routing algorithm is progressive if the header
flit moves forward, reserving a new channel at each routing operation.

Definition 4.5 (Backtracking Routing) A routing algorithm is backtracking if the
header flit releases the previously reserved channels. Backtracking algorithms are mainly
used for fault-tolerant routing

Definition 4.6 (Minimal Routing) A routing algorithm is minimal if the packets are
routed along paths of minimal distance to their destination. Packets never move away
from their destination.

Definition 4.7 (Nonminimal Routing) A routing algorithm is nonminimal if the
packets temporarily move away from their destination (misrouting), but eventually ar-
rive at their destination. Due to misrouting, the distance a packet travels may not be
minimal.

Definition 4.8 (Fully Adaptive Routing) A routing algorithm is fully adaptive if all
possible paths between source and destination are in potential use during routing message.
It allows a packet to select a path from all of the possible paths to its destination.

Definition 4.9 (Partially Adaptive Routing) A routing algorithm is partially adap-
tive if a subset of all possible paths between source and destination are in use during
routing message.

4.2.3 Primitive Considerations

Wormhole Routing

Wormhole routing1 [4, 37, 38] has become the dominant switching technique used in con-
temporary multicomputers. This is because it has low buffering requirements, and more
importantly, it makes latency independent of the message distance. Implementations of
wormhole routing typically divide each message into packets, which are then divided into
flits. The size of the flits depends on various system parameters. Normally the bits
constituting a flit are transmitted in parallel between adjacent nodes.

The header flit of a packet contains the routing information. As the header flit ad-
vances along the specified route according to the routing information, the remaining data
flits of the packet follow the header flit through the network in a pipelined fashion, as

1It is a flow control method and has nothing to do with routing.



4.2 Routing Algorithm 72

Input Buffer Output Buffer Message Progression

Source Destination

R 1 R 2 R 3 R 4

Figure 4.2: Wormhole routing

Data Flit Header Flit

R 1 R 2 R 3 R 4

A

B

Figure 4.3: An example of the blocked wormhole-routed message

Time

Node

S

I1

I2

I3

Header Flit

Data Flit

Figure 4.4: Time-space diagram of a wormhole-routed message



4.2 Routing Algorithm 73

illustrated in Figure 4.2. Each incoming data flit of a message is simply forwarded along
the same output channel as the preceding data flit. The header flit will reserve network
resources exclusively for its message and the tail flit will release each resource after it has
passed it. Thus, the message will traverse a network like a worm through a hole. By the
pipelined nature of wormhole routing, message latency is insensitive of path length. When
the header arrives at an intermediate router, the router immediately forwards the header
to the neighboring router if a usable output channel is available. In wormhole routing,
once a packet occupies a channel, the channel is not released until the entire packet passes
through the channel. If the header flit is blocked during advancing through the network,
the trailing data flits must be blocked also, that is, wait for next channel to be available
while holding channels in place.

In wormhole routing, if the required output channel is busy, the message is blocked
in place. For example, Figure 4.3 illustrates a snapshot of a message being transmitted
through routers R1, R2, R3, R4. At router R4, message A requires an output channel
that is being used by message B. The desired outgoing channel for the message A is not
available. Hence, the header flit is buffered in R4 and the data flits are also buffered in
the corresponding router.

The time-space diagram of a wormhole-routed message is shown in Figure 4.4. The
shaded rectangles illustrate the propagation of header flits across the physical channels.
The clear rectangles illustrate the propagation of data flits across the physical channel.
The unit of flow control in wormhole routing is a single flit and, as a consequence, the
use of small buffer. This figure shows the activities of each node over time when a packet
is transmitted from a source node S to a destination node D through three intermediate
nodes, I1, I2, and I3. The time required to transfer the packet between the source processor
and its router, and between the last router and the destination processor, is ignored. The
communication latency of the wormhole routing is nearly independent of the distance
between the source and destination node. The small buffer requirements and message
pipelining enable the construction of routers that are small, compact, and fast.

Deadlock, Livelock, and Starvation

The nodes of an interconnection network send and receive packets through the router.
In an interconnection network, packets usually travel across several intermediate nodes
before reaching to its destination. As each packet whose header has not already arrived
at its destination requests some buffers while keeping the buffers currently storing the
packet, a deadlock may occurred. A deadlock occurs in an interconnection network when
no message can advance towards its destination because of occupied channels and buffers
[38, 113]. Many studies [85, 114–118] addressed the deadlock-free routing in multicom-
puter networks. Figure 4.5 shows an example of deadlock in wormhole routing involving
four packets. Every packet is requesting resources held by other packet(s) while holding
resources requested by other packet(s). All the packets involved in a deadlocked config-
uration are blocked forever. This situation is analogous to blocking a car that wants to
continue straight behind a car that is waiting for a break in traffic to make a left turn.

Deadlock is a catastrophic to a network. After a few resources are occupied by dead-
locked packets, other packets block on these resources, paralyzing network operation.
There are three strategies to prevent this situation: deadlock prevention, deadlock avoid-



4.2 Routing Algorithm 74

Figure 4.5: An example of deadlock involving four packets

ance, and deadlock recovery. In the deadlock prevention, resources are granted to a packet
in such a way that a request never leads to a deadlock. It can be achieved by reserving
all the required resources before starting packet transmission. In the deadlock avoidance,
resources are requested as a packet advances through the network. However, a resource is
granted to a packet only if the resulting global state is safe. Finally, the deadlock recovery
strategies are optimistic. Deadlock recovery strategies take no action to prohibit deadlock
but detect the occurrence of deadlock and resolve the deadlock. This scheme is based on
the observation that deadlock is very rare phenomenon in the real world. Almost all
modern networks use deadlock avoidance.

A different situation arises when some packets are not able to reach their destination,
even if they never block permanently. A packet may be traveling around its destination
node, never reaching it because the channels required to do so are occupied by other
packets. This situation is known as livelock [5] . In livelock, packets continue to move
through the network, but they do not make progress toward their destination. It can only
occur when packets are allowed to follow nonminimal paths.

Livelock is relatively easy to avoid. The simplest way consists of using only minimal
path. This restriction usually increases performance in networks using wormhole routing
because packets do not occupy more channels than the ones strictly necessary to reach
their destination. The main motivation for the use of nonminimal paths is fault tolerance.
Even when the nonminimal paths are used, livelock can be prevented by limiting the
number of misroutes of a packet away from its destination.

Another situation may also arise, such that a packet may be permanently stopped if
traffic is intense and the resources requested by it are always granted to other packets also
requesting them. This situation is known as starvation [5] and it usually occurs when an
incorrect resource assignment scheme is used to attribute in case of conflict. Starvation
can be avoided by allocating resources such as communication channels and buffers in
First-In-First-Out (FIFO) order.

Deadlock, livelock, and starvation arise because the number of resources is finite.



4.2 Routing Algorithm 75

Additionally, some of these situations may produce the others. For instance, a deadlock
permanently blocks some packets. As those packets are occupying some buffers, other
packets may require them to reach their destination, being continuously misrouted around
their destination node and producing livelock.

Virtual Channel

Since wormhole routing relies on a blocking mechanism for flow control, deadlock can
occur because of cyclic dependencies over network resources during message routing. Vir-
tual channel (VC) [38, 39] was originally introduced to solve the problem of deadlock in
wormhole-routed networks. Continuing our roadmap analogy, while the conflict situa-
tion is the deadlock, is solution is to add a lane in the left allowing the blocked car to
make progress without waiting. Adding virtual channels to an interconnection network
is analogous to adding lanes to a street network. A network without virtual channels
is composed of one-lane streets. In such a network, a single blocked message blocks all
following messages. Adding virtual channels to the network adds lanes to the streets
allowing blocked messages to be passed. Adding virtual channels to wormhole-routed
networks greatly improves performance because they reduce blocking by acting as bypass
lanes for non-blocked messages.

A virtual channel consists of a buffer together with associated state information capa-
ble of holding one or more flits of a message [39]. They are multiplexed over the physical
channel in a demand-driven manner, with bandwidth allocated to each virtual channel as
needed. It can be used for solving deadlock problem by imposing restriction on using them
to break cyclic dependencies in the network [38]. Figure 4.6 shows the schematic diagram
of virtual channels. Each virtual channel is realized by an independently managed pair
of message buffers. Handshake signal makes the bridge between input buffer and output
buffer. Each message can share the physical channel on a flit-by-flit basis.

In [5, 39], it has been shown that virtual channels can also be used to improve network
performance and latency by relieving contention. It also increased the network throughput
by allowing messages to share a physical channel, messages can make progress rather than
remain blocked. Splitting each physical channel into several virtual channels increases
the number of routing choices, allowing messages to pass blocked messages. For example,
Figure 4.7 shows two messages crossing the physical channel between router R2 and R3.
Only one physical channel is used here. With no virtual channels packet A will prevent
packet B from advancing until the transmission of message A has been completed. In
wormhole-routed network, message A may be blocked due to the contention elsewhere in
the network while still holding its buffer and preventing message B. In this case, some
channels are idle even though there may be other packet in the network, e.g., message B
can make productive use of these channels.

The problem of idle channels arise because of resource coupling. That is, a channel
and a buffer allocated together and released together. Virtual channel decouple allocation
of buffers from allocation of channels by providing multiple buffers for each channel in
the network [119]. As illustrated in Figure 4.8, there are two virtual channels multiplexed
over a physical channel. By multiplexing the two messages on a flit-by-flit basis, both
messages continue to make progress. The overall time a message spends blocked at a
router waiting for a free channel is reduced leading to an overall reduction in individual



4.2 Routing Algorithm 76

:
Crossbar
 switch

M
U
X

Buffers

Output node

Handshake
   line

Link

Input node

VC

Figure 4.6: Virtual channel

Source 
of A

Destination
of A

Source of B

Destination
of B

R1 R2 R3 R4

Figure 4.7: Message blocking while physical channels remain idle

Source 
of A

Destination
of A

Source of B

Destination
of B

R1 R2 R3 R4

Figure 4.8: Virtual channel allows to pass blocked message



4.2 Routing Algorithm 77

message latency. The network throughput will also be increased due to increased physical
channel utilization.

It is often observed that increasing the number of virtual channels will increase the net-
work performance. The advantages and disadvantages of using virtual channels have been
thoroughly investigated [40, 41, 120–123]. Performance is dependent on network parame-
ters and there is an optimal number of virtual channels where the network performance
is maximized [5, 39].

4.2.4 Channel Dependency Graph

Wormhole routing is particularly susceptible to deadlocks as a blocked communication
request can be holding several communication channels, potentially causing cyclic waits
for channels. The resources which cause deadlocks in wormhole routing are the commu-
nication channels. The widely-used approach to deadlock avoidance in wormhole routing
consists in splitting the physical channels into virtual channels. Deadlocks are prevented
by imposing constraints on the allocation of the virtual channels to communication re-
quests.

The theoretical model of deadlock avoidance presented relies on the concept of channel
dependency graph [38, 67]. When a packet is holding a channel, and if it requests the use
of another channel, there is a dependency between those channels. Both channels are
in one of the paths that may be followed by the packet. If wormhole switching is used,
those channels are not necessarily adjacent because a packet may hold several channels
simultaneously. Channel dependency graph is used for detecting deadlocks in a wormhole-
routed network.

The channel dependency graph is constructed as follows: Each virtual channel in the
network is represented by a vertex. A directed edge is introduced from vertex i to vertex
j if and only if the routing algorithm allows a packet arriving on virtual channel i to be
forwarded on virtual channel j. Dally and Setz [38] showed that deadlocks can occur only
if the channel dependence graph of the channel allocation scheme has a directed cycle.
They presented some definitions and a theorem to make the routing algorithm deadlock
free. Here, we borrowed those definitions and theorem for clarity.

Definition 4.10 An interconnection network I is a strongly connected directed graph,
I = G(N, C). The vertices (N) of the graph represent the set of processing nodes. The
edges (C) of the graph represent the set of communication channels.

Definition 4.11 A routing function R : C × N → C maps the current channel cc and
destination node nd to the next channel cn on the route from cc to nd, R(cc, nd) = cn. A
channel is not allowed to route itself, cc 6= cn.

Definition 4.12 A channel dependency graph D for a given interconnection network I
and routing function R, is a directed graph, D = G(C, E). The vertices of D are the
channels of the interconnection network I. The edges of D are the pairs of channels
(ci, cj) such that there is a channel dependency from ci to cj.

The edges are determined by the following equation

E = {(ci, cj)|R(ci, n) = cj for some n ∈ N} . (4.1)



4.2 Routing Algorithm 78

Definition 4.13 A configuration is an assignment of a list of nodes to each queue. The
number of flits in the queue for channel ci will be denoted as size(ci). If the first flit in
the queue for channel ci is destined for node nd, then head(ci) = nd. A configuration is
legal if

∀ci ∈ C, size(ci) ≤ cap(ci). (4.2)

Here, cap(ci) be the capacity of the queue of channel ci, size(ci) be the number of flits
enqueued for channel ci, and head(ci) be the destination of the header flit enqueued for
channel ci.

Definition 4.14 A deadlock configuration for a routing function R is a nonempty legal
configuration of channel queues 3

∀ci ∈ C, (head(ci) 6= di and cj = R(ci, n) = size(cj) = cap(cj)). (4.3)

In this configuration no flit is one step from its destination and no flit can advance
because the queue for the next channel is full. A routing function R is deadlock free on
an interconnection network I if no deadlock configuration exists for that function on that
network.

Theorem 4.1 A routing function R (deterministic) for an interconnection network I is
deadlock free if and only if there are no cycles in the channel dependency graph D.

A cycle in the channel dependence graph indicates that it is possible for a deadlock
to occur; it is necessary but not sufficient condition for deadlock. A common strategy
to avoid deadlock is to remove all cycles from the channel dependency graph. Splitting
each physical channel along a cycle into multiple virtual channels and then restricting the
routing so that the dependence between the virtual channels is acyclic.

Figure 4.9(a) illustrates the phenomena of channel dependency graph and breaking the
cycle by using virtual channels in a four-node uni-directional ring network. The nodes are
denoted by ni, i = {0, 1, 2, 3}. A unidirectional channel connecting each pair of adjacent
nodes. Let, ci, i = {0, 1, 2, 3} be the outgoing channel from node ni. In this case, it is
easy to define a routing function. It can be stated as follows: If a current node ni is
equal to the destination node nj , store the packet. Otherwise, use ci, ∀j 6= i. The channel
dependency graph of Figure 4.9(a) is shown in Figure 4.9(b). There is a cyclic dependency
between ci channel. Effectively, a packet at node n0 destined for n2 can reserve c0 and
then request c1. A packet at node n1 destined for n3 can reserve c1 and then request c2. A
packet at node n2 destined for n0 can reserve c2 and then request c3. Finally, one packet
at node n3 destined for n1 can reserve c3 and then request c0. A configuration containing
the above-mentioned packets is deadlocked because every packet has reserved one channel
and is waiting for a channel occupied by another packet. This deadlock configuration is
illustrated in Figure 4.9(b) by channel dependency graph.

Now consider that every physical channel ci is split into two virtual channels, c0i

and c1i, as shown in Figure 4.9(c). c0i is the first virtual channel of physical channel i.
Similarly, c1i is the second virtual channel of physical channel i. Now, the new routing
function can be stated as follows: If the current node ni is equal to the destination node
nj , store the packet. Otherwise, use c0i, if j < i or c1i, if j > i. As can be seen, the cyclic



4.2 Routing Algorithm 79

PE2

PE3

PE0

PE1C 0

C 3

C 1

C 2

PE2

PE3

PE0

PE1
C 0 C 1

C 2C 3

PE2

PE3

PE0

PE1

(a) (b)

(c) (d)

PE2

PE3

PE0

PE1

C 02C 03

C 00

C 10

C 12C 13

C 11

C 01 C 01

C 10 C 11

C 12C 13

C 00

C 02
C 03

Figure 4.9: (a) A ring network with unidirectional channels. (b) The associated channel
dependency graph contains a cycle. (c) Each physical channel is logically split into two
virtual channels. (d) A modified channel dependency graph without cycles.



4.2 Routing Algorithm 80

dependency has been removed because after using channel c03, node n0 is reached. This
phenomenon of breaking the cyclic dependency is illustrated in 4.9.(d).

There is no deadlock configuration after using 2 channels and restricted routing func-
tion. If there were a packet stored in the queue of channel c12, it would be destined for n3

and flits could advance. So c12 must be empty. Also, if there were a packet stored in the
queue of channel c11, it would be destined for n2 or n3. As c12 is empty, flits could also
advance and c11 must be empty. If there were a packet stored in the queue of c10, it would
be destined for n1, n2, or n3. As c11 and c12 are empty, flits could also advance and c10

must be empty. Similarly it can be shown that the remaining channels can be emptied.
Although the channel dependency graph is elegantly detect the deadlocks in wormhole-

routed networks, it is sometimes tedious to construct the graph and check for cycles.

Deadlock Configuration of Mesh and Torus Networks

In mesh interconnection networks, cyclic dependency can occur due to the inter-dimensional
turns made by the messages [113]. All the possible turns a message can make are shown
in Figure 4.10. The deadlock situation in mesh network are prevented by proper routing
algorithms.

Figure 4.10: Deadlock configuration in mesh network

In torus interconnection network, end to end nodes are connected by wrap-around
connections. Due to this wrap around connection, besides inter-dimensional turns, cyclic
dependency can also occur in each dimension [113]. The possible deadlock configurations
for a torus network are shown in Figure 4.11. Additional virtual channel is required to
break the wrap-around dependencies of the torus network.



4.3 Dimension-Order Routing (DOR) for HTN 81

Figure 4.11: Deadlock configuration in torus network

Necessity of Deadlock-Free Routing

Routing algorithms for interconnection network aim to minimize message blocking by
efficiently utilizing network virtual and physical channels while ensuring freedom from
deadlock. Deadlock in an interconnection network is the situation in which some packets
can not advance forever because of blocking by other packets. If a deadlock occurs,
packet delivery is delayed indefinitely. In addition to this packet delivery rate is also
reduced. In short, once a deadlock has occurred, the dynamic communication performance
is drastically reduced, which is undesirable. A good routing algorithm for wormhole-
routed network must reduce message latency and increase network throughput as much
as possible with freedom from deadlock.

4.3 Dimension-Order Routing (DOR) for HTN

Dimension order routing algorithm is very popular and receives several names, like XY
routing [4] (for 2D-mesh network) or e-cube [38] (for Hypercube network). In the di-
mension order routing, the header flit contains the address of the destination relative to
the current location. It is updated after each transmission. The routing mechanism is
described as: first, determine whether the packet has reached its destination or not and
second, if this is not the case, routes a packet successively in each dimension until the
distance in that dimension is zero, then proceeds to the next dimension. The dimension



4.3 Dimension-Order Routing (DOR) for HTN 82

order routing algorithm determines the only route for the source and destination pair.
Figure 4.12 illustrates the mechanism of dimension order routing in a 2D-mesh network.

Figure 4.12: A set of routing paths created by the dimension order routing in a 2D-mesh
network

Deadlocks are mainly avoided by using a proper routing algorithm within the network.
One approach to designing a deadlock-free routing for a wormhole-routed network is to
ensure that cycles are avoided in the channel dependency graph [38]. This can be achieved
by assigning each channel a unique number and allocating channels to a packet in strictly
ascending or descending order. Routing is restricted to visiting the channel in order
(ascending or descending) to eliminate cycles in the graph. If the routing restriction
disconnects the network, physical channels are splitted into virtual channels to connect
the network again.

In the dimension order routing, each packet is routed in one dimension at a time,
arriving at the proper coordinate in each dimension before proceeding to the next dimen-
sion. By enforcing a strictly monotonic order on the dimension traversed, deadlock-free
routing is guaranteed.

Dimension-order routing has been popular in multicomputers because it has minimal
hardware requirements and allows the design of simple and fast routers. Additionally,
switches can be decomposed into smaller and faster switches, thus increasing speed. It
is well suited for uniform traffic pattern. Although there are numerous paths between
any source and destination, dimension-order routing defines a single path from source to
destination; it cannot respond to dynamic network condition.

4.3.1 Routing Algorithm for HTN

Wormhole routing is used for switching. In this section, we have considered popular
deterministic, dimension order routing algorithm for routing messages. We recall the
routing algorithm stated in Section 3.2.3 . Routing of messages in the HTN is performed
from top level to bottom level as in TESH network [47, 124, 125]. That is, it is first done at



4.3 Dimension-Order Routing (DOR) for HTN 83

the highest level network; then, after the packet reaches its highest level sub-destination,
routing continues within the subnetwork to the next lower level sub-destination. This
process is repeated until the packet arrives at its final destination. When a packet is
generated at a source node, the node checks its destination. If the packet’s destination is
the current BM, the routing is performed within the BM only. If the packet is addressed to
another BM, the source node sends the packet to the outlet node which connects the BM
to the level at which the routing is performed. As mentioned earlier, We have considered
a simple dimension-order routing algorithm. Routing at the higher level is performed first
in the y-direction and then in the x-direction. In a BM, the routing order is initially in
the z-direction, next in the y-direction, and finally in the x-direction.

We divide the routing path of Level-L HTN into three phases, such as phase-1, phase-
2, and phase-3. In phase-1 and phase-3, intra-BM communication is performed. Phase-1
is for source-BM and phase-3 is for destination-BM. In phase-2, inter-BM communication
is performed. In phase-1, messages are transferred from source node to the outlet node of
source-BM for higher level transfer. In phase-2, messages are transferred from the outlet
node of source-BM to the inlet node of destination-BM, i.e., higher level communication
is performed. Phase-2 is again divided into sub-phases, which is described in below. In
phase-3, messages are transferred from inlet node of destination-BM to the destination of
the message. The above taxonomy of routing algorithm for the HTN is summarized in
the following way:

• Phase 1: Intra-BM transfer path from source PE to the face of the BM.

• Phase 2: Higher level transfer path.

sub-phase 2.i.1 : Intra-BM transfer to the outlet PE of Level (L − i) through the
y-link.

sub-phase 2.i.2 : Inter-BM transfer of Level (L − i) through the y-link.

sub-phase 2.i.3 : Intra-BM transfer to the outlet PE of Level (L − i) through the
x-link.

sub-phase 2.i.4 : Inter-BM transfer of Level (L − i) through the x-link.

• Phase 3: Intra-BM transfer path from the outlet of the inter-BM transfer path to
the destination PE.

Routing of the HTN is strictly defined by the source node address and the destination
node address. Let a source node address be sn, sn−1, sn−2, ..., s1, s0, a destination node
address be dn, dn−1, dn−2, ..., d1, d0, and a routing tag be tn, tn−1, tn−2, ..., t1, t0, where, ti =
di − si. The source node address of HTN is expressed as:

s = s2L, s2L−1, s2L−2, ..., s2, s1, s0

= (s2Ls2L−1), ..., (s2, s1, s0) (4.4)

Similarly, the destination node address is expressed as:



4.3 Dimension-Order Routing (DOR) for HTN 84

d = d2L, d2L−1, d2L−2, ..., d2, d1, d0

= (d2Ld2L−1), ..., (d2, d1, d0) (4.5)

Hence, n = 2L, where, L is the level number and n is the position of the node. Figure
4.13 shows the routing algorithm (R1) for the HTN.

As an example, consider the routing between PE(0,0)(3,0,0) and PE(3,2)(2,3,0). At first, in
phase-1 routing, the packets move to the outlet node PE(0,0)(0,0,0) of the source-BM. Next,
in phase-2 routing, the packets move to the node whose address in the y-axis is the same.
The packets are transferred to node PE(3,0)(0,3,0). Then, in x-axis routing of phase-2,
the packets are transferred from PE(3,0)(0,3,0) to PE(3,2)(0,3,0). Finally, in phase-3 routing,
the routing is performed in the destination-BM and the packets are moved to the des-
tination PE(3,2)(2,3,0). The complete route is PE(0,0)(3,0,0) → PE(0,0)(0,0,0) → PE(3,0)(0,3,0) →
PE(3,0)(0,3,3) → PE(3,1)(0,3,0) → PE(3,1)(0,3,3) → PE(3,2)(0,3,0) → PE(3,2)(1,3,0) → PE(3,2)(2,3,0).
The above mentioned scenario is illustrated in Figure 4.14.

4.3.2 Deadlock-free Routing

The proposed routing algorithm enforces some routing restrictions to avoid deadlocks
[38, 67]. Since dimension-order routing is used in HTN, routing at the higher level is
performed first in the y-direction and then in the x-direction. In a BM, the routing order
is initially in the z-direction, then in the y-direction, and finally in the x-direction.

A deadlock-free routing algorithm can be constructed for an arbitrary interconnection
networks by introducing virtual channels. In this section, we investigate the number of
virtual channels required to make the routing algorithm deadlock-free for the HTN. We
also present a proof that the HTN is deadlock-free by these number of virtual channels.
The interconnection of the BM and the higher level network of HTN is a toroidal connec-
tion. By using the following lemma and corollary, the number of virtual channels required
to make deadlock free routing of HTN is evaluated.

Lemma 4.1 If a message is routed in the order z → y → x in a 3D-torus network, then
the network is deadlock free with 2 virtual channels.

Proof: In torus interconnection networks, cyclic dependencies can occur in two ways.
Firstly, due to the inter-dimensional turns made by the messages. Secondly, due to wrap-
around connection in the same direction. In order to avoid these cyclic dependencies, we
need two virtual channels, one for inter-dimensional turns and another for wrap-around
connections. The channels are allocated according to Eq. 4.6 for a 3D-torus network. Ini-
tially, messages are routed over virtual channel 0. Then, messages are routed over virtual
channel 1 if the message is going to use a wrap-around channel. If the messages routing
is enforced and virtual channels are used according to the above mentioned phenomena,
then cyclic dependency will not occur. Therefore, freedom from is proved.



4.3 Dimension-Order Routing (DOR) for HTN 85

Routing HTN(s,d);
source node address:sα, sα−1, sα−2, ..., s1, s0

destination node address: dα, dα−1, dα−2, ..., d1, d0

tag: tα, tα−1, tα−2, ..., t1, t0
for i = α : 3

if (i/2 = 0 and (ti > 0 or ti = −(n − 1))), routedir = North; endif;
if (i/2 = 0 and (ti < 0 or ti = (n − 1))), routedir = South; endif;

if (i%2 = 1 and (ti > 0 or ti = −(n − 1))), routedir = East; endif;
if (i%2 = 1 and (ti < 0 or ti = (n − 1))), routedir = West; endif;

while (ti 6= 0) do
Nz = outletz(s, d, L, routedir)

Ny = outlety(s, d, L, routedir)
Nx = outletx(s, d, L, routedir)
BM Routing(Nz, Ny, Nx)

if (routedir = North or East), move packet to next BM; endif;
if (routedir = South or West), move packet to previous BM; endif;

if (ti > 0), ti = ti − 1; endif;
if (ti < 0), ti = ti + 1; endif;

endwhile;
endfor;
BM Routing(tz, ty, tx)

end
BM Routing (t2, t1, t0);

BM tag t2, t1, t0 = receiving node address (r2, r1, r0) − destination (d2, d1, d0)
for i = 2 : 0

if (ti > 0 and ti ≤ m
2
) or (ti < 0 and ti = −(m − 1)), movedir = positive; endif;

if (ti > 0 and ti = (m − 1)) or (ti < 0 and ti ≥ −m
2
), movedir = negative; endif;

if (movedir = positive and ti > 0), distance = ti; endif;
if (movedir = positive and ti < 0), distance = m + ti; endif;
if (movedir = negative and ti < 0), distance = ti; endif;

if (movedir = negative and ti > 0), distance = −m + ti; endif;
endfor

while(t2 6= 0 or distance2 6= 0) do
if (movedir = positive), move packet to +z node; distance2 = distance2 − 1; endif;

if (movedir = negative), move packet to −z node; distance2 = distance2 + 1; endif;
endwhile;

while(t1 6= 0 or distance1 6= 0) do
if (movedir = positive), move packet to +y node; distance1 = distance1 − 1; endif;
if (movedir = negative), move packet to −y node; distance1 = distance1 + 1; endif;

endwhile;
while(t0 6= 0 or distance0 6= 0) do

if (movedir = positive), move packet to +x node; distance0 = distance0 − 1; endif;
if (movedir = negative), move packet to −x node; distance0 = distance0 + 1; endif;

endwhile;
end

Figure 4.13: Dimension-order routing algorithm for HTN



4.3 Dimension-Order Routing (DOR) for HTN 86

Figure 4.14: An example of message routing in HTN

C =







































(l, vc, a2), z+ channel,
(l, vc, m − a2), z− channel,

(l, vc, a1), y+ channel,
(l, vc, m − a1), y− channel,

(l, vc, a0), x+ channel,
(l, vc, m − a0), x− channel

(4.6)

Here, l = {l0, l1, l2, l3, l4, l5} are the links used in the BM, l = {l0, l1}, l = {l2, l3}, and l =
{l4, l5} are the links used in the z–direction, y–direction, and x–direction interconnection,
respectively. vc = {V C0, V C1} are the virtual channels, m is the size of the BM, and a0,
a1, and a2 are the node addresses in the BM.

Corollary 4.1 If the message is routed in the y → x direction in a 2D-torus network,
then the network is deadlock free with 2 virtual channels.

Proof: If the channels are allocated as shown in Eq. 4.7 for a 2D-torus network, then
deadlock freeness is proved.

C =



















(l, vc, a2L), y+ channel,
(l, vc, n − a2L), y− channel,

(l, vc, a2L−1), x+ channel,
(l, vc, n − a2L−1), x− channel

(4.7)

Here, l = {l6, l7} are the links used for higher-level interconnection, l6 is used in the
interconnection of the east and west directions and l7 is used in the interconnection of the



4.3 Dimension-Order Routing (DOR) for HTN 87

north and south directions. vc = {V C0, V C1} are the virtual channels, n is the size of
the higher level networks, and a2L and a2L−1 are the node addresses in the higher level,
where L is the level number.

Theorem 4.2 A Hierarchical Torus Network (HTN) with 6 virtual channels is deadlock-
free.

Proof: Both the BM and the higher levels of the HTN have a toroidal interconnection.
In phase-1 and phase-3 routing, packets are routed in the source-BM and destination-BM,
respectively. The BM of the HTN is a 3D-torus network. According to Lemma 4.1, the
number of necessary virtual channels for phase-1 and phase-3 routing is 2. Intra-BM
links between inter-BM communication on the xy-plane of the BM are used in sub-phases
2.i.1 and 2.i.3. These sub-phases utilize channels over intra-BM links, sharing either the
channels of phase-1 or phase-3. The exterior links at the contours of the xy-plane of
the BM are used in sub-phase 2.i.2 and sub-phase 2.i.4, and these links form a 2D-torus
network. This 2D-torus network is the higher-level interconnection of the HTN. According
to Corollary 4.1, the number of necessary virtual channels for phase-2 routing is 2.

Therefore, the total number of necessary virtual channels for the whole network is 6.

4.3.3 Minimum Number of Virtual Channels

The most expensive part of an interconnection network is the wire that forms the physical
links; for a particular topology, the physical link cost is constant. The second most
expensive elements are the buffers and switches. Since the networks we consider are
wormhole-routed, the main factor in buffer expense is the number of virtual channels.
Virtual channels reduce the effect of blocking; they are used widely in parallel computer
systems, to improve dynamic communication performance by relieving contention and to
design deadlock-free routing algorithms.

The use of virtual channels requires a careful analyses in order to maximize the benefits
and minimize the drawbacks. In [39], Dally showed that the performance of a dimension-
order routing under uniform traffic load improves significantly as virtual channels are
initially added. The benefits then diminish as more channels are added. Aoyama and
Chien [120] compare the cost of adding virtual channels for wormhole-routed networks.
They have been shown that a 30% penalty in router speed per extra virtual channel.

Multiplexing large number of virtual channels on a physical channel reduces the band-
width of individual virtual channel. As the consequence, it will reduce the data rate of
individual messages and increase the message latency. Crossbar switch controller speed,
which is determined by the routing algorithm is also reduced for additional virtual chan-
nels. Increasing the number of virtual channel makes the link controllers more complex
since they must support the arbitration between multiple virtual channels for physical
channel. Again, the hardware cost is increasing along with the increase of number of vir-
tual channels. A good wormhole routing algorithm must reduce network latency as much
as possible without excessive hardware requirement. Since the hardware cost increases as
the number of virtual channels increases, the unconstrained use of virtual channels is not
cost-effective in parallel computers [122, 123]. Thus, the deadlock free routing algorithm
with minimum number of virtual channels is needed. In this section, we have investigated
the minimum number of virtual channels for deadlock-free routing of the HTN.



4.4 Dynamic Communication Performance using DOR 88

HTN is a hierarchical network, where both the BM and the higher level networks
are torus connected. In torus network, 2 virtual channels are necessary to make the
routing algorithm deadlock free. By sharing the virtual channels between different phase
of routing, we can reduce the number of virtual channels. The routing of the message in
source-BM and destination-BM is carried out separately. The virtual channels required
in phase-1 and phase-3 can share each other. Therefore, it reduces 2 virtual channels.
The mesh connection of the higher level 2D-torus network shares the virtual channel of
either sub-phase-2.i.1 or sub-phase-2.i.3. Again, it reduces one more virtual channel. The
channel required for the wrap-around connection of the higher level 2D-torus network can
also be shared with that of either phase-1 or phase-3. This phenomena are described in
the subsequent theorem.

Theorem 4.3 A Hierarchical Torus Network (HTN) with 2 virtual channels is deadlock
free.

Proof: Both the BM and the higher levels of the HTN have a toroidal interconnection.
In phase-1 and phase-3 routing, packets are routed in the source-BM and destination-BM,
respectively. The BM of the HTN is a 3D-torus network. According to Lemma 4.1, the
number of necessary virtual channels for phase-1 and phase-3 routing is 2. The routing of
the message in source-BM and destination-BM is carried out separately. Thus, 2 virtual
channels are shared in phase-1 and phase-3 routing. In phase-2 routing, packets are routed
in the higher level networks. The higher level networks of the HTN is a 2D-torus network.
According to Corollary 4.1, the number of necessary virtual channels for phase-2 routing
is 2. Intra-BM links between inter-BM communication on the xy-plane of the BM are
used in sub-phases 2.i.1 and 2.i.3. These sub-phases utilize channels over intra-BM links,
sharing either the channels of phase-1 or phase-3. The exterior links at the contours of
the xy-plane of the BM are used in sub-phase 2.i.2 and sub-phase 2.i.4. The required 2
virtual channels of these two sub-phases are also cleverly shared with either phase-1 or
phase-3 routing. The main idea for this sharing is that initially messages are routed over
one virtual channel. Then, messages are switched over the other virtual channel if the
packet is going to use a wrap-around connection.

Therefore, the total number of necessary virtual channels for the whole network is 2.
The minimum number of virtual channels that required to make the routing algorithm

deadlock free for the HTN using dimension order routing is 2. However, by the use of
the well known Up?/Down? routing algorithm [126], only one channel (i.e., no virtual
channel) is sufficient to avoid deadlocks. This kind of routing algorithm is suitable for
tree topology. Routing of messages using the Up?/Down? routing algorithm is beyond the
scope of this paper.

4.4 Dynamic Communication Performance using DOR

The overall performance of a multicomputer system is affected by the performance of the
interconnection network as well as by the performance of the node. Continuing advances in
VLSI/WSI technology promise to deliver more power to the individual node. On the other
hand, low performance of the communication network will severely limit the speed of the
entire multicomputer system [127]. Therefore, the success of massively parallel computers
is highly dependent on the efficiency of their underlying interconnection networks.



4.4 Dynamic Communication Performance using DOR 89

4.4.1 Performance of Interconnection Networks

Performance Metrics

The dynamic communication performance of a multicomputer is characterized by message
latency and network throughput. Message latency is the time required for a packet to
traverse the network from source to destination. It refers to the time elapsed from the
instant when the first flit is injected to the network from the source to the instant when the
last flit of the message is received at the destination. Message latency in wormhole routing
is the average value of the time elapsed between injection of the header flit into the network
at the source and reception of the last unit of the data flit at the destination. Network
throughput is the rate at which packets are delivered by the network for a particular
traffic pattern. It refers to the maximum amount of information delivered per unit of
time through the network. It also can be defined as the maximum traffic accepted by the
network. For the network to have good performance, low latency and high throughput
must be achieved.

Latency is measured in time units. However, when comparing several design choices,
the absolute value is not important; because the comparison is performed by computer
simulation, latency is measured in simulator clock cycles. Throughput depends on message
length and network size. Therefore, throughput is usually normalized, dividing it by
message length and network size. When throughput is compared by computer simulation
and wormhole routing is used for switching, throughput can be measured in flits per node
and clock cycle.

Zero-load latency gives a lower bound on the average latency of a packet through
the network. The zero-load assumption is that a packet never contends for network
resources with other packets. Under this assumption, the average latency of a packet
is its serialization latency plus its hop latency. Throughput is a property of the entire
network and depends on routing and flow control as much as on the topology. A resource
is in saturation when the demands being placed on it are beyond its capacity for servicing
those demands. A channel become saturated when the amount of data that wants to be
routed over the channel exceeds the bandwidth of the channel. The saturation throughput
of a network is the smallest rate of traffic for which some channel in the network becomes
saturated. If no channels are saturated, the network can carry more traffic. We also called
this saturation throughput as maximum throughput .

Performance Measures

Performance of an interconnection network is described by a latency vs. throughput curve.
This curve shows the average latency of a packet as a function of network throughput. To
draw a particular latency vs. throughput curve, the traffic pattern must also be specified.
Latency vs. throughput graphs share a distinctive shape that starts at the horizontal
asymptote of zero-load latency and slopes upward to the vertical asymptote of maximum
throughput. At low throughput, latency approaches zero-load latency. As load increases,
increased contention causes latency to increase as packets must wait for resources (buffers
and channels). Eventually, the latency curve approaches a vertical asymptote as the
throughput approaches the saturation throughput of the network.



4.4 Dynamic Communication Performance using DOR 90

4.4.2 Simulation Environment

To evaluate dynamic communication performance, we have developed a wormhole routing
simulator. In our simulator, the parameters affecting simulation results are as follows:

1. Network Topology
Dynamic communication performance is evaluated for the HTN, H3D-mesh, H3D-
torus, TESH, 2D-mesh, and 2D-torus networks.

2. Network Size
We have considered 256, 512, and 1024 node networks for simulation.

3. Switching
We use wormhole routing for switching technique. This is an emerging switching
technique for current generation multicomputers.

4. Routing Strategy
We have chosen dimension-order routing algorithm. The dimension order routing
algorithm provides the only route for the source and destination pair. In the next
section, we will consider adaptive routing for performance evaluation.

5. Number of Virtual Channels
Two virtual channels per physical channel are simulated, which is the minimum
number of virtual channels required to make the routing algorithm deadlock-free.
We have also used 3, 4, and 6 virtual channels.

6. Arbitration of Virtual Channels
The virtual channels are arbitrated by a round-robin algorithm. A round-robin
arbiter operates on the principle that a request that was just served should have the
lowest priority on the next round of arbitration.

7. Message Length
A short message is equal to 16 flits. Similarly, medium and long message are equal
to 64 flits and 256 flits, respectively [5]. Simulation studies were carried out for
short, medium, and long messages. We considered 3 different message lengths to
show the effect of message lengths; two flits were used as the header flit. To evaluate
dynamic communication performance, flocks of messages were sent in the network
to compete for the output channels. For each simulation run, we considered that
message generation rate was constant and the same for all the nodes.

8. Traffic Pattern
We have considered both uniform and non-uniform traffic pattern. In the subsequent
section, we will discuss details about traffic patterns.

9. Simulation Time
Flits were transmitted at 20, 000 cycles. In each clock cycle, one flit was transferred
from the input buffer to the output buffer or from output to input if the correspond-
ing buffer in the next node was empty. Therefore, transferring data between two
nodes took 2 clock cycles.



4.4 Dynamic Communication Performance using DOR 91

4.4.3 Traffic Patterns

One of the most important factors influencing network performance is the traffic pattern
generated by the applications being executed on a machine. Traffic patterns are pairs
of nodes that communicate. In an interconnection network, sources and destinations
for messages form the traffic pattern. The traffic model is basically defined by three
parameters: message injection time, message length and message destination address
distribution [128]. Message destination distributions vary a great deal depending on
the network topology and the application’s mapping onto different nodes. The most
frequently used, simplest and most elegant pattern is the uniform traffic where the source
and the destination are randomly selected. However, depending on the characteristics of
the application, some nodes may communicate with each other more frequently than with
others. Also, traffic patterns are critically dependent on the placement of tasks on the
networks. Consequently, non-uniform traffic patterns are frequent and cause uneven usage
of traffic resources, significantly degrading the dynamic communication performance of the
network. We have evaluated the dynamic communication performance of the HTN under
the uniform traffic pattern. To observe the effect of non-uniformity, we also interested
in how non-uniform traffic patterns affect the dynamic communication performance of
the HTN. Throughout the performance evaluation, we use five different traffic patterns:
uniform [129], hot-spot [130], dimension-reversal [70, 71], bit-reversal [131], complement
[132], bit-flip [133], and perfect shuffle [134] .

• Uniform – In the uniform traffic pattern, every node sends messages to every other
node with equal probability in the network. That is, source and destination are
randomly selected.

• Hot-Spot – A hot spot is a node that is accessed more frequently than other nodes
in the uniform traffic distribution. In hot-spot traffic pattern, each node generates
a random number. If that number is less than a threshold, the message is sent to
the hot spot node. Otherwise it is sent to other nodes with a uniform distribution.

• Dimension reversal – In dimension reversal traffic, each node sends messages to
a node with an address of the reversed dimension index. In 2-dimensional net-
works, node(x, y) communicates with node(y, x). This gives the same traffic as a
matrix-transpose traffic pattern. For 3-dimensional networks, we use an analogous
traffic pattern, in which node(x, y, z) sends messages to node

(

y, x, 3
√

N − (z + 1)
)

.
Here, N is the total number of nodes in the network. In 4-dimensional networks,
node(x, y, z, w) communicates with node(y, x, w, z).

• Bit-reversal – The binary representation of the node address is aβ−1, aβ−2 ...
... a1, a0. In bit-reversal traffic, the node (aβ−1, aβ−2 ... ... a1, a0) communicates with
the node (a0, a1, a2 ... ... aβ−2, aβ−1).

• Complement – The binary representation of the node address is aβ−1, aβ−2 ...
... a1, a0. In complement traffic, the node (aβ−1, aβ−2 ... ... a1, a0) communicates
with the node (aβ−1, aβ−2, ... ... a2, a1, a0).

• Bit-flip – The node with binary coordinates aβ−1, aβ−2 ... ... a1, a0 communicates
with the node (a0, a1, ... ... aβ−2, aβ−1). That is, complement of bit-reversal traffic.



4.4 Dynamic Communication Performance using DOR 92

(a)

(b)

Figure 4.15: Nonuniform traffic patterns on a 8×8 mesh networks: (a) dimension-reversal
traffic and (b) bit-reversal traffic



4.4 Dynamic Communication Performance using DOR 93

• Perfect shuffle – The node with binary coordinates aβ−1, aβ−2 ... ... a1, a0 commu-
nicates with the node (aβ−2, aβ−3, ... ... a1, a0, aβ−1). That is, rotate left 1 bit.

The uniform traffic pattern has been used to evaluate the network’s communication
performance in many previous studies and therefore, provides an important point of ref-
erence. When a hot spot occurs, a particular communication link experiences a much
greater number of requests than the rest of the links – more than it can service. In a
remarkably short period of time, the entire network may become congested resulting in
serious performance degradation due to saturation. Hot spots are particularly trouble-
some because they may result from the cumulative effects of very small traffic imbalances.
Hot spots often occur because of the bursty nature of program communication and data
requirements and, therefore can provide a benchmark for interconnection networks. Di-
mension order routing has only one route for a source-destination pair. And in dimension
reversal and bit reversal traffic patterns, the source node sends messages to a prede-
fined destination. They both create significant congestion under dimension order routing
in the network, and when congestion occurs, the network throughput decreases precipi-
tously. Dimension reversal permutations is often generated by numerical programs and
are considered as interesting benchmarks for the interconnection networks. Bit Permu-
tation and Computation (BPC) [135, 137] is a class of non-uniform traffic pattern, which
are very common in scientific applications. These include bit-reversal, bit-flip, and perfect
shuffle, etc. BPC communication patterns take into account the permutations that are
usually performed in parallel numerical algorithms [134, 138]. These distributions achieve
the maximum degree of temporal locality and are also considered as benchmarks for inter-
connection networks. Permutation traffic is exhibited in many parallel applications such
as computing multidimensional FFT, matrix problems, finite elements and fault-tolerant
routing [137]. While these traffic patterns are by no means exhaustive, they represent
some interesting extremes of the space of possible patterns.

As an example, Figure 4.15 shows the dimension-reversal and bit-reversal traffic pat-
terns on 8 × 8 mesh networks. The paths shown in the figure follow dimension-order
routing. While the two nonuniform traffic generate a similar number of channel conflicts,
they concentrate the conflicts in different places. In dimension-reversal traffic in Figure
4.15(a), most conflicts arise along the diagonal line connecting upper-left and lower-right
corners. However, as shown in Figure 4.15(b), bit-reversal traffic scatters the locations
of the conflicts in the center. Consequently, various nonuniform traffic patterns behave
differently under different routing algorithms.

4.4.4 Dynamic Communication Performance Evaluation

Most of the hierarchical interconnection networks proposed in the literature are based on
hypercube network; a few of them are based on k-ary n-cube network. Available k-ary
n-cube based hierarchical networks are TESH, H3D-mesh, H3D-torus, SRT [96], and RDT
[95]. From Table 4.1, it is seen that the number of links of the SRT and RDT is higher than
that of the HTN. Again, the presence of huge number of diagonal links results higher peak
number of vertical links for 3D-WSI than that of HTN. This is why, we did not consider
SRT and RDT for performance evaluation. We have consider H3D-mesh,H3D-torus, and
TESH networks along with original k-ary n-cube networks for performance evaluation.



4.4 Dynamic Communication Performance using DOR 94

Table 4.1: The total number of links of various networks with 1024 node

Network # of links
2D-mesh 1984
2D-torus 2048
H3D-mesh 3168
HTN 3200
SRT 3904
RDT 4096

Comparing dynamic communication performance among different hierarchical inter-
connection networks such as HTN, H3D-mesh [59], H3D-torus [61], and TESH [47] is not
an easy task, because each network has a different interconnection architecture, which
makes it difficult to match the total number of nodes. According to Lemma 3.3, the total
number of nodes in the HTN is N =

[

m3 × n2(L−1)
]

. If m = 4, n = 2, and L = 2, then the

total number of nodes is 256. Level-2 TESH, and Level-2 H3D-mesh with n = 2 [59], and
16 × 16 mesh and torus networks also have 256 nodes. If m = 4, n = 4, and L = 2, then
the total number of nodes in the HTN is 1024. Again, Level-2 H3D-mesh with n = 4, and
32× 32 mesh and torus networks also have 1024 nodes. If the size of the basic module is
(4×4×4) and the higher level network is (2×2×2), then the total number of nodes of a
Level-2 H3D-torus network is 512. We have considered a rectangular HTN to match the
total number of nodes with H3D-torus network. In this rectangular HTN, the size of the
BM is (4×4×4) and the higher level network is (2×4); hence the total number of nodes of
a Level-2 rectangular HTN is also 512. In this paper, 256-node, 512-node, and 1024-node
networks are referred to as small, medium, and large-size networks, respectively. Accord-
ing to the structure of the TESH network [47], it is not possible to construct a 1024-node
TESH network.

In this section, we have shown some simulation results of algorithm proposed in Section
4.3.

Uniform Traffic Pattern

In a uniform traffic pattern , each node sends with equal probability to all other nodes in
the networks. Figure 4.16 shows a comparison of dynamic communication performance
of HTN with H3D-mesh network and mesh network under uniform-random traffic. The
figures show the average transfer time as a function of network throughput for different
networks. Each curve stands for a particular network. The inter-level connectivity is
q = 0. We have used as much virtual channels as possible to make the corresponding
network deadlock free. We have emphasized on deadlock free routing only. The use of
virtual channel is not uniform for different networks. We have used 1, 5, and 6 virtual
channels for mesh, H3D-mesh, and HTN, respectively. Thus, a fair comparison of the
communication performance of these families of interconnection networks is not shown in
Figure 4.16.

We have tried to reduce the number of virtual channels for deadlock free routing of
HTN and H3D-mesh network. In fact, we have made a fair comparison of dynamic com-



4.4 Dynamic Communication Performance using DOR 95

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.01  0.015  0.02  0.025

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

MeshH3DM

HTN

Figure 4.16: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 1024 nodes, different virtual channels, short
message, and q = 0

.

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040  0.045

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DM HTN
Mesh

Figure 4.17: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 1024 nodes, 3 virtual channels, short message,
and q = 0.



4.4 Dynamic Communication Performance using DOR 96

munication performance between various networks. Figure 4.17 shows a comparison of
dynamic communication performance between HTN, H3D-mesh network, and mesh net-
work with 3 virtual channels. Figure 4.17 shows that the performance (both the average
transfer time and throughput) of HTN is better than that of H3D-mesh network. The
average transfer time of the HTN is less than that of mesh network; but the through-
put of HTN is less than mesh network. To improve the throughput of HTN, inter-level
connectivity (q) of HTN is increased from q = 0 to q = 1. With this condition, we
have evaluated the dynamic communication performance of HTN, H3D-mesh, H3D-torus,
TESH, and mesh networks and presented in Figure 4.18.

Figure 4.18 depicts the result of simulations under uniform traffic pattern for the
various network models. As shown in Figure 4.18(a), for small-size networks, the average
transfer time of the HTN is lower than that of the H3D-mesh, TESH, and mesh networks,
and the maximum throughput of the HTN is higher than that of the H3D-mesh, TESH,
and mesh networks. As shown in Figure 4.18(b), for medium-size networks, the average
transfer time of the HTN is lower than that of the H3D-torus [61] network with 1 link and
4 links, and its maximum throughput is far higher than that of the H3D-torus network
with 1 link and 4 links. As shown in Figure 4.18(c), for large-size networks, the average
transfer time of the HTN is lower than that of the H3D-mesh and mesh networks, and
its maximum throughput is higher than that of the H3D-mesh and mesh networks. As
shown in Figure 4.18(d), for medium-length message large-size networks, the average
transfer time of the HTN is lower than that of the H3D-mesh and mesh networks, and
its maximum throughput is higher than that of the H3D-mesh and mesh networks. As
shown in Figure 4.18(e), for long message large-size networks, the average transfer time
of the HTN is lower than that of the H3D-mesh and mesh networks, and its maximum
throughput is higher than that of the H3D-mesh and mesh networks. From Figure 4.18,
it is seen that the average transfer time of the HTN is remarkably lower than that of
the mesh, TESH, and H3D-torus network; it even is lower than the H3D-mesh network
but this difference is not impressive. The maximum throughput of the HTN is higher
than that of those networks. Therefore, HTN achieves better dynamic communication
performance than that of the other hierarchical networks and conventional mesh network
under a uniform traffic pattern.

The hardware cost of an interconnection network is increased along with the increase
of number of virtual channels. This is why, we have investigated the minimum number
of virtual channels for deadlock free routing of HTN. 2 virtual channels per physical
channel is the minimum number of virtual channels required to make the routing algorithm
deadlock-free. We have simulated the dynamic communication performance of various
networks with 2 virtual channels.

Figures 4.19 depicts the result of simulations under uniform traffic pattern for the
various network models of small and large-size networks with 2 virtual channels. As shown
in Figures 4.19(a), 4.19(b), and 4.19(c) for small-size networks, the average transfer time
of the HTN is lower than that of the H3D-mesh, TESH, mesh, and torus networks, and the
maximum throughput of the HTN is higher than that of the H3D-mesh, TESH, mesh, and
torus networks, for short, medium-length, and long message respectively. For simplicity,
we have considered only hierarchical networks for medium and long messages on small-size
network. As shown in Figures 4.19(d), 4.19(e), and 4.19(f) for large-size networks, the
average transfer time of the HTN is lower than that of the H3D-mesh, mesh, and torus



4.4 Dynamic Communication Performance using DOR 97

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

TESH H3DM

Mesh

HTN

 0

 50

 100

 150

 200

 250

 0  0.01  0.02  0.03  0.04  0.05  0.06

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DT
1Link

H3DT
4Link

HTN

(a) (b)

Throughput (Flits/Cycle/Node)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

(c) (d)

(e)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

0

50

100

150

200

250

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

H3DM Mesh

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

0

500

1000

1500

2000

0 0.01 0.02 0.03 0.04 0.05

Mesh

H3DM

HTN

0

100

200

300

400

500

600

700

800

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

H3DM

Mesh

HTN

Figure 4.18: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: (a) 256 nodes, 3 virtual channels, short message,
and q = 1 (b) 512 nodes, 3 virtual channels, short message, and q = 1, (c) 1024 nodes, 3
virtual channels, short message, and q = 1, (d) 1024 nodes, 3 virtual channels, medium-
length message, and q = 1, (e) 1024 nodes, 3 virtual channels, long message, and q = 1,.



4.4 Dynamic Communication Performance using DOR 98

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

TESH
H3DM

Mesh
Torus
HTN A

ve
ra

ge
 T

ra
ns

fe
r 

T
im

e 
(C

yc
le

s)

Throughput (Flits/Cycle/Node)

 0

 100

 200

 300

 400

 500

 600

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

TESH H3DM HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 250

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

H3DM
Mesh

Torus

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  0.02  0.04  0.06  0.08  0.1

TESH H3DM HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 100

 200

 300

 400

 500

 600

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

H3DM

Mesh

Torus

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 500

 1000

 1500

 2000

 0  0.01  0.02  0.03  0.04  0.05

H3DM Mesh

Torus

HTN

(a) (b)

(c) (d)

e) (f)

Figure 4.19: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: (a) 256 nodes, 2 virtual channels, short message,
and q = 1 (b) 256 nodes, 2 virtual channels, medium-length message, and q = 1, (c) 256
nodes, 2 virtual channels, long message, and q = 1, (d) 1024 nodes, 2 virtual channels,
short message, and q = 1, (e) 1024 nodes, 2 virtual channels, medium-length message,
and q = 1, and (f) 1024 nodes, 2 virtual channels, long message, and q = 1.



4.4 Dynamic Communication Performance using DOR 99

networks, and its maximum throughput is higher than that of the H3D-mesh, mesh, and
torus networks, for short, medium-length, and long message respectively.

From Figure 4.19, it is seen that the average transfer time of the HTN is remarkably
lower than that of the TESH, mesh, and torus networks; it even is lower than the H3D-
mesh network but this difference is not impressive. The maximum throughput of the
HTN is higher than that of those networks. Therefore, HTN achieves better dynamic
communication performance than that of the other hierarchical and conventional networks
under the uniform traffic pattern. In the uniform traffic pattern, the traffic distribution is
randomly chosen. If the source and the destination are in the same BM, then the routing
is performed within that BM only. This is why the dynamic communication performance
of the HTN is better than that of other networks.

Nonuniform Traffic Pattern

Hot-Spot Traffic

For dynamic communication performance evaluation under nonuniform traffic pattern, we
have considered 3 virtual channels. The reason will be explained in the next subsection.

For generating hot-spot traffic we used a model proposed by Pfister and Norton [130].
According to this model, each node first generates a random number. If that number is
less than a predefined threshold, it will send the message to the hot spot node. Otherwise
the message will be sent to other nodes with a uniform distribution. Here, in uniform
distribution, message destinations are chosen randomly with equal probability between the
nodes in the networks. For performance evaluation, the hot spot percentages are assumed
to be 2%, 5%, and 10%. The hot spot nodes are assumed to be centered 4 nodes. In
hierarchical networks, the centered 4 nodes that connect the sub-network module are
considered as hot spot nodes.

Figure 4.20 shows the message latency versus network throughput curve for hot spot
traffic. This figure compares the performance of various networks under 5% hot spot
traffic. Figure 4.20 (a) compares the performance of small-size networks. The average
transfer time of the HTN is lower than that of the H3D-mesh, TESH, and mesh networks,
and its maximum throughput is higher than that of the H3D-mesh, TESH, and mesh
networks. Figure 4.20 (b) compares the performance of medium-size networks, HTN and
H3D-torus networks. It shows that the average transfer time of the HTN is lower than
that of the H3D-torus network with 1 link and 4 links, and its maximum throughput is
far higher than that of the H3D-torus network with 1 link and 4 links. Figure 4.20 (c)
compares the performance of large-size networks. Here again, the average transfer time
of the HTN is lower than that of the H3D-mesh and mesh networks, and the maximum
throughput is higher than that of the H3D-mesh and mesh networks. It is seen that under
5% hot spot traffic, the dynamic communication performance of the HTN is better than
that of the other hierarchical and conventional mesh networks.

Figure 4.21 shows the message latency versus network throughput curves with hot
2% and 10% spot traffic for small and large-size networks. Figure 4.21(a), and 4.21(b)
compares the performance of small-size networks under 2% and 10% hot spot traffic,
respectively. The average transfer time of the HTN is lower than that of the H3D-
mesh, TESH, and mesh networks, and its maximum throughput is higher than that of
the H3D-mesh, TESH, and mesh networks. Figure 4.21(c), and 4.21(d) compares the



4.4 Dynamic Communication Performance using DOR 100

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

TESH

Mesh

H3DM
HTN

 0

 50

 100

 150

 200

 250

 0  0.01  0.02  0.03  0.04  0.05  0.06

H3DT
1 Link

H3DT
4 Link

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Mesh

H3DM

HTN

(a)

(b)

(c)

Figure 4.20: Dynamic communication performance of dimension-order routing with hot-
spot traffic pattern on various networks: (a) 256 nodes, 3 virtual channels, 5% hot-spot
traffic, short message, and q = 1 (b) 512 nodes, 3 virtual channels, 5% hot-spot traffic,
short message, and q = 1, and (c) 1024 nodes, 3 virtual channels, 5% hot-spot traffic,
short message, and q = 1



4.4 Dynamic Communication Performance using DOR 101

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

TESH

Mesh

H3DM

HTN

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

TESH Mesh

H3DM

HTN

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040  0.045

Mesh

H3DM

HTN

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.01  0.015  0.02  0.025

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Mesh

H3DM

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

(a) (b)

(c) (d)

Figure 4.21: Dynamic communication performance of dimension-order routing with hot-
spot traffic pattern on various networks: (a) 256 nodes, 3 virtual channels, 2% hot-spot
traffic, short message, and q = 1 (b) 256 nodes, 3 virtual channels, 10% hot-spot traffic,
short message, and q = 1, (c) 1024 nodes, 3 virtual channels, 2% hot-spot traffic, short
message, and q = 1, and (d) 1024 nodes, 3 virtual channels, 10% hot-spot traffic, short
message, and q = 1.



4.4 Dynamic Communication Performance using DOR 102

performance of large-size networks under 2% and 10% hot spot traffic, respectively. Here
again, the average transfer time of the HTN is lower than that of the H3D-mesh and mesh
networks, and the maximum throughput is higher than that of the H3D-mesh and mesh
networks. It is seen that under 2% and 10% hot spot traffic, the dynamic communication
performance of the HTN is better than that of the other hierarchical and conventional
mesh networks. Therefore, with a hot spot traffic pattern, HTN also achieves better
dynamic communication performance than that of the other hierarchical and conventional
mesh networks.

The higher the hot spot traffic, the lower the performance. But the performance
deviation in the HTN is lower than that of mesh network. One interesting point is that
the difference in maximum throughput between HTN and mesh is greater for the hot
spot traffic pattern than for other traffic patterns, including the uniform traffic pattern.
Moreover, the maximum throughput of the H3D-mesh network is higher than that of
the mesh network with a hot spot traffic pattern, but usually less than that of the mesh
network with other traffic patterns.

Dimension Reversal Traffic

HTN is a hierarchical network, where the BM is a 3D-torus and the higher level network
is a 2D-torus network. In our simulation, we use a 2-dimensional reversal traffic and
a 3-dimensional reversal traffic pattern. In 2-dimensional reversal traffic, in the BM,
node (x, y) sends messages to node (y, x) and the z-axis remains fixed. At higher levels, the
x-coordinates and y-coordinates of the subnet modules at a certain level are transposed.
For instance, in the Level-2 HTN, BM (x, y) sends messages to BM (y, x). In 3-dimensional

reversal traffic, in the BM, node (x, y, z) sends messages to node
(

y, x, 3
√

NBM − (z + 1)
)

.
Here, NBM is the total number of nodes in the BM. As the higher level network is a
2D-torus, the traffic pattern is like a 2-dimensional reversal traffic pattern for higher level
networks.

The dynamic communication performance of various networks under the 2-dimensional
reversal traffic pattern is shown in Figures 4.22(a) and (b), for small and large-size net-
works. The figure shows the average transfer time as a function of network throughput
for different networks. Each curve stands for a particular network. In small-size networks,
as shown in Figure 4.22(a), the average transfer time of the HTN is lower than that of
the H3D-mesh, TESH, and mesh networks, and the maximum throughput of the HTN
is higher than that of the H3D-mesh, TESH, and mesh networks. In large-size networks,
Figure 4.22(b), the average transfer time of the HTN is lower than that of the H3D-mesh
and mesh networks, and the maximum throughput of the HTN is higher than that of
the H3D-mesh and mesh networks. Therefore, HTN achieves better dynamic communica-
tion performance than that of the other hierarchical networks and the conventional mesh
network.

A 3-dimensional reversal of traffic is impossible in a 2D-mesh network or in TESH,
which is also a 2D-hierarchical network. Therefore, for a 3-dimensional reversal traffic
we have evaluated the dynamic communication performance of only small and large-size
HTN and H3D-mesh networks; this is portrayed in in Figure 4.22(c) and (d), for small
and large-size networks. Each curve stands for a particular network. As Figure 4.22
shows, the dynamic communication performance of the HTN is better than that of the



4.4 Dynamic Communication Performance using DOR 103

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.01  0.02  0.03  0.04  0.05  0.06

TESH

H3DM

Mesh

HTN

 0

 50

 100

 150

 200

 250

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040  0.045

H3DM

Mesh

HTN

 0

 50

 100

 150

 200

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05

H3DM

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 20

 40

 60

 80

 100

 120

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

H3DM

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

(a) (b)

(c) (d)

Figure 4.22: Dynamic communication performance of dimension-order routing with di-
mension reversal traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,
2-dimensional reversal traffic, short message, and q = 1 (b) 1024 node, 3 virtual channels,
2-dimensional reversal traffic, short message, ands q = 1, (c) 256 nodes, 3 virtual chan-
nels, 3-dimensional reversal traffic, short message, and q = 1, (d) 1024 nodes, 3 virtual
channels, 3-dimensional reversal traffic, short message, and q = 1.



4.4 Dynamic Communication Performance using DOR 104

H3D-mesh network.
Dimension reversal traffic patterns (both 2D and 3D) are applicable to the H3D-

torus network. However, neither is applicable to the HTN, because we have considered
a rectangular HTN for the medium-size network to match the total number of nodes.
This is why, dynamic communication performance for dimension reversal traffic patterns
is presented only for small and large-size networks.

Bit Reversal Traffic

In a bit reversal traffic pattern, a node with address Node (aβ−1, aβ−2 ... ... a1, a0) sends
messages to Node (a0, a1, ... ... aβ−2, aβ−1). Figure 4.23 depicts the result of simulations
under bit reversal traffic pattern for the various network models. As shown in Figure
4.23(a), for small-size networks, the average transfer time of the HTN is lower than that
of the H3D-mesh, TESH, and mesh networks, and the maximum throughput of the HTN
is higher than that of the H3D-mesh, TESH, and mesh networks. As shown in Figure
4.23(b), for medium-size networks, the average transfer time of the HTN is lower than
that of the H3D-torus network with 1 link and 4 links, and its maximum throughput is far
higher than that of the H3D-torus network with 1 link and 4 links. As shown in Figures
4.23(c), (d), and (e), for large-size networks with short, medium, and long message, the
average transfer time of the HTN is lower than that of the H3D-mesh and mesh networks,
and its maximum throughput is higher than that of the H3D-mesh and mesh networks. In
Figure 4.23(e), for long message, it is seen that the maximum throughput of the H3D-mesh
network is higher than that of the mesh network with a bit-reversal traffic pattern.

From Figure 4.23, it is seen that the average transfer time of the HTN is remarkably
lower than that of the mesh, TESH, and H3D-torus network; it even is lower than the
H3D-mesh network but this difference is not impressive. The maximum throughput of
the HTN is higher than that of those networks. Therefore, HTN achieves better dynamic
communication performance than that of the other hierarchical networks and conventional
mesh network under a bit reversal traffic pattern.

Complement Traffic

In a complement traffic pattern, a node with address Node (aβ−1, aβ−2 ... ... a1, a0) sends
messages to Node (aβ−1, aβ−2, ... ... a2, a1, a0). The complement is a particularly difficult
traffic pattern, since it requires all packets to cross the network bisection. Figure 4.24
shows the result of simulations under complement traffic pattern for the various network
models. As shown in Figure 4.24(a), for small-size networks, the average transfer time
of the HTN is lower than that of the H3D-mesh, TESH, and mesh networks, and the
maximum throughput of the HTN is higher than that of the H3D-mesh, TESH, and mesh
networks. As shown in Figure 4.24(b), for medium-size networks, the average transfer
time of the HTN is lower than that of the H3D-torus network with 1 link and 4 links, and
its maximum throughput is far higher than that of the H3D-torus network with 1 link
and 4 links. As shown in Figure 4.24(c), (d), and (e), for large-size networks with short,
medium, and long message, the average transfer time of the HTN is lower than that of
the H3D-mesh and mesh networks, and its maximum throughput is higher than that of
the H3D-mesh and mesh networks.



4.4 Dynamic Communication Performance using DOR 105

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

TESH H3DM

Mesh

HTN

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DT
1 Link

H3DT
4 Link

HTN

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DM
Mesh

HTN

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DM

Mesh

HTN

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DM

Mesh

HTN

(a) (b)

(c) (d)

(e)

Figure 4.23: Dynamic communication performance of dimension-order routing with bit-
reversal traffic pattern on various networks: (a) 256 nodes, 3 virtual channels, short
message, and q = 1 (b) 512 nodes, 3 virtual channels, short message, and q = 1, (c) 1024
nodes, 3 virtual channels, short message, and q = 1, (d) 1024 nodes, 3 virtual channels,
medium-length message, and q = 1, and (e) 1024 nodes, 3 virtual channels, long message,
and q = 1.



4.4 Dynamic Communication Performance using DOR 106

(e)

 0

 500

 1000

 1500

 2000

 2500

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

H3DM Mesh

HTN

(b)

 0

 50

 100

 150

 200

 250

 0  0.01  0.02  0.03  0.04  0.05

H3DT
1Link

H3DT
4Link

HTN

0

50

100

150

200

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

TESH

H3DM

Mesh

HTN

(a)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

(d)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040

H3DM
Mesh

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040

H3DM Mesh

HTN

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Figure 4.24: Dynamic communication performance of dimension-order routing with com-
plement traffic pattern on various networks: (a) 256 nodes, 3 virtual channels, short
message, and q = 1, (b) 512 nodes, 3 virtual channels, short message, and q = 1, (c) 1024
nodes, 3 virtual channels, short message, and q = 1 (d) 1024 nodes, 3 virtual channels,
medium-length message, and q = 1, and (e) 1024 nodes, 3 virtual channels, long message,
and q = 1



4.4 Dynamic Communication Performance using DOR 107

From Figure 4.24, it is seen that the average transfer time of the HTN is remark-
ably lower than that of the mesh, H3D-mesh, and H3D-torus networks. The maximum
throughput of the HTN is higher than that of those networks. Usually the average trans-
fer time of the HTN less than that of the H3D-mesh networks but this difference is not
impressive for other traffic patterns. However, in complement traffic, it is remarkably
lower than that of the H3D-mesh network. Therefore, HTN also achieves better dynamic
communication performance than that of the other hierarchical networks and conventional
mesh network under a complement traffic pattern.

Bit Flip Traffic

In a bit flip traffic pattern, a node with address Node (aβ−1, aβ−2 ... ... a1, a0) sends mes-
sages to node (a0, a1, ... ... aβ−2, aβ−1). Figure 4.25 depicts the result of simulations under
bit flip traffic pattern for the various network models. As shown in Figure 4.25(a), for
small-size networks, the average transfer time of the HTN is lower than that of the mesh
network with 1 and 2 virtual channels, H3D-mesh, TESH, and torus networks, and the
maximum throughput of the HTN is higher than that of the mesh, H3D-mesh, TESH, and
torus networks. As shown in Figures 4.23(b), (c), and (d) , for large-size networks with
short, medium, and long message, the average transfer time of the HTN is lower than that
of the mesh network with 1 and 2 virtual channels,H3D-mesh, and torus networks, and its
maximum throughput is higher than that of the mesh, H3D-mesh, and torus networks. In
bit-flip traffic pattern, the maximum throughput of the HTN is remarkably higher than
that of mesh, H3D-mesh, TESH, and torus networks.

From Figure 4.25, it is seen that the average transfer time of the HTN is remarkably
lower than that of the mesh, torus, and TESH network; it even is lower than the H3D-mesh
network but this difference is not impressive. The maximum throughput of the HTN is
higher than that of those networks. Therefore, HTN yields better dynamic communication
performance than that of the other hierarchical and conventional networks under a bit flip
traffic pattern. Under bit flip traffic pattern, the dynamic communication performance of
the HTN is even better than that of the torus network.

The comparison of dynamic communication performance, in Figures 4.18, 4.19, 4.20,
4.21, 4.22, 4.23, 4.24, and 4.25, reveals that the HTN outperforms the H3D-mesh, H3D-
torus, TESH, mesh, and torus networks because it yields low latency and high throughput,
which are indispensable for high performance massively parallel computers.



4.4 Dynamic Communication Performance using DOR 108

(a) (b)

(c) (d)

0

50

100

150

200

250

300

350

0 0.005 0.010 0.015 0.020 0.025 0.030

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Mesh
VC1

H3DM

Torus

HTN

Mesh
VC2

0

100

200

300

400

500

600

700

800

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

HTN

Mesh
VC1 Mesh

VC2

Torus

H3DM

0

500

1000

1500

2000

0 0.01 0.02 0.03 0.04 0.05

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Mesh
VC1

HTN

Torus

H3DM

Mesh
VC2

0

50

100

150

200

0 0.01 0.02 0.03 0.04 0.05 0.06

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Mesh
VC1

Mesh
VC2HTN

TESH
H3DM

Torus

Figure 4.25: Dynamic communication performance of dimension-order routing with bit-
flip traffic pattern on various networks: (a) 256 nodes, 2 virtual channels, short message,
and q = 1 and (b) 1024 nodes, 2 virtual channels, short message, and q = 1.

Maximum Throughput of the HTN

Figure 4.26 shows the message latency versus network throughput curve for the large-
sized HTN with several traffic patterns. At 137 cycles, the throughput of the HTN under
the various traffic patterns is shown by the arrowhead. It is shown that the throughput
delivered by the uniform and bit reversal traffic patterns is the maximum and minimum,
respectively. The throughput with hot-spot and 3D-reversal traffic patterns is closest to
that of the uniform pattern. Moreover, the maximum throughput with the 3D-reversal
traffic pattern is higher than that of the uniform pattern.

The maximum throughput of the HTN under different traffic patterns is presented in
Table 4.2. It is shown that, except with the bit reversal traffic pattern, the maximum
throughput under non-uniform traffic patterns is close to that of uniform traffic pattern.



4.4 Dynamic Communication Performance using DOR 109

Although the maximum throughput of the HTN under the bit reversal traffic pattern is
lower than that of other traffic patterns, it is still higher than that of the other network
models.

The wrap-around connections in the torus network of the BM and in the higher level
network make the HTN symmetric. This symmetry diminishes the uneven traffic distri-
bution in the network, which in turn improves the dynamic communication performance.

The maximum throughput of the HTN is higher than that of other hierarchical in-
terconnection networks and conventional mesh network; and under different non-uniform
traffic patterns it is closer to that of a uniform traffic pattern. Therefore, HTN is a good
interconnection network for the next generation of massively parallel computers.

 0

 50

 100

 150

 200

 250

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040  0.045  0.050

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Uniform
Hot Spot

Bit Rev
2D Rev
3D Rev

Figure 4.26: Dynamic communication performance of large-size HTN by dimension-order
routing under various traffic patterns: 3 virtual channels, short message.

Table 4.2: Maximum throughput of the HTN (Flits/Cycle/Node)

Network Bit 2D 3D Hot Uniform
Size Reversal Reversal Reversal Spot
Small-size 0.056944 0.058534 0.074053 0.078721 0.084491
Medium-size 0.049228 x x 0.052277 0.053364
Large-size 0.029518 0.039052 0.045408 0.037789 0.043173



4.4 Dynamic Communication Performance using DOR 110

4.4.5 Effect of Message Length

Figure 4.27 shows the effect of message length on HTN dynamic communication perfor-
mance. It shows the average message latency divided by message length as a function
of network throughput for the uniform traffic pattern. The average message latency is
smaller for longer messages; this is because wormhole switching is used for message switch-
ing and thus the messages are pipelined in nature. Path setup time is amortized among
more flits when messages are long. Moreover, data flits can advance faster than header
flits because headers have to make routing decisions. Hence, headers have to wait for
the routing control unit to compute the output channel, and possibly wait for the out-
put channel to become free. Therefore, when the header reaches the destination node,
data flits advance faster, thus favoring longer messages. Figure 4.27 illustrates that av-
erage transfer time decreases and maximum throughput increases in a Hierarchical Torus
Network (HTN) as message length increases.

HTN is a combination of 2D-torus and 3D-torus networks. The diameter and average
distance of the HTN are lower than those of the other conventional and hierarchical
interconnection networks. This is why message latency of the HTN is lower than that of
those networks. Due to wrap-around connections in the torus network, the message will
find an alternative path to pass through. Thus, more messages can be delivered in the
network.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.01  0.02  0.03  0.04  0.05

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s/

F
lit

)

Throughput (Flits/Cycle/Node)

Short

Medium

Long

Figure 4.27: Average message latency divided by message length vs. network throughput
of HTN: 1024 nodes, 2 VCs, and q = 1.



4.5 Adaptive Routing 111

4.4.6 Effect of the Number of Virtual Channels

Splitting each physical channel into several virtual channels increases the number of rout-
ing choices, allowing messages to pass blocked messages. On the other hand, flits from
several messages are multiplexed onto the same physical channel, slowing down both
messages. Therefore, it is better to use as much virtual channel as it yields optimum
performance. However, that optimal number depends on several parameters, including
network traffic.

A useful parallel computer must be both efficient and reliable. A key component
of reliability is freedom from deadlock. To reduce the router cost, eventually the total
hardware cost, deadlock-free routing algorithm for an arbitrary interconnection network
with a minimum number of virtual channels is preferred. However, there is a trade-
off between dynamic communication performance and the number of virtual channels.
One design alternative that can be considered is to implement dimension-ordered routing
with extra virtual channels instead of adaptive routing, since virtual channels provide
substantial performance improvement [5, 39] and are relatively inexpensive compared to
the logic involved in implementing adaptive routing. In [39], Dally showed that the
performance of dimension-order routing algorithm under uniform traffic load improves
significantly as virtual channels are initially added. The benefits of added virtual channels
then diminish as more channels are added.

In this section, we have investigated the effect of adding extra virtual channels on
the HTN for dimension-order routing. Figure 4.28 depicts the average transfer time as
a function of network throughput under various nonuniform traffic patterns for different
virtual channels. In Section 4.3.3, we have shown that the minimum number of virtual
channels for deadlock-free routing of HTN is 2. Adding 1 extra virtual channel, that is,
using 3 virtual channels, substantially improves the dynamic communication performance
of the HTN. We have also evaluated the dynamic communication performance of the HTN
using 4 virtual channels. Figure 4.28 shows that the maximum throughput of the HTN
using 3 virtual channels is far higher than that using 2 virtual channels and almost same
as that of 4 virtual channels for all traffic patterns. This striking difference of throughput
shows that we can significantly improve the dynamic communication performance of the
HTN by adding 1 extra virtual channel to the minimum number of virtual channels.

4.5 Adaptive Routing

A routing algorithm specifies how a message selects its path to cross from source to
destination in the network. An efficient routing is critical to the performance of an
interconnection network. In a practical router design, the routing decision process must
be as fast as possible to reduce network latency. Deterministic, dimension-order routing
has been popular in multicomputers because it has minimal hardware requirements and
allows the design of simple and fast routers [38]. Although there are numerous paths
between any source and destination, dimension-order routing defines a single path from
source to destination. Thus, dimension-order routing does not make effective use of the
network’s physical links. A lack of routing flexibility in deterministic routing algorithm
limits the network performance. If the selected channel is congested, the traffic between
that source and destination is delayed, despite the presence of uncongested alternative



4.5 Adaptive Routing 112

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040

VC2
VC3
VC4

 0

 50

 100

 150

 200

 250

 0  0.01  0.02  0.03  0.04  0.05

VC2
VC3
VC4

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 250

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

VC2
VC3
VC4

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035  0.040

VC2
VC3
VC4

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

VC2
VC3
VC4

(a) (b)

(c) (d)

(a)

Figure 4.28: Dynamic communication performance of dimension-order routing with dif-
ferent virtual channels and short message on the large-size HTN: (a) hot spot traffic, (b)
bit reversal traffic, (c) 2-dimension reversal, (d) 3-dimension reversal, and (e) complement
traffic patterns.



4.5 Adaptive Routing 113

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

(a) (b)

Figure 4.29: Routing messages in an 6x6 mesh from node (0, i) to node (i, 5) (for 0 ≤ i ≤
5); (a) Using dimension order routing, five messages must traverse the channel from (0, 4)
to (0, 5), (b) Using adaptive routing, all messages proceed simultaneously.

0 1 2 3 4 5

0

1

2

3

4

5

(a)

0 1 2 3 4 5

0

1

2

3

4

5

(b)

Figure 4.30: A 6 × 6 mesh with a faulty link from node (3, 2) to node (3, 3). (a) With
dimension order routing messages from dark nodes to the shaded area cannot be delivered.
(b) With adaptive routing, messages can be delivered between all pairs of nodes.



4.5 Adaptive Routing 114

paths.
Adaptive routing allows paths to be chosen dynamically [67, 69, 70]: routes are used

based on whether links are busy when a packet header arrives. If the desired link is busy,
another link leading towards the destination may be chosen. Thus, adaptive routing offers
the potential for making better use of network resources. A number of pairs of nodes may
transmit packets simultaneously without blocking. Adaptive routing improves both the
performance and fault tolerance of an interconnection network and, more importantly,
it has the ability to provide performance which is less sensitive to the communication
pattern [136].

Figure 4.29 shows a 6×6 mesh in which the node (0, i) sends a message to the node (i, 5)
for 0 ≤ i ≤ 5. With dimension order deterministic routing, as shown in Figure 4.29(a), five
of the six messages must traverse the channel from (0, 4) to (0, 5). Thus only one of these
five messages can proceed at a time. With adaptive routing, as shown in Figure 4.29(b),
all of the messages can proceed simultaneously using alternate paths. Figure 4.30 shows
the same network with a faulty channel from (3, 2) to (3, 3). With dimension-ordered
routing messages from node (3, i) to node (k, j) where 0 ≤ i ≤ 2 < j ≤ 5, 0 ≤ k ≤ 5,
cannot be delivered.

Although adaptive routing increases routing freedom, potentially improving perfor-
mance, it also increases the cost of preventing deadlock. This cost can reduce the net-
work clock speed, overwhelming the benefit of adaptive routing. The logic involved in
implementing adaptive routing is complex. This is why most existing multicomputers,
such as J-machine, Touchstone, Ametek 2010, and Cosmic cube, use deterministic routing
instead of adaptive routing. If the logic for implementing adaptive routing could be as
simple as for dimension-order routing, and the hardware cost exactly equal to that of
dimension-order routing, then adaptive routing would be a good choice for the routing
of messages in multicomputers, rather than the dimension-order routing. In this section,
we present a suite of low cost adaptive routing algorithm for effective use of the physical
links and virtual channels of the HTN while keeping the routing algorithm as simple as
for dimension-order routing.

4.5.1 Link-Selection (LS) Algorithm

In each dimension of the wrap-around connected interconnection networks, such as k-ary
n-cube network, some links are used for inter-node connection and another link is used for
wrap-around connection of end to end nodes; the message will find an extra path to pass
through. Dimension-order routing does not make effective use of these links. However,
effective use of these links significantly improves dynamic communication performance.
A Link-selection (LS) algorithm provides an efficient use of these physical links. HTN is
a combination of 2D-torus and 3D-torus networks. Thus, the LS algorithm can be also
used in the BM and higher-level networks of the HTN.

Figure 4.31 shows an example of routing a message in a ring network using the LS
algorithm. As shown in Figure 4.31, the number of hops from source to destination in
the clockwise direction and in the counter-clockwise direction is 2. Then, the message
can follow either path-a (clockwise) or path-b (counter-clockwise), as shown in Figure
4.31. Therefore, if the distance from source to destination is equal in both the clockwise
and counter-clockwise directions, then the packet can follow either of these two directions.



4.5 Adaptive Routing 115

This is the principal idea of the LS algorithm. A 2D-torus consists of x – y rings. Similarly,
a 3D-torus consists of x – y – z rings. Thus, LS algorithm is applicable in each direction
of the HTN.

Source Destination

PE2PE0 PE3PE1

Path-b

Path-a

Figure 4.31: Selection of physical link by link-selection algorithm

If the following equation is satisfied, a packet can select from either a clockwise or
counter-clockwise direction.

|s − d| =

{

m
2

if L = 1, i.e., BM
n
2

if L ≥ 2
(4.8)

Here s and d denotes the source and destination node addresses, respectively. m and n
are the size of the BM and higher level networks.

The deterministic routing algorithm also uses the wraparound links. If the source-to-
destination distance using wraparound channels is less than that of not using wraparound
links, then message will follow the wraparound links in dimension order routing. In our
previous approach, described in Section 4.3, if the distance from source to destination is
equal in both the clockwise and counter-clockwise directions, then the message will follow
only the clockwise direction. In this current approach, however, the message can move in
direction; first, it will attempt the clockwise direction and then, if the clockwise channel
is busy, it will follow the counter-clockwise direction.

Routing in the HTN is strictly defined by the source node address and the destination
node address as dimension order routing. Let a source node address be sα, sα−1, sα−2, ..., s1,
s0, a destination node address be dα, dα−1, dα−2, ..., d1, d0, and a routing tag be tα, tα−1,
tα−2, ..., t1, t0, where ti = di − si. The source node address of HTN is expressed as
s = (s2L, s2L−1), (s2L−2, s2L−3), ..., (s2, s1, s0). Similarly, the destination node address is
expressed as d = (d2L, d2L−1), (d2L−2, d2L−3), ..., (d2, d1, d0). The proposed LS algorithm
enforces some routing restrictions as dimension-order routing to make the routing algo-
rithm simple and avoid deadlocks. Routing order is strictly followed to route packets.
The routing algorithm that applies this link-selection principle is denoted as (R2). Figure
4.32 shows the routing algorithm (R2) for the HTN .

The proposed LS algorithm can only improve the performance of the network when
the number of nodes in each direction is even. According to the architecture of the HTN,
the preferable number of nodes in each direction is even. Again in the HTN, a BM
with m = 4 and the higher levels with n = 4 is perhaps the most interesting network
size because it has better granularity than the larger sizes. Therefore, the proposed LS
algorithm is suitable for HTN.



4.5 Adaptive Routing 116

������� ��	
��
��
������ ��
� �

������������������ ���������
���������� ��
� �

����� �������������������������� �������������������������  !" � #

�� 
 $%!& ��
 
�' (& �� �' !)
*)+���� �����
�� !	���,� ��
���
�� 
 $%!& ��
 �' !-� ��
 �����
�� .!	���,�� �����
�� !/���,� ��
���
�� 
 $%!& ��
 
�' 0& �� �' ! 
*)+���� �����
�� !/���,� ��
���
�� 
 $%!& ��
 �' !)-� ��
 �����
�� .!/���,�� �����
�� !	���,� ��
���
�� 
 1%!+��
 
�' (& �� �' !)
*)+���� �����
�� !2���� ��
���
�� 
 1%!+��
 �' ! -� ��
 �����
�� .!2����� �����
�� !3���� ��
���
�� 
 1%!+��
 
�' 0& �� �' ! 
*)+���� �����
�� !3���� ��
���
�� 
 1%!+��
 �' !)-� ��
 �����
�� .!3����� �����
�� !2���� ��
���
4,�5� 
�' .!&� 
�

67 !89�:;�7
����<������
���
6= !89�:;�=
����<������
���
6> !89�:;�>
����<������
���
?@�������
67�6=�6>�
�� 
�����
�� !	���, �� 2�����A�B� C��D�� �� ��E� ?@� ��
���
�� 
�����
�� !/���, �� 3����� A�B� C��D�� �� C��B���� ?@� ��
���
�� 
�' (&�� �' !�' )+� ��
���
�� 
�' 0&�� �' !�' F+� ��
���

��
4,�5��
��
����
?@�������
�7��=��>�

��

?@������� 
����������
?@��� �������� !�����B��� ��
� �

���� 
G��G��G�� )
���������� 
���������
���  !% � &
�� 
�' (& ��
 �' HI� � �� 
�' 0& ��
 �' !)
J)+��� A�B�
�� !C�����B�� ��
���
�� 
�' !I� ��
 A�B�
�� .!C�����B��� A�B�
�� !������B�� ��
���
�� 
�' (& ��
 �' ! 
J)+�� �� 
�' 0& ��
 �' K)I� �� A�B�
�� !������B�� ��
���
�� 
�' !)I� ��
 A�B�
�� .!������B��� A�B�
�� !C�����B�� ��
���
�� 
A�B�
�� !C�����B� ��
 �' (&�� 
������� !�'� ��
���
�� 
A�B�
�� !C�����B� ��
 �' 0&�� 
������� !JF�'� ��
���
�� 
A�B�
�� !������B� ��
 �' 0&�� 
������� !�'� ��
���
�� 
A�B�
�� !������B� ��
 �' (&�� 
������� !)JF�'� ��
���

��
���
4,�5�
�� .!& �� 
�������� .!&� 
�
�� 
A�B�
�� !C�����B���A�B� C��D�� �� FL ��
�� 
�������� !
�������� )+� ��
���
�� 
A�B�
�� !������B���A�B� C��D�� �� )L ��
�� 
�������� !
��������F+� ��
���

��
4,�5��
4,�5�
�� .!& �� 
�������� .!&� 
�
�� 
A�B�
�� !C�����B���A�B� C��D�� �� FM ��
�� 
�������� !
�������� )+� ��
���
�� 
A�B�
�� !������B���A�B� C��D�� �� )M ��
�� 
�������� !
��������F+� ��
���

��
4,�5��
4,�5�
�� .!& �� 
�������� .!&� 
�
�� 
A�B�
�� !C�����B���A�B� C��D�� �� FN ��
�� 
�������� !
�������� )+� ��
���
�� 
A�B�
�� !������B���A�B� C��D�� �� )N ��
�� 
�������� !
��������F+� ��
���

��
4,�5��
��


Figure 4.32: Link-selection algorithm for HTN



4.5 Adaptive Routing 117

4.5.2 Channel-Selection (CS) Algorithm

A deadlock-free routing algorithm for a k-ary n-cube network using dimension order
routing can be obtained by using two virtual channels. The first channel is used for
routing inter-node routing and the message is switched to second channel if the wrap-
around link is going to be used. Only one channel is used at a time and other remains
idle in dimension order routing. Efficient use of these virtual channels improves dynamic
communication performance. A Channel-Selection (CS) algorithm provides an efficient
use of these virtual channels. HTN is a combination of 2D-torus and 3D-torus networks.
Thus, the CS algorithm can be used in the BM and higher-level networks of the HTN.

If the first virtual channel is congested and the second virtual channel is not used in
routing, then the message is switched over to the second channel, or the second channel
is selected initially. This is the main idea of the channel-selection algorithms. Figure 4.33
portrays a 4-PE ring network with allocation of virtual channel number. Two virtual
channels are numbered as V C0 and V C1. When the wrap-around channels are not used
in routing, such as routing a message from PE0 to PE2, only V C0 is used. In this case,
because V C1 is not used in dimension order routing, it is possible to move from V C0 to
V C1 or use V C1 initially. That is, if path-a is congested, then the message can initially
follow either path-b or switched over to path-c, as shown in Figure 4.33. Similar scenario
will happen for routing message from PE2 to PE0. Virtual channels are efficiently used
by this phenomenon.

Source Destination

PE0 PE1 PE2 PE3

Path-b

Path-a

Path-c
VC0 VC1

Figure 4.33: Selection of virtual channels by channel-selection algorithm

The proposed CS algorithm breaks the restriction of using virtual channels in dimen-
sion order routing and provides an efficient use of them. However, the routing order
is strictly followed to route messages. The routing algorithm that applies this channel-
selection principle is denoted as R3.

4.5.3 Combination of LS and CS (LS+CS) Algorithm

The link-selection algorithm is used to select a physical link in a network and the channel-
selection algorithm is used to select a virtual channel in a physical link. Therefore, both
the link-selection algorithm and channel-selection algorithm can be applied at the same



4.5 Adaptive Routing 118

time. The routing algorithm that applies both the link-selection and channel-selection
principles is denoted as R.

4.5.4 Deadlock-Free Routing

The most expensive part of an interconnection network is the wire that creates the physical
links; for a particular topology, the physical link cost is constant. Efficient use of this
physical link significantly improves dynamic communication performance. The second
most expensive elements are the buffers and switches. Since we have considered wormhole-
routed HTN, the main factor in buffer expense is the number of virtual channels. Virtual
channels [39] reduce the effect of blocking; they are used widely in parallel computer
systems, to improve dynamic communication performance by relieving contention in the
multicomputer network and to design deadlock-free routing algorithms [38, 68]. Since the
hardware costs increase as the number of virtual channels increases, the unconstrained
use of virtual channels is not cost-effective in parallel computers. Again, efficient use of
this virtual channel also improves dynamic communication performance.

In Section 4.4.6, We have shown that using three virtual channels in the HTN with
dimension-order routing yields better dynamic communication performance than other
approaches. In this section, we have also considered three virtual channels to make the
LS and CS algorithms deadlock free. We have also considered 3 virtual channels to
compare the dynamic communication performance of the HTN: the LS and CS algorithms
in addition to the dimension order routing algorithm.

In Section 4.3, we have presented dimension-order routing. To prove that the dynamic
routing algorithm is deadlock-free, we can use 3 virtual channels. In this section, we
recall the dynamic routing algorithm and the proof of a deadlock-free routing for HTN
using dimension-order routing and 3 virtual channels and present a proof for deadlock-
free routing that applies the link-selection and channel-selection principles using 3 virtual
channels. By using Lemma 4.1 and Corollary 4.1, we will prove that the proposed LS and
CS algorithm for the HTN is deadlock-free using 3 virtual channels.

Theorem 4.4 The routing algorithm (R1) for the Hierarchical Torus Network (HTN)
with 3 virtual channels is deadlock-free.

Proof: Both the BM and the higher-levels of the HTN have a toroidal interconnection.
In phase-1 and phase-3 routing, packets are routed in the source-BM and destination-BM,
respectively. The BM of the HTN is a 3D-torus network. According to Lemma 4.1, the
number of necessary virtual channels for phase-1 and phase-3 is 2. Intra-BM links between
inter-BM links on the xy-plane of the BM are used in sub-phases 2.i.1 and 2.i.3. These
sub-phases utilize channels over intra-BM links, sharing either the channels of phase-1
or phase-3. PEs at the contours of the xy-plane are assigned to each high level as gate
nodes. The exterior links of the BM are used in sub-phase 2.i.2 and sub-phase 2.i.4, and
these links form a 2D-torus network, which is the higher-level interconnection of the HTN.
According to Corollary 4.1, the number of necessary virtual channels for this 2D-torus
network is also 2. The mesh connection of the higher-level 2D-torus network shares the
virtual channel of either sub-phase 2.i.1 or sub-phase 2.i.3. The wrap-around connection
of the higher-level 2D-torus networks requires 1 more virtual channel.



4.5 Adaptive Routing 119

Therefore, the total number of necessary virtual channels for the whole network is 3.
As mentioned earlier, the routing of a message using the LS algorithm strictly follows

the selection order. LS algorithms diversify the use of physical links in each direction of
the network. Now, using theorem 4.4 and the following lemma, we will prove that the
proposed LS algorithm (R2) for the HTN is deadlock-free using 3 virtual channels.

Lemma 4.2 In a k-ary n-cube network, if two virtual channels are used according to
condition 1 or condition 2, and the links are used according to condition 3, then the
network is deadlock free .

Condition 1: Initially use virtual channel 0.
Condition 2: When the packet is going to use wrap-around links, use virtual channel
1.
Condition 3: Packets can move either in the clockwise direction or the counter-
clockwise direction if Eq. 4.8 is satisfied. Otherwise, move to a link nearer to the
destination.

Proof: The physical links and the virtual channels are allocated in the BM according
to Lemma 4.1 and in the higher-level network according to Corollary 4.1. We are applying
the LS algorithm in each direction of the network. Each direction of the network is a ring
network. According to Lemma 4.1 and Corollary 4.1, no cyclic dependencies will occur
in the BM and in the higher-level network, respectively. And according to Theorem 4.4,
the whole network is deadlock free.

Theorem 4.5 Suppose routing algorithm R1 of the HTN is deadlock free. The routing
algorithm R2 which applies the LS algorithm is also deadlock free.

Proof: If Eq. 4.8 (i.e., the condition for using LS algorithm) is not satisfied, then the
routing of the message is carried out using routing algorithm R1. According to Theorem
4.4, routing algorithm R1 for the HTN is deadlock free. If the LS algorithm is used to
route the message, then according to Lemma 4.2, the LS algorithm is also deadlock free.
Therefore, the proposed LS algorithm R2 is deadlock free.

As mentioned earlier, the CS algorithm effectively uses the virtual channels of a
wrap-around connected interconnection networks. Now, using Theorem 4.4 and following
lemma, we will prove that the proposed CS algorithm (R3) for the HTN is deadlock-free
using 3 virtual channels.

Lemma 4.3 In a k-ary n-cube network, if two virtual channels are used according to
condition 1 or condition 2, and the links are used according to condition 3, then the
network is deadlock free .

Condition 1: Initially use virtual channel 0.
Condition 2: When the packet is going to use wrap-around links, use virtual channel
1.
Condition 3: If the wrap-around links are not used in routing and packet is in virtual
channel 0, then the packet can select virtual channel 1.

Proof: The channels are allocated according to Theorem 4.4. It is proven that channel
circulation will not occur during message flow. Thus, the network is deadlock-free.



4.6 Router Cost and Speed 120

Theorem 4.6 Suppose routing algorithm R1 of the HTN is deadlock free. The routing
algorithm R3 which applies the CS algorithm, is also deadlock free.

Proof: Each direction of the HTN is a ring network. Routing algorithm R1 is deadlock-
free with 3 virtual channels. According to the Lemma 4.3, the routing algorithm R3 for
the HTN is also deadlock-free with 3 virtual channels.

Theorem 4.7 The routing algorithm R for the HTN is deadlock free with 3 virtual chan-
nels.

Proof: According to Theorem 4.5, the routing algorithm R2 for the HTN which applies the
LS algorithm, is deadlock-free with 3 virtual channels. Similarly according to Theorem
4.6, the routing algorithm R3 for the HTN which applies the CS algorithm, is deadlock
free with 3 virtual channels. Therefore, the routing algorithm R for the HTN which
applies both the CS and LS algorithms, is deadlock free with 3 virtual channels.

4.6 Router Cost and Speed

A wormhole router must perform several basic functions: switching, routing, flow control,
multiplexing physical channels, inter-chip signaling, and clock recovery. A wormhole
router architecture for HTN is shown in Figure 4.34. Data moves from left to right
through the router and the complementary flow control signals move along parallel paths
in the opposite direction. The essential components are the crossbar switch (CB), flow
control unit (FC), address decoder (AD), routing decision unit (RD), and virtual channel
controllers (VC).

Packets arriving at the router inputs are fed into the address decoders, which generate
a set of requests for possible outputs. The RD combines the request from all the inputs and
the router status, and matches inputs to appropriate outputs. The CB switch connects
the router input to output. Our router architecture can connect all inputs to outputs in
a single cycle. Once an appropriate output has been selected, the switch connection
is maintained for the entire packet. Following the last flit, the switch connection is
broken and the output freed for subsequent communications. The FC performs flow
control between routers and buffers a message in place, if necessary. In this section,
we characterize the hardware cost of our proposed router circuit in gates and its speed
as latency. To evaluate the hardware cost and delay of our proposed router circuit, we
employed the A.A. Chien model [139].

4.6.1 Router Gate Counts

Gate counts for router modules are shown in Table 4.3 according to the Chien Model
[120, 139, 140]. Here P is the number of inputs or outputs for the CB switch. F is the
routing freedom, the number of output choices an input can have, and is typically the same
as P . V is the number of virtual channels that a virtual channel controller multiplexes
onto the physical channel.

The total number of gates in the proposed routing network is evaluated based on
the module gate count formulas in Table 4.3 and the number of modules required. In



4.6 Router Cost and Speed 121

RD

X
F
C

IFC

AD

X
F
C

IFC

AD
VC

C
B

S
W
I
T
C
H

x+ x+

X
F
C

IFC

AD
VC

X
F
C

IFC

AD
VC

X
F
C

IFC

AD
VC

X
F
C

IFC

AD
VC

X
F
C

IFC

AD
VC

X
F
C

IFC

AD
VC

x- x-

y+ y+

y- y-

z+ z+

z- z-

HL+ HL+

HL- HL-

X
F
C

IFC

AD
VC

From PE To PE

VC
A
R
B
I
T
E
R

Flit Buffer

Figure 4.34: A block diagram of router architecture

our router architecture P = 9, F = 9, and V = 3. We need nine internal flow control
units (IFC), nine address decoders, one crossbar switch, one routing decision unit, and
eight virtual channel controllers. Gate counts of the proposed router architecture are
shown in Table 4.4. All gate counts assumes routers with 16-bit datapaths and channels.
This estimates are conservative as they do not include gates required for input/output
buffering, pads, and clock synchronization.

The proposed LS and CS algorithms adapt the routing of messages within one direction
only. In the whole network, the routing order is restricted as dimension order routing. This
is why the hardware cost of the DOR, CS, LS, and LS+CS algorithms are almost equal.
The CS algorithm allows packets a 2-way branch and the selection function is simple, so
it requires little additional hardware. Like CS algorithm, the LS algorithm allows packet
only 2-way branch and the selection function is also simple, thus, the hardware overhead
is small. There is a similar scenario for LS+CS algorithm. According to this conservative
study, the hardware cost of the proposed adaptive routing is almost equal to the dimension
order routing.



4.6 Router Cost and Speed 122

Table 4.3: Gate counts for router modules

Module Parameter Gate Count Complexity

Crossbar Switch P 29 × P 2 O(P 2)
XFC n.a. 530 O(1)
IFC n.a. 320 O(1)
Address Decoder n.a. 100 O(1)
Routing Decision F 17 × F 2 O(F 2)
VC Controller V 126 × V O(V )

Table 4.4: Gate counts for HTN routers

Block # of gates # of the blocks Total # of gates
in the router in this block type

FC 320 9 2880
AD 100 9 900
RD 1377 1 1377
CB 2349 1 2349
VC 378 8 3024

Total 10530

4.6.2 Router Speed

Routing network performance has two important attributes: routing latency and band-
width. A router contributes to these times through its routing setup latency and its flow
control latency, respectively. The per-node routing latency consists of two parts: the
inter-router delay and the internal router latency. We focus on the internal router la-
tency, the time needed to create a connection through the router. It can be decomposed
as follows: (1) decode address and generate correct request (TAD), (2) routing decision
(TRD), (3) updated header selection (TSEL), (4) drive data through the crossbar (TCB),
and (5) virtual channel controller delay (TV C). The speed of each of these operations
directly affects the router latency. A router’s channel bandwidth depends on the size of
the flow control unit (flit) and the time to do a flow control operation. The internal flow
control latency limits the flit rate on network channels in multicomputer routers. Flits
are unit of resource multiplexing, so flow control latency determines the network’s ability
to share internal connections and external channels amongst different packets. Flow con-
trol latency can be decomposed into the following contributions: (1) FC delay (TFC) (2)
forward CB switch delay for data (TCB), and (3) virtual channel controller delay (TV C).

Formulas for the module delays are shown in Table 4.5 according to the A.A. Chien
Model [120, 139, 140]. Here also, P is the number of inputs or outputs for the CB switch,
F is the routing freedom, and V is the number of virtual channels. The timing estimates
in Table 4.5 are based on nominal estimates of wiring capacitance, nominal processing,
and nominal operating temperature. Using complete designs for each module, combined
with gate-level timing estimates, gives the number in Table 4.6 for constants (cj) used in



4.6 Router Cost and Speed 123

the expressions of module delay. The numerical values presented in Table 4.6 are based
on a 0.8 micron CMOS gate array process2. Using the values of (cj) in Table 4.6 and the
parameters of our router architecture (P = 9, F = 9, and V = 3), we tabulate the delay
for each module in Table 4.7.

Table 4.5: Delays for the router module

Module Delay

Crossbar c0 + c1 × log P
Flow Control Unit c2

Address Decoder c3

Routing Decision c4 + c5 × log F
Header Selection c6 + c7 × log F
VC Controllers c8 + c9 × log V

Table 4.6: Module delay constants for a 0.8 micron CMOS process.

Constant Value (nanoseconds)

c0 0.4
c1 0.6
c2 2.2
c3 2.7
c4 0.6
c5 0.6
c6 1.4
c7 0.6
c8 1.24
c9 0.6

The setup delay in a dimension-order router involves decoding the address, a trivial
routing decision as to whether to continue in the current dimension or proceed to the next,
connecting the crossbar, sending data through the crossbar, and multiplexing physical
links into virtual channels. The equation for setup delay can be written as Eq. 4.9,
which, for the 0.8 micron CMOS gate array, gives a setup delay of 9.69ns. Performing the
flow control operation in a dimension-order router requires delay through the crossbar,
flow controller, and virtual channel controller. The flow control delay can be written as
shown in Eq. 4.10, which yields 6.69ns.

TDOR = TAD + TRD + TCB + TV C (4.9)

= 2.70 + 2.50 + 2.30 + 2.19

2Numerical figure presented are based on Mitsubishi Electronics M60007x and M6008x series 0.8
micron gate array family.



4.6 Router Cost and Speed 124

Table 4.7: Module delay for a 0.8 micron CMOS process

Module Delay (nanoseconds)

TCB (0.4 + 0.6 × log2 9) = 2.30
TFC 2.20
TAD 2.70
TRD (0.6 + 0.6 × log2 9) = 2.50
TSEL (1.40 + 0.60 × log2 9) = 3.30
TV C (1.24 + 0.6 × log2 3) = 2.19

= 9.69 ns

Tfc−DOR = TCB + TFC + TV C (4.10)

= 2.30 + 2.20 + 2.19

= 6.69 ns

T∗S = TAD + TRD + TSEL + TCB + TV C (4.11)

= 2.70 + 2.50 + 3.30 + 2.30 + 2.19

= 12.99 ns

Tfc−∗S = TCB + TFC + TV C

= 2.30 + 2.20 + 2.19 (4.12)

= 6.69 ns

As mentioned earlier, the CS, LS, and LS+CS algorithms adapt the routing of messages
in one direction at a time. And in the whole network, the routing order is like dimension
order routing. The critical path setup in the CS, LS, and LS+CS algorithms is similar to
that of the dimension order routing, with one exception. Adaptive routers make routing
decisions based on router state. As the routing decision unit uses both the incoming
packet and the current router state to make an output assignment, the header selection is
required to select the appropriate output channel. The setup delay of CS, LS, and LS+CS
algorithms consists of address decoding, routing decision, header selection, crossbar delay,
and virtual channel controller delay. The router setup delay for the CS, LS, and LS+CS
algorithms is calculated Eq. 4.12, which, for the 0.8 micron CMOS gate array, gives
12.99ns. The flow control paths in the CS, LS, and LS+CS algorithms are similar to that
of the dimension order router. Thus, the flow control delay is shown by Eq. 4.13, which
gives a flow control delay of 6.69ns.

In this section, we have presented a conservative estimate of hardware cost and setup
and flow control delay of our proposed router to show the simplicity of the proposed
adaptive routing algorithms. Many well known adaptive wormhole routing approaches
are available in the literature. However, they are significantly more complex, and require
significant hardware and additional latency beyond that needed for a dimension-order
router. This is why we keep our routing algorithms (CS, LS, and LS+CS) very close to
the DOR.



4.7 Dynamic Communication Performance using Adaptive Routing 125

4.7 Dynamic Communication Performance using Adap-

tive Routing

Simulation Environment

We have developed a wormhole routing simulator to evaluate dynamic communication
performance. In our simulation, we use dimension-order routing (DOR), link-selection
(LS), channel-selection (CS), and a combination of link-selection and channel-selection
(LS+CS) algorithms. The dimension-order routing algorithm, which is exceedingly sim-
ple, provides the only route for the source-destination pair. The routing restriction of the
LS, CS, and LS+CS algorithms is similar to the dimension-order routing, and it provides
efficient use of the network’s physical links. Extensive simulations for the HTN have been
carried out for five different traffic patterns: uniform [129], hot spot [130], bit-reversal
[131], bit-flip [133], and perfect shuffle [134]. These traffic patterns are described in Sec-
tion 4.15. Three virtual channels per physical channel are simulated, and the virtual
channels are arbitrated by a round-robin algorithm. For all of the simulation results, the
packet size is 16 and 256 flits; 2 flits are used as header flits. In the evaluation of dynamic
communication performance, flocks of messages are sent in the network to compete for
the output channels. For each simulation run, we have considered that the message gen-
eration rate is constant and the same for all nodes. Flits are transmitted at 20, 000 cycles.
In each clock cycle, one flit is transferred from the input buffer to the output buffer, or
from output to input if the corresponding buffer in the next node is empty. Therefore,
transferring data between two nodes takes 2 clock cycles.

Dynamic Communication Performance Evaluation

In a uniform traffic pattern, message destinations are chosen randomly with equal prob-
ability between the nodes in the networks. Figure 4.35 depicts the result of simulations
under uniform traffic for the HTN using the DOR, LS, CS, and LS+CS algorithms.
The figure shows the average transfer time as a function of network throughput. Each
curve stands for a particular algorithm. From Figure 4.35, it is seen that the maximum
throughput of HTN using LS, CS, and LS+CS algorithms are higher than when the DOR
algorithm is used. Also the maximum throughput of HTN using the LS+CS algorithm is
higher than when the LS and CS algorithms are individually used. The average transfer
time of HTN using the LS+CS algorithm is lower than when the DOR, LS, and CS al-
gorithms are used, but the difference among them is trivial. Therefore, with the uniform
traffic pattern, the LS, CS, and LS+CS algorithms achieve better dynamic communica-
tion performance than the dimension order routing algorithm. And the LS+CS algorithm
yields better dynamic communication performance than individual use of the LS and CS
algorithms.

For generating hot spot traffic, we used a model proposed by Pfister and Norton
[130]. According to this model, each node first generates a random number. If that
number is less than a predefined threshold, the message will be sent to the hot spot node.
Otherwise, the message will be sent to other nodes with a uniform distribution. Here, in
uniform distribution, the source and the destination are randomly selected. The hot-spot
percentage is assumed to be 5%. In the HTN, the centered 4 nodes that connect the



4.7 Dynamic Communication Performance using Adaptive Routing 126

sub-network module are considered as hot spot nodes.
Figure 4.36 shows the message latency versus network throughput curve for hot spot

traffic. From Figure 4.36, it is also seen that the maximum throughput of HTN using the
LS, CS, and LS+CS algorithms is higher than when the DOR algorithm is used. Also
the maximum throughput of HTN using the LS+CS algorithm is higher than when the
LS and CS algorithms are individually used. The average transfer time of HTN using
the LS+CS algorithm is lower than when the DOR, LS, and CS algorithms are used, but
the difference among them is trivial. Therefore, with the hot-spot traffic pattern, the LS,
CS, and LS+CS algorithms achieve better dynamic communication performance than the
dimension order routing algorithm. And the LS+CS algorithm achieves better dynamic
communication performance than either LS or CS algorithm.

In the bit-reversal traffic pattern, a node with address Node (aβ−1, aβ−2 ... a1, a0) sends
messages to Node (a0, a1, ... aβ−2, aβ−1). Figure 4.37 depicts the result of simulations
under bit-reversal traffic for the HTN. From Figure 4.37, it is seen that the maximum
throughput of HTN using the LS, CS, and LS+CS algorithms are higher than when
the DOR algorithm is used. Also the maximum throughput of HTN using the LS+CS
algorithm is higher than when the LS and CS algorithms are individually used. The
average transfer time of HTN using the LS+CS algorithm is lower than when the DOR,
LS, and CS algorithms are used, but the difference among them is trivial. Therefore,
with the bit-reversal traffic pattern, the LS, CS, and LS+CS algorithms achieve better
dynamic communication performance than the dimension order routing algorithm. And
the LS+CS algorithm yields better dynamic communication performance than the LS and
CS algorithms used individually.

Figure 4.38 shows the message latency versus network throughput curve for bit-flip
traffic. From Figure 4.38, it is seen that maximum throughput of HTN using the LS,
CS, and LS+CS algorithms is higher than when the DOR algorithm is used. Also, the
maximum throughput of HTN using the LS+CS algorithm is higher than when the LS and
CS algorithms are individually used. The average transfer time of HTN using the LS+CS
algorithm is lower than when the DOR, LS, and CS algorithms are used. Therefore, with
the bit-flip traffic pattern, the LS, CS, and LS+CS algorithms achieve better dynamic
communication performance than the dimension order routing algorithm. And the LS+CS
algorithm yields better dynamic communication performance than the individual use of
the LS and CS algorithms.

Figure 4.39 shows the message latency versus network throughput curve for perfect
shuffle traffic. From Figure 4.39, it is seen that maximum throughput of HTN using the
LS, CS, and LS+CS algorithms is higher than when the DOR algorithm is used. Also,
the maximum throughput of HTN using the LS+CS algorithm is higher than when the
LS and CS algorithms are individually used. The average transfer time of HTN using
the LS+CS algorithm is lower than when the DOR, LS, and CS algorithms are used.
Therefore, with the perfect shuffle traffic pattern, the LS, CS, and LS+CS algorithms
achieve better dynamic communication performance than the dimension order routing
algorithm. And the LS+CS algorithm yields better dynamic communication performance
than the individual use of the LS and CS algorithms.

From these results, as shown in Figures 4.35, 4.36, 4.37, 4.38, and 4.39, it is clear that
the selection algorithms (LS, CS, and LS+CS) outperform the dimension order routing
algorithm, especially in terms of network throughput. Using the LS+CS algorithm on



4.7 Dynamic Communication Performance using Adaptive Routing 127

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

DOR

LS
CS

LS+CS

(a) Short message

 0

 500

 1000

 1500

 2000

 0  0.01  0.02  0.03  0.04  0.05  0.06

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

DOR
CS
LS

LS+CS

(b) Long message

Figure 4.35: Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with uniform traffic pattern: 1024 nodes, 3 virtual
channels, and q = 1.



4.7 Dynamic Communication Performance using Adaptive Routing 128

 0

 50

 100

 150

 200

 250

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

DOR
CS
LS

LS+CS

Figure 4.36: Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with 5% hot-spot traffic pattern: 1024 nodes, 3
virtual channels, short message, and q = 1.

 0

 50

 100

 150

 200

 250

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

DOR
CS
LS

LS+CS

Figure 4.37: Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with bit-reversal traffic pattern: 1024 nodes, 3
virtual channels, 16 flits, and q = 1.



4.7 Dynamic Communication Performance using Adaptive Routing 129

 0

 50

 100

 150

 200

 250

 300

 0  0.005  0.010  0.015  0.020  0.025  0.030  0.035

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

DOR
CS
LS

LS+CS

Figure 4.38: Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with bit-flip traffic pattern: 1024 nodes, 3 virtual
channels, short message, and q = 1.

 0

 50

 100

 150

 200

 250

 0  0.01  0.02  0.03  0.04  0.05

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

DOR
CS
LS

LS+CS

Figure 4.39: Comparison of dynamic communication performance of the HTN between
DOR, LS, CS, and LS+CS algorithms with perfect shuffle traffic pattern: 1024 nodes, 3
virtual channels, short message, and q = 1.



4.7 Dynamic Communication Performance using Adaptive Routing 130

HTN achieves better network throughput than the individual use of either the LS or the
CS algorithms.

Performance Improvement

The maximum throughput and the average transfer time to achieve this maximum through-
put of the HTN under different traffic patterns using DOR, LS, CS, and LS+CS algorithms
is presented in Figure 4.40 and their corresponding numerical values are plotted in Table
4.8. The enhancement of maximum throughput and reduction of message latency are
shown in percentage. It is shown that, in all traffic patterns the maximum throughput
is increased. Also the average transfer time to achieve the maximum throughput is re-
duced. Therefore, LS+CS algorithm significantly improves the dynamic communication
performance of the HTN over the dimension-order routing algorithm is used.

0

50

100

150

200

250

300

350

D
O

R

L
S+

C
S

Uniform

M
es

sa
ge

 L
te

nc
y 

(C
yc

le
)

Hot-Spot Bit-Rev Bit-Flip Perf. Sh.

D
O

R

L
S+

C
S

D
O

R

L
S+

C
S

D
O

R

L
S+

C
S

D
O

R

L
S+

C
S

6.29%

10.42%

8.70%
7.31%

1.33%

(b)

D
O

R

12.60%

Uniform
0

0.01

0.02

0.03

0.04

0.05

0.06

M
ax

im
um

 T
hr

ou
gh

pu
t 

(F
lit

s/
C

yc
le

/N
od

e)

D
O

R

L
S+

C
S

Hot-Spot

7.75%

D
O

R

L
S+

C
S

Bit-Rev

11.18%

D
O

R

L
S+

C
S

Bit-Flip

9.12%

D
O

R

L
S+

C
S

Perf. Sh.

16.22%

L
S+

C
S

(a)

Figure 4.40: Dynamic communication performance improvement by LS+CS algorithm
over DOR algorithm (a) Maximum throughput enhancement and (b) Message latency
reduction.

Table 4.8: Performance Improvement using selection algorithm over dimension-order rout-
ing

Traffic Maximum Message Throughput Latency
Patterns Throughput Latency Enhancement Reduction

DOR LS+CS DOR LS+CS % %
Uniform 0.04317 0.04861 216.01 203.23 12.60 6.29
Hot-Spot 0.03833 0.04130 251.11 227.41 7.75 10.42

Bit-Reversal 0.02951 0.03281 287.09 264.11 11.18 8.70
Bit-Flip 0.03005 0.03279 280.49 261.38 9.12 7.31

Perfect Shuffle 0.03958 0.04600 246.42 243.19 16.22 1.33



4.8 Conclusions 131

4.8 Conclusions

In this chapter we have proposed a deadlock free routing algorithm using dimension order
routing with a minimum number of virtual channels for the HTN. It has been proven
that 2 virtual channels per physical channel are sufficient for the deadlock free routing
algorithm of the HTN; 2 is also the minimum number of virtual channels for dimension
order routing. By using dimension order routing and various traffic patterns, we have
evaluated the dynamic communication performance of the HTN as well as that of several
other commonly used networks and hierarchical interconnection networks. The average
transfer time of HTN is lower than that of the H3D-mesh, H3D-torus, TESH, mesh,
and torus networks. Maximum throughput of the HTN is also higher than that of those
networks. A comparison of dynamic communication performance reveals that the HTN
outperforms the H3D-mesh, H3D-torus, TESH, mesh, and torus networks because it yields
low latency and high throughput, which are indispensable for high performance massively
parallel computers.

We have analyzed the effect of the number of virtual channels and select the best
choice for the number of virtual channels, which yields optimum performance. It is shown
that 3 virtual channels per physical channels is the best choice to achieve optimum perfor-
mance. Three channels improve the performance substantially. We have investigated the
impact of non-uniform traffic patterns on the HTN using dimension order routing with 3
virtual channels. Under various nonuniform traffic patterns, the dynamic communication
performance of the HTN is always better than that of the H3D-mesh, H3D-torus, TESH,
and mesh networks. It is also shown that the impact of non-uniform traffic patterns on
the HTN is less than on the other networks.

In this chapter, we have described a suite of low cost adaptive routers, LS, CS, and
LS+CS, with dimension order routing, analyzed their cost, and evaluate the dynamic
communication performance for the HTN. The hardware cost for the LS, CS, and LS+CS
algorithms is exactly equal to dimension order routing. Based on a 0.8 micron gate array
technology, we characterized the speed of those adaptive routers including the popular
dimension order router. The inter-node router delay of path setup and data through
are 9.69 ns & 6.69 ns for DOR and 12.99 ns & 6.69 ns for for the LS, CS, and LS+CS
algorithms respectively. The only overhead imposed is router delay for header selection.

The proposed adaptive routing algorithms – CS, LS, and LS+CS – are simple and
efficient for using the physical links and virtual channels of an HTN to improve dynamic
communication performance. The freedom from deadlock of the proposed CS, LS, and
LS+CS algorithms using 3 virtual channels has been proved. Using the routing algorithms
described in this paper and several traffic patterns, we have evaluated the dynamic com-
munication performance of the HTN. The average transfer time of the HTN using the
CS, LS, and LS+CS algorithms is lower than when the dimension order routing is used,
but the differences are not impressive. On the other hand, maximum throughput using
the CS, LS, and LS+CS algorithms is higher than when the dimension order routing al-
gorithm is used. Efficient use of physical links and virtual channels improves the dynamic
communication performance significantly. A comparison of dynamic communication per-
formance reveals that the LS+CS algorithm outperforms all other algorithms; an HTN
using the LS+CS algorithm yields low latency and high throughput.



Chapter 5

“The things that will destroy us are: politics
without principle; pleasure without conscience;
wealth without work; knowledge without charac-
ter; business without morality; science without
humanity; and worship without sacrifice. ”

– Mahatma Gandhi (1869–1948)

Reconfiguration Artchitecture and
Application Mappings

5.1 Introduction

Massively parallel computer systems usually have stringent requirements for reliability [33]
because of the large investments in such systems as well as the nature of the applications
for which they are likely to be used. A fault-tolerant [141] network has the ability to route
information with the presence of certain faults in the network. In hardware based fault
tolerant technique, network is enhanced by additional hardware and providing enough
redundancy in the original network design to tolerate a certain number of faults [42, 48,
49, 72, 142]. In software based fault tolerant technique, a certain amount of faults can be
tolerated by clever routing algorithm. Despite dramatic improvements in defect density
in recent years, it is still necessary to provide redundancy and defect circumvention to
achieve acceptable system-level yields.

In parallel computers, the problem is broken into smaller parts, which are solved simul-
taneously, each by a different node. Mapping an algorithm to an interconnection network
involves mapping computations to the nodes of that network so that the algorithm runs
efficiently. Thus, the mapping of different applications, especially those used with regular-
ity for computations in the designed network, is a desirable attribute when designing an
interconnection network for massively parallel computers [72]. Frequently used advanced
applications in computation such as sorting, FFT, and finding the maximum, are mapped
to an interconnection network to observe its suitability.

The remainder of this chapter is organized as follows: Section 5.2 describes the hi-
erarchical redundant scheme for reconfiguration and the critical issue of fault tolerance
performance – estimation of system yield by redundancy. Mapping of various primitive
applications is discussed in Section 5.3. Finally, Section 5.4 contains a summary of this
chapter.



5.2 Reconfiguration Architeccture of the HTN 133

5.2 Reconfiguration Architeccture of the HTN

5.2.1 Reconfiguration Scheme

Despite continuing improvements in wafer processing, defect densities still significantly
affect production yields. Since the performance of the HTN depends critically on the un-
derlying topology, a fault tolerant HTN must be preserved by offering spare nodes and the
means for plugging them in place of the faulty nodes. The goal of such a reconfiguration
is to offer fully functional HTN in spite of internal faults. Spare modules are provided
within each level of the HTN to support the fault tolerance.

Level-3

Level-2

Basic Module Spare columns of nodes

Spare row of BMs

Spare column of 
Level-2 module

Figure 5.1: Hierarchical redundancy of the HTN

The HTN is implemented with redundancy at each level of hierarchy, i.e., BMs have
spare PEs, the Level-2 network has spare BMs, the Level-3 network has spare Level-2
subnetworks and so on. This is devised for fault tolerance. This hierarchical redundancy
scheme is portrayed in Figure 5.1.

The soft switches used for reconfiguration around the defective nodes (or the defective
BMs) are the usual 12-transistor CMOS switch [141]. The switch states useful for recon-
figuration, are (a) no connect, (b) north-to-south and east-to-west, (c) north-to-west and
south-to-east, and (d) north-to-east and south-to-west connects, are portrayed in Figure
5.2.

Let us focus on the basic module. The BM of HTN is an (m × m × m) 3D-torus
network. A redundant BM includes m columns of spare nodes as well as the necessary
switches to reconfigure the module using the healthy nodes. We need a large number of
switches to reconfigure the BM since it is a 3D-torus network. To reduce the number of
switches and reconfiguration complexity we have restricted the reconfiguration strategy.
Each xy-plane of the BM includes a column of spare nodes to replace the faulty nodes of



5.2 Reconfiguration Architeccture of the HTN 134

(a)

N

S

E W

(b)

N

S

E W

(c)

N

S

E W

(d)

N

S

E W

Figure 5.2: Different switch states for reconfiguration: (a) no connect, (b) north-to-south
and east-to-west, (c) north-to-west and south-to-east, and (d) north-to-east and south-
to-west connects.

SwitchDefective PEHealthy PE

Tile

Figure 5.3: Reconfiguration of a plane for the BM in the presence of 4 faulty PEs: Diagonal



5.2 Reconfiguration Architeccture of the HTN 135

SwitchDefective PEHealthy PE

Figure 5.4: Reconfiguration of a plane for the BM in the presence of 4 faulty PEs: Square

that plane using the healthy nodes of the spare column. Each xy-plane of the BM is a
2D-torus network.

For example, a (4× 4× 4) redundant basic module with the 4 columns of spare nodes
has 5 × 4 × 4 = 80 PEs, while only 64 are needed. Thus, each plane has 5 × 4 = 20 PEs,
while only 16 are needed. With this arrangement, a maximum of 4 faulty PEs per plane
can be tolerated through replacement by the spare PEs, as illustrated by three examples
in Figures 5.3, 5.4, and 5.5. In Figure 5.3, four faulty PEs are placed diagonally. In Figure
5.4, four faulty PEs are placed in square at the left side. In Figure 5.5, four faulty PEs are
placed in concatenated L-shape and inverse L-shape in the center. We have also tested
for several other cases. For simplicity, we have presented three examples here. In all the
cases, the plane of the BM is successfully reconfigured using the spare PEs. Therefore, a
maximum of 4 faulty PEs per plane can be tolerated through replacement by the spare
PEs. Needless to say that more than 4 PEs per plane could turn out to be defective or
faulty in which case the BM is declared as non-reconfigurable.

At the second level, a row of spare BMs is provided so that a faulty BM may be
replaced by one of the spare BMs. We should remark that the scheme can be improved
upon by mutual sharing of the spare column between adjacent planes of the BM and



5.2 Reconfiguration Architeccture of the HTN 136

SwitchDefective PEHealthy PE

Figure 5.5: Reconfiguration of a plane for the BM in the presence of 4 faulty PEs: Con-
catenated L-shape and inverse L-shape

adjacent BMs. This can enhance the harvesting even further.

5.2.2 System Yield of the HTN

To examine the reconfigurability of the HTN against redundancy, in this section, we
compute the yield of the system. Assuming that the defect distribution in the PEs,
switches and links is Poisson. Yield is defined as the probability of obtaining a fault free
network. The yield of a BM is given by:

YBM = YPE′s × Yswitches, links (5.1)

That is the probability of a healthy BM is estimated as the product of (a) the proba-
bility of having a minimum of 64 healthy PEs to be used to construct a BM and (b) the
probability of all links and switches being healthy. This is a conservative estimation to
evaluate the system yield by redundancy.



5.2 Reconfiguration Architeccture of the HTN 137

To enhance the yields, defect tolerant chips can be constructed using the concept
of spare modules. Suppose a large chip has been implemented with P modules but
only Q functional modules are needed for correct functionality. As this is a conservative
estimation and each plane of the redundant BM has 4 extra PEs. Therefore, in a (4×4×4)
BM, a maximum of 4 faulty PEs can be tolerated in each plane of the BM. That is, a
maximum of 16 faulty PEs can be tolerated in each BM. The yield of the PEs per plane
of the BM can be estimated by Eq. 5.2. Four planes are available in that BM. Thus, the
yield of the PEs per BM can be estimated by Eq. 5.2. Here, Ynode is the probability that
a PE is fault free.

Yplane =
20
∑

k=16

Pr{k PE′s are good} (5.2)

YPE′s = [Yplane]
4

=

[

20
∑

k=16

(

20
k

)

Y k
node (1 − Ynode)

20−k

]4

(5.3)

Consider that the size of the PE is 2× 2 mm2 in 0.25 micron CMOS1 technology [49],
then Ynode = e−0.04D, where D denotes the fault density per cm2. Assuming a channel
width of 1.0 mm between PEs, the tile area is 9.00 mm2. The tile is shown in Figure
5.3. Since the PE area is 4 mm2, the total channel area per tile becomes 5.00 mm2. It
is reasonable to assume that the area occupied by the switches and links is about 30%
of the channel area [48, 49]; further, we assume that 50% of this is critical area [48, 49].
Therefore, the critical area used by the switches and links per tile is 0.75 mm2. As stated
above, each redundant plane of the BM consists of 20 PEs or titles. Thus, the total
critical area of switches and links per plane, denoted as CA of SL, is 20 × 0.75 = 15.00
mm2 = 0.15 cm2. Therefore the yield of the switches and links is computed as:

Yswitches, links =
[

e−CA of SL×D
]4

=
[

e−0.15D
]4

(5.4)

For the second level, as mentioned above, a row of spare BMs is provided. Therefore,
the second level network yield becomes as follows:

Ysecond level =
20
∑

k=16

(

20
k

)

Y k
BM (1 − YBM)20−k (5.5)

For different fault densities without and with spare elements the yield is shown in
Figure 5.6 and Figure 5.7, respectively. It is shown that the use of an additional column

1A processing element with significant local memory and processing power would of course be much
larger. However, we are considering medium grain PEs so that the 2 × 2 mm square is a reasonable
size for this case example. Other sizes would lead to somewhat different parameters, and corresponding
changes in the discussion.



5.2 Reconfiguration Architeccture of the HTN 138

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 0  0.2  0.4  0.6  0.8  1.0  1.2  1.4

Y
ie

ld

PE Yield

BM Yield

L2 Yield

Defects/ cm2

Figure 5.6: Yield for BM and Level-2 network vs. fault density without spare node

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 0  0.2  0.4  0.6  0.8  1.0  1.2  1.4

Y
ie

ld

PE Yield

BM Yield

L2 Yield

Defects/ cm2

Figure 5.7: Yield for BM and Level-2 network vs. fault density with spare node



5.3 Application Mappings on HTN 139

of nodes in each plane of the BM, a spare row of BMs for each second level network, a spare
column of second level subnetworks at the third level, and so on, results in remarkable
enhancement of network yield. Thus, with a 25% redundancy at each level, the yield at the
second level is estimated to range from 0.995 to 0.378 corresponding to the fault density
ranging from 0.10 faults/cm2 to 0.50 faults/cm2, pointing to a satisfactory network
yield.

5.3 Application Mappings on HTN

The interconnection network used in a massively parallel computer systems plays a key
role in determining how fast applications can be executed on the system. Any non-
trivial parallel program running on a multicomputer requires some amount of information
exchange among the nodes; in many cases, the time for such communication is a significant
part of the overall running time of the program. Therefore, it is important to design
algorithms and applications to use the interconnection network efficiently.

There are two cases of mapping algorithms to an interconnection network. Mapping
an algorithm to an architecture involves mapping computations to processors so that the
algorithm runs efficiently. In the first, a known parallel algorithm for solving the problem
is mapped to the interconnection network to achieve maximum parallelism. This does not
modify the computation behavior of the algorithm. In the second case, the communication
behavior of the algorithm can not be supported efficiently by the given network, and a new
parallel algorithm may need to be designed to take advantage of the underlying network.
Thus, mapping also includes the design of parallel algorithms for a specific interconnection
network. When computations are mapped to nodes, nodes that communicate frequently
should be able to do so through the interconnection network efficiently. With a particular
algorithm and a fixed interconnection network, different mapping may require different
amounts of communications; the goal is to chose a mapping that minimizes the total
communication.

Most parallel algorithms are designed so that they have some regular types of data
movement among nodes. These data movement may involve frequently-used permutations
such as shuffle or matrix transpose, global communication operations such as broadcasting,
or may be expressed in terms of more elementary operations such as finding the maximum
value or sorting. How fast such common operations can be executed on an interconnection
network determines the performance of the parallel algorithm on that multicomputer.
Therefore, the suitability of a given interconnection network for certain applications can
often be estimated by studying how efficiently these common operations such as sorting,
finding the maximum value, and broadcasts can be performed on the given network. In
this section, we will discuss the mapping of known advanced applications, namely bitonic
merge, Fast Fourier Transform (FFT), and finding the maximum on the HTN to observe
the suitability of the HTN .

5.3.1 Converge and Diverge

Several interesting applications involve an input vector consisting of N pieces of data and
utilize a divide-and-conquer scheme. Therefore, it is useful to first map the CONVERGE



5.3 Application Mappings on HTN 140

and DIVERGE functions to the interconnection networks [47].
Let N be an integer number, where N = 2k, the value of data be d[w], where

(w = 0, 1, 2, ... ... ... N − 1). The DIVERGE function executes an operation between
20, 21, 22, ... ... ..., 2k−2, 2k−1. On the other hand, the CONVERGE function executes an
operation between 2k−1, 2k−2, ... ... ..., 21, 20. The CONVERGE and DIVERGE functions
are defined as follows:

CONVERGE();
for j = k − 1 : −1 : 0

for 0 ≤ w ≤ N − 1 do in parallel
if aj = 0,OPERATION(w, w + 2j); endif;

endfor;
endfor;

end;

DIVERGE();
for j = 0 : k − 1

for 0 ≤ w ≤ N − 1 do in parallel
if aj = 0,OPERATION(w, w + 2j); endif;

endfor;
endfor;

end;

Where aj is the j-th bit of the binary representation of w, OPERATION(w, w+ 2j)
is an operation between d[w] and d[w+2j]. Figure 5.8 illustrates the execution of converge
on a 4 × 4 2D-mesh.

5.3.2 Bitonic Merge

Sorting is an important operation for arranging data in many applications. Many efficient
sorting algorithms have been developed over the years, using a variety of techniques.
Sorting involves comparing different pairs of data items and rearranging them.

In this section, we discuss the bitonic merge [143, 144] and estimate the processing
time of bitonic merging algorithm on HTN. The following definition and theorem provide
the background of bitonic merge.

Definition 5.1 A sequence a1, a2, a3, ........., a2n is said to be bitonic if either

1. there is an integer 1 ≤ j ≤ 2n such that a1 ≤ a2 ≤ a3 ≤ ...... ≤ aj ≥ aj+1 ≥ aj+2 ≥
...... ≥ a2n, or

2. the sequence does not initially satisfy condition (1) but can be shifted cyclically until
condition (1) is satisfied.

For example, {1, 3, 5, 6, 7, 9, 4, 2} is a bitonic sequence, as it satisfies condition (1).
Similarly, the sequence {7, 8, 6, 4, 3, 1, 2, 5}, which does not satisfy condition (1), is also
bitonic, as it can be shifted cyclically to obtain {2, 5, 7, 8, 6, 4, 3, 1}.



5.3 Application Mappings on HTN 141

d[0]

d[4]

d[1] d[2] d[3]d[0]

d[4]

d[1] d[2] d[3]

d[0]

d[4]

d[1] d[2] d[3] d[0]

d[4]

d[1] d[2] d[3]

Figure 5.8: CONVERGE on a 4 × 4 2D-mesh

Theorem 5.1 Let {a1, a2, a3, ........., a2n} be a bitonic sequence. If di = min(ai, an+i) and
ei = max(ai, an+i) for 1 ≤ i ≤ n, then

1. {d1, d2, d3, ......, dn} and {e1, e2, e3, ......, en} are each bitonic, and

2. max(d1, d2, d3, ......, dn) ≤ min(e1, e2, e3, ......, en).

The bitonic merge algorithm sorts a bitonic sequence in either ascending or descending
order. Its routine falls in the class of either CONVERGE or DIVERGE functions. The
operation to make a bitonic list is given by:

OPERATION(w, w + 2j)
{

move R1(w + 2j) to R2(w);
if aj+1=0,

[R1(w), R2(w)]=[min{R1(w), R2(w)},max{R1(w), R2(w)}];
else

[R1(w), R2(w)]=[max{R1(w), R2(w)}, min{R1(w), R2(w)}];
endif;
move R2(w) to R1(w + 2j);

}

According to theorem 5.1.(1), the bitonic merge operation becomes as follows:
OPERATION(w, w + 2j)

{
move R1(w + 2j) to R2(w);
[R1(w), R2(w)]=[min{R1(w), R2(w)}, max{R1(w), R2(w)}];



5.3 Application Mappings on HTN 142

move R2(w) to R1(w + 2j);
}

This algorithm has two important steps. The ‘move step’, which is used to transfer
data from one node to another, and the comparison (min, max) step.

5.3.3 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) has a wide variety of applications and requires very high
speed computation. FFT is an efficient algorithm for computing the discrete Fourier
transform:

X[k] =
N−1
∑

k=0

x[n] W nk
N k = 0, 1, 2, ..., N − 1 (5.6)

where, WN = exp(−j2π

N
). The basic operation of the decimation in frequency FFT algo-

rithm is the following butterfly operation:

xw[p] = xw−1[p] + xw−1[q]

xw[q] = (xw−1[p] − xw−1[q])W
r
n (5.7)

here, k = log N , and w is the number of stages for butterfly.
Since the two input data of a butterfly operation in the w-th stage are 2k−w locations

apart, the FFT algorithm falls in the CONVERGE function class. Thus, the CONVERGE
function is modified to perform an FFT algorithm as follows:

OPERATION(w, w + 2j)
{

move R1(w + 2j) to R2(w);
Temp(w) = R1(w) + R2(w);
R2(w) = (R1(w) − R2(w)) ∗ WN

r;
R1(w) = Temp(w);
move R2(w) to R1(w + 2j);

}

The total time required to perform the FFT on N pieces of data is the same as the time
required to sort N pieces of data by the bitonic merge algorithm, except that TOPER is the
time required to perform the operations in the middle 3 lines of the above pseudo-code.

5.3.4 Finding the Maximum

To find the maximum or minimum value among a large number of data, CONVERGE
is iteratively used. However, the recursive execution is not necessary for finding the
maximum. Therefore, the CONVERGE operation becomes simpler as follows:

CONVERGE();



5.3 Application Mappings on HTN 143

for j = k − 1 : −1 : 0

for 0 ≤ w ≤ N
2

k−j−1 − 1 do in parallel
if aj = 0, OPERATION(w, w + 2j); endif;

endfor;
endfor;

end;

Thus, the operation to find the maximum is given by:

OPERATION(w, w + 2j)
{

move R1(w + 2j) to R2(w);
R1(w) = max[R1(w), R2(w)];

}

The total operation to find the maximum is given by:
MAX
{

CONVERGE BM();
for j = 2 : L

if a[j−1:0]
x = 0 and a[j−1:0]

y = 0 and

a[j−1:0]
z = 0,OPERATION(w, w + 2j);endif;
CONVERGE network-j();

endif;
endfor;

}

5.3.5 Processing Time

To estimate the processing time of an application mapping on an interconnection net-
work of massively parallel computers, we define communication time and execution time.
Communication time is defined as the time required for unit distance routing-step, i.e.,
moving one data of a sequence from a node to one of its neighboring nodes. Execution
time is defined as the time required for execution of one OPERATION. The execution
time depends on the system clock cycle. For a particular system, the execution time is
constant. Consideration of execution time is beyond the scope of this dissertation. CON-
VERGE and DIVERGE functions require log N steps. Thus, the total time required for
an application is as follows:

T = µ × Tmove + logN × TOPER (5.8)

where,

µ = Total number of communication steps.

Tmove = Transfer time between adjacent nodes.

TOPER = Execution time for OPERATION.



5.3 Application Mappings on HTN 144

Application mapping performance is discussed by using the total number of commu-
nication steps in an interconnection network. The total number of communication steps
of different networks are obtained as follows:

2D-Torus

S2D−Torus
bitonic = 4

log
√

N
∑

j=1

(
√

N

2j

)

= 4
(√

N − 1
)

(5.9)

S2D−Torus
max = 2

(√
N − 1

)

(5.10)

3D-Torus

S3D−Torus
bitonic = 6

logN
1
3

∑

j=1





N
1

3

2j





= 6
(

N
1

3 − 1
)

(5.11)

S3D−Torus
max = 3

(

N
1

3 − 1
)

(5.12)

The total communication steps for finding the maximum is half of the bitonic merge,
because the finding of maximum of maximum does not necessary for return data in 2D-
torus and 3D-torus networks.

H3D-Torus

SH3D−Torus
bitonic = 6(L − 1) ×









logN
1
3

HL
∑

j=1

N
1

3
sn

2j









× NBM + SBM
bitonic (5.13)

SH3D−Torus
max = 6(L − 1) ×









logN
1
3

HL
∑

j=1

N
1

3
sn

2j









+ SBM
bitonic (5.14)

L = Level number.

NHL = Size of the higher level network.

NBM = Size of the basic module.

SBM
bitonic = Number of communication steps in basic module.

If the size of the basic module is (4 × 4 × 4) and the size of the higher level network is
(4 × 4 × 4), then

SH3D−Torus
bitonic = 1152(L− 1) + 18 (5.15)

SH3D−Torus
max = 18L (5.16)



5.3 Application Mappings on HTN 145

H3D-Mesh

SH3D−Mesh
bitonic = 4(L − 1) ×

log
√

NHL
∑

j=1

(√
NHL

2j

)

× NBM

4
+ SBM

bitonic (5.17)

SH3D−Mesh
max = 4(L − 1) ×

log
√

NHL
∑

j=1

(√
NHL

2j

)

+ SBM
bitonic (5.18)

If the size of the basic module is (4 × 4 × 4) and the size of the higher level network is
(4 × 4), then

SH3D−Mesh
bitonic = 192(L − 1) + 18 (5.19)

SH3D−Mesh
max = 12(L − 1) + 18 (5.20)

HTN

SHTN
bitonic = 4(L − 1) ×





logn
∑

j=1

n

2j



× m3

m × q

+SBM
bitonic (5.21)

SHTN
max = 4(L − 1) ×





logn
∑

j=1

n

2j



+ SBM
bitonic (5.22)

where,

L = Level number.

SBM
bitonic = No. of communication steps in the BM.

If m = 4 and n = 4, i.e., the size of the basic module is (4 × 4 × 4) and the size of the
higher level network is (4 × 4), then

SHTN
bitonic = 192(L − 1) + 18 (5.23)

SHTN
max = 12(L − 1) + 18 (5.24)

The total number of communication steps for bitonic merge on various interconnection
networks is shown in Figures 5.9 and 5.10. The total number of nodes of various networks
is different due to the difference of their architecture. To fit various networks and make a
versatile comparison, we plotted the number of communication steps for bitonic merge in
two graphs. The figures show the number of communication steps as a function of network
size for different networks. Each curve stands for a particular network. Since bitonic
merge requires a large communications between all nodes at each step, the total number of



5.3 Application Mappings on HTN 146

2DT

TESH
C

om
m

un
ic

at
io

n 
St

ep
s 

fo
r 

B
it

on
ic

 M
er

ge
 (

µ)

Number of PEs (N)
2

12
2

14
2

16
2

18
2

20
2

10
2

6

2
7

2
8

2
9

2
10

2
11

2
12

H3DMHTN .

Figure 5.9: The total number of communication steps of the bitonic merge in different
networks

H3DT

Number of Nodes (N)

2
12

2
14

2
16

2
18

2
20

2
22

C
om

m
un

ic
at

io
n 

St
ep

s 
fo

r 
B

it
on

ic
 M

er
ge

 (
α)

2
6

2
7

2
8

2
9

2
10

2
11

2
12

H3DMHTN .

2DT

 3DT

Figure 5.10: The total number of communication steps of the bitonic merge in different
networks



5.3 Application Mappings on HTN 147

2DT

TESH
C

om
m

un
ic

at
io

n 
St

ep
s 

fo
r 

F
F

T
 (

µ)

Number of PEs (N)
2

12
2

14
2

16
2

18
2

20
2

10
2

6

2
7

2
8

2
9

2
10

2
11

2
12

H3DMHTN .

Figure 5.11: The total number of communication steps of the FFT in different networks

2DT

TESH

C
om

m
un

ic
at

io
n 

St
ep

s 
fo

r 
fi

nd
in

g 
M

ax
im

um
 (

µ)

2
6

2
7

2
8

2
9

2
10

2
11

H3DMHTN .

Number of PEs (N)
2

12
2

14
2

16
2

18
2

20
2

10

2
5

2
4

Figure 5.12: The total number of communication steps for finding the maximum in dif-
ferent networks



5.3 Application Mappings on HTN 148

Table 5.1: The total number of communication steps on a network for bitonic merge,
FFT, and finding the maximum.

Bitonic Merge FFT Finding the maximum

2D-torus 4(
√

N − 1) 4(
√

N − 1) 2(
√

N − 1)

3D-torus 6(
√

N − 1) 6(
√

N − 1) 3(
√

N − 1)
H3D-torus 1152(L − 1) + 18 1152(L − 1) + 18 18L
H3D-mesh 192(L− 1) + 18 192(L − 1) + 18 12(L − 1) + 18

HTN 192(L− 1) + 18 192(L − 1) + 18 12(L − 1) + 18

communication steps in the HTN is larger than that in the 2D-torus network for thousands
of nodes and equal to that of H3D-mesh network. However, for tens of thousands or
millions of nodes, when more hierarchy is used, HTN shows better performance than that
of the 2D-torus network. Even for millions of nodes, HTN shows better performance than
that of the 3D-torus network. Also, HTN shows better performance than that of the
H3D-torus and TESH networks. Therefore, HTN achieves better mapping performance
for bitonic merge than do the other conventional and hierarchical networks.

The total number of communication steps for FFT on various interconnection networks
is shown in Figure 5.11. The figure shows the number of communication steps as a function
of network size for different networks. Each curve stands for a particular network. As
mentioned earlier, the number of communication steps required to perform the FFT on
N pieces of data is the same as the time required to sort N pieces of data with the
bitonic merge algorithm. Let us consider Figure 5.9 for performance comparison of FFT.
From Figures 5.9 and 5.11, it is seen that the total number of communication steps for
FFT on the HTN is smaller than that on the 2D-torus, 3D-torus, H3D-torus, and TESH
networks, but equal to the H3D-mesh network. Therefore, in the FFT mapping, HTN
also achieves better mapping performance than do the other conventional and hierarchical
interconnection networks.

The total number of communication steps for finding the maximum on various inter-
connection networks is shown in Figure 5.12. The figure shows the number of communi-
cation steps as a function of network size for the different networks. It is shown that the
number of communication steps needed to find the maximum on the HTN is far smaller
than on the TESH and 2D-torus networks, but equal to the H3D-mesh network. There-
fore, in finding the maximum, HTN also achieves better mapping performance than do
the other conventional and hierarchical interconnection networks.

Out comparison of the total number of communication steps for various advanced
applications mapping such as bitonic merge, FFT, and finding the maximum, on various
hierarchical interconnection networks such as HTN, H3D-mesh, H3D-torus, TESH, and
conventional k-ary n-cube networks, has shown that the HTN outperforms those networks.



5.4 Conclusions 149

5.4 Conclusions

In this chapter, for the HTN, reconfiguration of faulty nodes by redundant nodes is pre-
sented. A hierarchical redundancy approach is explored, in which redundancy is provided
at each level of the network. Expressions for yield are presented considering the redundant
circuit. We have evaluated the yield of the HTN. The results indicate that, with a 25%
redundancy at each level, the system yield at the basic module and second level are satis-
factory. In short, we conclude that we have done the reconfiguration by redundancy and
estimated the yield of the HTN successfully. We also conclude that a fault tolerant net-
work is very essential for the reliability of massively parallel computer systems. Because,
a single node failure in a massively parallel computer system may make the computer out
of order or the computer will produce erroneous computational result.

Mappings of some commonly used advanced applications, such as bitonic merge, FFT,
and finding the maximum, have also been presented in this chapter. The processing
time of an application mapping in an interconnection network depends on the number
of communication steps. The versatility of the HTN in various application mappings is
investigated by evaluating the total number of communication steps. It is shown that
the number of communication steps for various advanced applications mapping on the
HTN is lower than for conventional and other hierarchical interconnection networks. A
comparison of the total number of communication steps reveals that the HTN outperforms
the H3D-mesh, H3D-torus, TESH, and k-ary n-cube networks.



Chapter 6

“It would appear that we have reached the lim-
its of what it is possible to achieve with such
statements, as they tend to sound pretty silly
in 5 years.”

– John Von Neumann (1903–1957)

Pruned Hierarchical Torus Network

6.1 Introduction

Pruning is the process of removing links from a basis network with the goal of simplify-
ing its implementation (scalability, modularity, VLSI layout, etc.) and overcoming the
bandwidth limitations at various levels of the packaging hierarchy, while maintaining the
smaller diameter and average inter-node distance associated with higher degrees of con-
nectivity. A number of useful interconnection networks were derived by pruning suitably
chosen networks or were subsequently shown to be pruned versions of other networks. Ex-
amples include pruned 3-D torus [145], incomplete k-ary n-cube [147], periodically regular
chordal rings [151], and binary Gaussian cubes [152].

One advantage of a pruned network is that it may be capable of emulating the original
basis network efficiently, given their structural similarities. However, if pruning is not
done carefully, the routing algorithm may become so complicated and/or message traffic
so unbalanced as to hurt performance. Therefore, symmetric pruned network is preferable
over the asymmetric one.

Whereas pruning leads to reduced node degree, Cartesian or cross-product networks
work in the opposite direction [153] . The k-ary n-cube [64] is simply the cross-product of
n rings of size k: Pruning a crossproduct network may be viewed as an attempt to offset
the complexity introduced by using Cartesian products, while maintaining some of the
benefits gained. Pruned versions of k-ary n-cubes have been shown to be quite effective
[154, 155].

The links of a richly connected network can be removed in a periodic fashion for
reduced complexity and hence increased performance. Such incomplete networks derived
by pruning the original networks have been shown to be quite effective [150, 155]. The
peak number of vertical links between silicon planes for 3D-WSI, maximum length of the
longest links, and the number of longest wires of our proposed Hierarchical Torus Network
(HTN) are lower than that of the torus network. Numerous basic modules of 3D-torus
network are connected by 2D-torus network. The wrap around links of each individual
basic module results a large number of physical links than that of 2D-torus network. To



6.2 Pruned Network 151

reduce the wiring complexity of the HTN, we will apply the pruning technique on it and
the resulting network is called Pruned HTN.

The remainder of this chapter is organized as follows: Section 6.2 describes the pruning
technique and its application on HTN. The main issue of wiring complexity and the 3D-
WSI implementation are present in Section 6.3. Finally, Section 7.4 contains a summary
of this chapter.

6.2 Pruned Network

6.2.1 Pruned Torus Network

A 3-dimensional, radix-k torus, also called k-ary 3-cube, consists of N = k3 nodes arranged
in an 3-dimensional cube with k nodes along each dimension. Each node is assigned an
3-digit radix-k address as (x, y, z), where 0 ≤ x, y, z ≤ k − 1. Each node is connected to
6 neighbors, such as, [(x ± 1) mod k, y, z], [x, (y ± 1) mod k, z], and [x, y, (z ± 1) mod k].
Figure 6.1 shows a 3D-torus network of size (4×4×4). Henceforth, it will be understood
that all node-index expressions are calculated modulo k. We assume that k is an even
number to ensure that the pruned torus is regular and of degree 4.

x

y
z

z=0

z=1

z=2

z=3

x=0 x=1 x=2 x=3

y=0

y=1

y=2

y=3

Figure 6.1: A (4 × 4 × 4) torus network

The links of 3D-torus network is removed in a periodic fashion to form pruned torus
network. Pruning technique can be applied in one direction and three direction. Pruning



6.2 Pruned Network 152

along the z-direction, resulting network is denoted as (T1), node (x, y, z) is connected to
its neighbor as follows. Each node (x, y, z) is connected to its two neighbors (x, y, z ± 1)
along dimension z and other four neighbors are connected according to Eq. 6.1. Figure
6.2 shows an example of pruned 4 × 4 × 4 torus network T1, where the nodes are shaded
if their positions along the pruning direction are odd-numbered.

{

(x ± 1, y, z) if z = even
(x, y ± 1, z) if z = odd

(6.1)

Pruning along (x+y +z)-direction, resulting network is denoted as (T2), node (x, y, z)
is connected to its neighbor as follows. Each node (x, y, z) is connected to its two neighbors
(x, y, z ± 1) along the dimension z and other four neighbors are connected according to
Eq. 6.2. Figure 6.3 shows an example of pruned 4 × 4 × 4 torus network T2, where the
nodes are shaded if their positions along the pruning direction are odd-numbered.

{

(x + 1, y, z) and (x, y + 1, z) if x + y + z = even
(x − 1, y, z) and (x, y − 1, z) if x + y + z = odd

(6.2)

The conditions for the X and Y connections in T1 and T2 define the pruning directions
as z and x+ y + z, respectively. It is easy to verify that both pruned networks are regular
and of degree four. Furthermore, both are Hamiltonian, meaning that they contain a ring,
encompassing all the nodes, as a subgraph.

Here it is noted that there does not exist a pruning direction f(x, y, z) that combines
two out of the three directions, since such selections leave the resulting networks uncon-
nected. Figure 6.4 shows an example that pruning along x + y makes the shaded and
non-shaded sub-networks disjoint. An exhaustive check through all possibilities confirms
that permuting X, Y , and Z dimensions leads to networks that are isomorphic to either
T1 or T2. The edge symmetry makes all links look alike. This property distinguishes T1

from T2. T1 is edge symmetric, while T2 is not edge symmetric. In [145], it is shown that
the architecture T1 is better than T2, in terms of both regularity and performance.

Like 3D-torus network, we can apply the pruning technique on 2D-torus network.
Pruned 2D-torus network is also known as Honeycomb Rectangular Torus (HReT) [146].
It is not possible to prune the 2D-torus along one direction. Because, if one direction keeps
intact, then only one direction is remaining. Obviously, It is not possible to alternate the
pruning direction. This is why, we apply the pruning along both direction. Pruning along
(x + y)-direction, resulting network is called pruned 2D-torus, node (x, y) is connected to
its neighbor as follows. Each node(x, y) is connected to its two neighbors (x± 1, y) along
x-direction and the other two neighbors are connected according to Eq. 6.3. Figure 6.5
shows an example of pruned 4 × 4 torus network.

{

(x, y + 1) if x + y = even
(x, y − 1) if x + y = odd

(6.3)

6.2.2 Pruned HTN

We have proposed a new hierarchical interconnection networks called HTN for large-scale
3D multicomputers. The HTN consists of multiple basic modules which are 3D-torus of



6.2 Pruned Network 153

z

x

y

z=0

z=1

z=2

z=3

Figure 6.2: A (4 × 4 × 4) pruned torus obtained by pruning along the z direction.

x

y
z

z=0

z=1

z=2

z=3

x=0 x=1 x=2 x=3

y=0

y=1

y=2

y=3

Figure 6.3: A (4× 4× 4) pruned torus obtained by pruning along the x + y + z direction.



6.2 Pruned Network 154

x

y
z

z=0

z=1

z=2

z=3

x=0 x=1 x=2 x=3

y=0

y=1

y=2

y=3

Figure 6.4: A (4 × 4 × 4) pruned torus obtained by pruning along the x + y direction.

Figure 6.5: A (4 × 4) pruned torus obtained by pruning along the x + y direction.



6.2 Pruned Network 155

size (m × m × m). The basic modules are hierarchically interconnected by a 2D-torus
of size (n × n) to build higher level networks. The wrap around links of each individual
basic module results a large number of physical links for higher level HTN. We can reduce
the number of physical links using pruning technique. Pruning technique is applied both
in the basic module and in higher level networks of the HTN. We just replace the torus
network in the HTN by pruned torus network. Using pruned 3D tori T1 and T2 and
pruned 2D-torus, we can build three pruned variants of the HTN called HTN1, HTN2,
and HTN3 .

Basic Module BM

Pruned
3D-Torus

Network (T1)

Figure 6.6: HTN1 (m = 4, n = 4)

Basic Module BM

Pruned
3D-Torus

Network (T2)

Figure 6.7: HTN2 (m = 4, n = 4)

The HTN1 consists of a basic module which is a pruned 3D-torus T1 (m × m × m).
The basic modules are hierarchically interconnected by 2D-torus (n × n). Figure 6.6
shows an example of the HTN1, where m = 4 and n = 4. The HTN2 consists of a basic
module which is a pruned 3D-torus T2 (m×m×m). The basic modules are hierarchically



6.2 Pruned Network 156

interconnected by 2D-torus (n × n). Figure 6.7 shows an example of the HTN2, where
m = 4 and n = 4. The HTN3 consists of a basic module which is a pruned 3D-torus T2

(m × m × m). The basic modules are hierarchically interconnected by pruned 2D-torus
(n × n). Figure 6.8 shows an example of the HTN3, where m = 4 and n = 4. Figure
6.9 illustrates a Level-2 HTN3. To avoid clutter, we represents the basic module (pruned
3D-torus T2) as a cube. The higher level network is a pruned 2D-torus of size (4 × 4).

Basic Module BM

Pruned
3D-Torus

Network (T2)

Figure 6.8: HTN3 (m = 4, n = 4)

Level 2 gate PE

Level 2 link

N

S

W E T2

Figure 6.9: An illustration of Level-2 HTN3

For the pruned HTN, the node degree is independent of network size. Maximum
number of links for a single node is 6. The degree of the pruned HTN is 6, while the
degree of non-pruned HTN is 8. Thus, pruning technique reduces the degree, which in
turn reduces the I/O interface cost. Because I/O interface cost is related to the degree.
Moreover, constant degree networks are easy to expand and the cost of the network
interface of a node remains unchanged with increasing size of the network.

The wiring complexity of an interconnection network refers to the number of links
required to be connected to a node as a network. The wiring complexity depends on the



6.3 3D-WSI Implementation of the Pruned HTN 157

node degree and it has a direct correlation to hardware cost and complexity. Pruning
technique reduces the number of physical links, which in turn reduces the hardware cost.
We have evaluated the number of links for a Level-2 pruned HTN along with its non-
pruned counterpart and tabulated in Table 6.1. It is seen that HTN1 and HTN2 need
equal number of links because in these cases pruning technique is applied only in the basic
module; they are less than that of HTN0, i.e., non-pruned HTN. The number of links
required for HTN3 is less than that of HTN1 and HTN2 because here pruning technique
is applied both in the basic module and Level-2 interconnection.

Table 6.1: Comparison of wiring complexity of various Level-2 HTN

Network # of links
HTN0 3200
HTN1 2176
HTN2 2176
HTN3 2144

6.3 3D-WSI Implementation of the Pruned HTN

6.3.1 Peak Number of Vertical Links

The processing elements are placed on a square array on each silicon plane. A number of
such silicon planes are connected together by vertical links. In this section, we evaluate
the peak number of vertical links for various pruned HTN and compare them with that
of original HTN.

Cmax(network, N, m) expresses the peak number of vertical links in 3D stacked imple-
mentation. If h is the number of silicon planes, M is the number of PEs on each plane,
and N is the total number of PEs, then the relation between the h, M , N is N = h×M .
First, we evaluate the peak number of vertical links of Level-2 pruned HTN by physical
realization. For our evaluation, we have considered the number of planes h = n × n and
the number of PEs in each plane M = m×m×m. If m = 4 and n = 4, the peak number
of vertical links of Level-2 pruned HTN is 28. Then, the peak number of vertical links of
Level-L pruned HTN is calculated according to Eq. 6.4.

Cmax =
{

Cmax (PrHTN − L2, (n × n), (m × m × m)) (n × n)L−2
}

(6.4)

Figure 6.10 shows the peak number of vertical links of various pruned HTN. The
ordinate indicates the peak number of vertical links and the abscissa indicates the number
of PEs. It is seen that the peak number of vertical links Cpeak of the HTN3 is less than
that of HTN0, HTN1, and HTN2. Also Cpeak of the HTN1 and HTN2 are exactly same
as that of the HTN0. Here it is noted that HTN0 is the non-pruned HTN as described
in Section 3.2. For more than 213 PEs, Cpeak of the HTN3 is lower than that of HTN0.
Therefore, bigger sized suitable network can be realized by pruning technique.



6.3 3D-WSI Implementation of the Pruned HTN 158

2DT

HTN3
HTN0,1,2

2
4

2
6

2
8

2
10

2
12

2
14

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

Number of PEs (N)

P
ea

k 
N

o.
 o

f 
V

er
ti

ca
l L

in
ks

 (
C

   
   

  )
pe

ak

Figure 6.10: A comparison of peak number of vertical links of various HTN.

0.820

0.825

0.830

0.835

0.84

R
at

io

HTN0 HTN1 HTN2 HTN3

Figure 6.11: Normalized layout area (1024 PEs, 16 Wafers, and 64 PEs/Wafer)



6.4 Conclusion 159

6.3.2 Layout Area

To show the suitability of an interconnection network for 3D wafer stacked-implementation,
layout area has to be evaluated. In this section, we evaluate the layout area for various
pruned HTN. We have considered the parameter for evaluation and evaluated the layout
area of pruned HTN according to the formulas of Section 3.4.3. We have evaluated the
layout area of a Level-2 HTN and its pruned counterpart. If m = 4 and n = 4, then
M = 64, h = 16 and N = 1024. The layout area is normalized by 2D-torus network and
the normalized values are plotted in Figure 6.11. It is shown that pruned HTN can be im-
plemented on smaller area. The layout area of pruned HTN in 3D stacked implementation
is more acquiescent than that of non-pruned HTN for 3D implementation.

It is seen that the layout area of HTN1 is less than that of HTN0. Similarly, the layout
area of HTN2 is less than that of HTN1 and the layout area of HTN3 is less than that
of HTN2. In HTN1 andHTN2, pruning technique is applied on the basic module only. In
HTN3, pruning technique is applied both in the basic module and the Level-2 network.
Thus, we can conclude that higher the pruning technique applied, the lower the layout
area for 3D-WSI.

6.4 Conclusion

We have presented pruning technique on a new hierarchical interconnection network,
called Hierarchical Torus Network (HTN). The architecture of the pruned HTN and 3D-
Integration issue were discussed in detail. Pruned HTN reduces both the I/O interface
cost and hardware cost and complexity. The pruned HTN is well suited for 3D stacked-
implementations. It is shown that the peak number of vertical links in 3D stacked-
implementation is low for pruned HTN as compared to its non-pruned counterpart. The
layout area of pruned HTN in 3D-WSI is less than that of non-pruned HTN. Therefore,
HTN permits efficient VLSI/ULSI/WSI realization.



Chapter 7

“No one believes an hypothesis except its orig-
inator but everyone believes an experiment ex-
cept the experimenter.”

– W.I.B. Beveridge

Modification of other Hierarchical
Networks based on Torus-Torus
Interconnectiuon

7.1 Introduction

It has already been shown that a torus network has better dynamic communication per-
formance than a mesh network. Due to presence of wrap-around links between end to end
nodes in torus network it provides an extra path for message to pass through. Thus, more
messages can be delivered in the network, which in turn increases the network throughput.
However, the length of the wrap-around links is a limiting factor for massively parallel
computers with thousands or millions of nodes. The long wire decreases the clock-speed
of the network. Higher dimensional torus reduces the wire length. On the contrary, higher
dimensional torus results huge vertical links between 3D-WSI. Therefore, hierarchical in-
terconnection network consists of torus-torus network is a plausible alternative way for
massively parallel computers. There are some hierarchical network which consist of torus
and mesh networks. By replacing the mesh by torus network, we can improve the dynamic
communication performance of those networks. In this chapter, we will apply our main
idea “torus-torus” hierarchical network to other networks.

This chapter is organized as follows: Section 7.2 describes the basic structure of the
Modified Hierarchical 3D-Torus (MH3DT) network, including addressing and routing,
static network performance, and dynamic communication performance. Section 7.3 de-
scribes the basic structure of the Modified TESH network, including addressing and rout-
ing, static network performance, and dynamic communication performance. Finally, some
concluding remarks are given in Section 7.4.

7.2 Modified Hierarchical 3D-Torus Network

An H3D-torus network [61, 62] has been put forward as a new interconnection network
for large-scale 3D multicomputers. The H3D-torus network consists of multiple basic



7.2 Modified Hierarchical 3D-Torus Network 161

modules (BMs) which are 3D-mesh of size (m × m × m). The BMs are hierarchically
interconnected by a 3D-torus of size (n × n × n) to build higher level networks. The
restricted use of physical links between basic modules in the higher level networks reduces
the dynamic communication performance of this network. Even when the inter-BM links
are increased, the network throughput of the H3D-torus network is still lower than that
of the conventional mesh network. It has already been shown that a torus network has
better dynamic communication performance than a mesh network [64]. This is the key
motivation that led us to replace the 3D-mesh network by a 3D-torus network.

The modified hierarchical 3D-torus (MH3DT) network consists of BMs which are
themselves 3D-tori (m×m×m), hierarchically interconnected in a 3D-torus (n× n× n)
networks . In the MH3DT network, both the BMs and the interconnection of higher levels
have toroidal interconnections.

7.2.1 Interconnection of the MH3DT Network

The MH3DT network consists of BMs that are hierarchically interconnected to form
higher level networks. The BM of the MH3DT network is a 3D-torus network of size
(m×m×m), where m is a positive integer. The BM of (4× 4× 4) torus, which is shown
in Figure 7.1, has some free ports at the corners of the xy-plane. These free ports are used
for higher level interconnection. All ports of the interior Processing Elements (PEs) are
used for intra-BM connections. All free ports of the exterior PEs are used for inter-BM
connections to form higher level networks. In this dissertation, unless specified otherwise,
BM refers to a Level-1 network.

Processing Elements (PEs) in the BM are addressed by three base-m digits, the first
representing the x-direction, the second representing the y-direction, and the last repre-
senting the z-direction. The address of a PE in the BM is expressed by

ABM = (az) (ay) (ax) , (0 ≤ az, ay, ax ≤ m − 1) (7.1)

x

y

z

Gate PE for 
upper-level

z-axis
y-axis
x-axis

Level 2 Level 3

Level 4Level 5

Figure 7.1: Basic module of the MH3DT network



7.2 Modified Hierarchical 3D-Torus Network 162

Figure 7.2: Interconnection of a Level-2 MH3DT network

All ports of the interior PEs are used for intra-BM connections. Three PEs (0 ≤ az ≤
2) have two free ports, as shown in Figure 7.1, which are used for inter-BM connections to
form higher level networks. Let az = 0 be the z-direction link, az = 1 be the y-direction
link, and az = 2 be the x-direction link. We define a gate node as a PE that has free links
to interconnect with PEs at the higher level. Thus each gate node has two links and is
hierarchically interconnected with the PEs at the higher level by a 3D-torus network.

Successively higher level networks are built by recursively interconnecting lower level
subnetworks in a 3D-torus of size (n × n × n), where n is also a positive integer. As
illustrated in Figure 7.2, a Level-2 MH3DT network, for example, can be formed by
interconnecting 64 BMs as a (4 × 4 × 4) 3D-torus network. Each BM is connected to its
logically adjacent BMs. 2q gate nodes are used higher level interconnection, where q is
the inter-level connectivity. As each xy-plane of the BM has 4 gate nodes, q ∈ {0, 1, 2}.
q = 0 leads to minimal inter-level connectivity, while q = 2 leads to maximum inter-level
connectivity. By using the parameters m, n, L, and q, we can define the MH3DT network
as MH3DT(m, n, L, q).

Let N be the total number of nodes in an MH3DT network. Then an MH3DT network
with level L has N =

[

m3 × n3(L−1)
]

. With q = 0, for example, Level-5 is the highest

possible level to which a (4 × 4 × 4) BM can be interconnected. The total number of
nodes in a network having (4× 4× 4) BMs and a (4× 4× 4) Level-5 network is N = 230,
i.e, more than one billion. A PE in the Level-L is addressed by three base-n numbers as
follows:

AL =
(

aL
z

) (

aL
y

) (

aL
x

)

, (0 ≤ aL
z , aL

y , aL
x ≤ n − 1) (7.2)



7.2 Modified Hierarchical 3D-Torus Network 163

The address of a PE at Level-L is represented by:

AL = (aL
z )(aL

y )(aL
x ) L is the level number. (7.3)

More generally, in a Level-L MH3DT network, the node address is represented by:

A = ALAL−1AL−2 ... ... A2A1

= aα aα−1 aα−2 aα−3 ... ... a3 a2 a1 a0

= a3L−1 a3L−2 a3L−3 a3L−4 ... ... a3 a2 a1 a0

= (a3L−1 a3L−2 a3L−3) ... ... (a2 a1 a0) (7.4)

Here, the total number of digits is α = 3L, where L is the level number. Groups of
digits run from group number 1 for Level-1 (i.e. the BM), to group number L for the L-th
level. In particular, i-th group (a3i−1 a3i−2 a3i−3) indicates the location of a Level-(i − 1)
subnetwork within the i-th group to which the node belongs; 2 ≤ i ≤ L. In a two-level
network, for example, the address becomes A = (a5 a4 a3) (a2 a1 a0). The last group of
digits (a5 a4 a3) identifies the BM to which the node belongs, and the first group of digits
(a2 a1 a0) identifies the node within that basic module.

7.2.2 Routing Algorithm

Routing of messages in the MH3DT network is performed from top to bottom. That
is, it is first done at the highest level network; then, after the packet reaches its highest
level sub-destination, routing continues within the subnetwork to the next lower level sub-
destination. This process is repeated until the packet arrives at its final destination. When
a packet is generated at a source node, the node checks its destination. If the packet’s
destination is the current BM, the routing is performed within the BM only. If the packet
is addressed to another BM, the source node sends the packet to the outlet node which
connects the BM to the level at which the routing is performed. We have considered
a simple deterministic, dimension-order routing algorithm. Routing of messages in the
network is performed initially in the z-direction, next in the y-direction, and finally in the
x-direction.

Routing in the MH3DT network is strictly defined by the source node address and the
destination node address. Let a source node address be sα, sα−1, sα−2, ..., s1, s0, a destina-
tion node address be dα, dα−1, dα−2, ..., d1, d0, and a routing tag be tα, tα−1, tα−2, ..., t1, t0,
where ti = di − si. The source node address of the MH3DT network is expressed as
s = (s3L−1, s3L−2, s3L−3), ..., ..., (s2, s1, s0). Similarly, the destination node address is
expressed as d = (d3L−1, d3L−2, d3L−3), ..., ..., (d2, d1, d0). Figure 7.3 shows the routing
algorithm for the MH3DT network.

As an example, a routing between PE(123)(211) and PE(333)(111) in the MH3DT network
is given. First the packet is moved to the gate node in the z-axis at Level-2, PE(123)(000).
Then the packet at PE(123)(000) is moved to the node with the same address in the z-axis,
PE(323)(000). Next, routing in the y-axis is applied in the same manner. The packet at
PE(323)(000) is moved to the gate node PE(323)(100) in the y-axis. The packet at PE(323)(100)

is moved to PE(333)(100) with the same address in the y-axis. Finally, the routing is applied
within the BM and terminated.



7.2 Modified Hierarchical 3D-Torus Network 164

Routing MH3DT(s,d);
source node address:sα, sα−1, sα−2, ..., s1, s0

destination node address: dα, dα−1, dα−2, ..., d1, d0

tag: tα, tα−1, tα−2, ..., t1, t0
for i = α : 3

if (ti > 0 and ti ≤ n
2
) or (ti < 0 and ti = −(n − 1)), movedir = positive; endif;

if (ti > 0 and ti = (n − 1)) or (ti < 0 and ti ≥ −n
2
), movedir = negative; endif;

if (movedir = positive and ti > 0), distance = ti; endif;
if (movedir = positive and ti < 0), distance = n + ti; endif;

if (movedir = negative and ti < 0), distance = ti; endif;
if (movedir = negative and ti > 0), distance = −n + ti; endif;

j = i mod 3
while(ti 6= 0 or distance 6= 0) do

if (j = 2), gate-node = z-axis gate-node of Level-d i
3
e; endif

if (j = 1), gate-node = y-axis gate-node of Level-d i
3
e; endif

if (j = 0), gate-node = x-axis gate-node of Level- i
3

+ 1; endif

if (routedir = positive), move packet to next BM; endif;
if (routedir = negative), move packet to previous BM; endif;

if (ti > 0), ti = ti − 1; endif;
if (ti < 0), ti = ti + 1; endif;

endwhile;

endfor;
BM Routing (t2, t1, t0);

BM tag t2, t1, t0 = receiving node address (r2, r1, r0) − destination (d2, d1, d0)
for i = 2 : 0

if (ti > 0 and ti ≤ m
2
) or (ti < 0 and ti = −(m − 1)), movedir = positive; endif;

if (ti > 0 and ti = (m − 1)) or (ti < 0 and ti ≥ −m
2
), movedir = negative; endif;

if (movedir = positive and ti > 0), distance = ti; endif;
if (movedir = positive and ti < 0), distance = m + ti; endif;
if (movedir = negative and ti < 0), distance = ti; endif;

if (movedir = negative and ti > 0), distance = −m + ti; endif;
endfor

while(t2 6= 0 or distance2 6= 0) do
if (movedir = positive), move packet to +z node; distance2 = distance2 − 1; endif;

if (movedir = negative), move packet to −z node; distance2 = distance2 + 1; endif;
endwhile;

while(t1 6= 0 or distance1 6= 0) do
if (movedir = positive), move packet to +y node; distance1 = distance1 − 1; endif;
if (movedir = negative), move packet to −y node; distance1 = distance1 + 1; endif;

endwhile;
while(t0 6= 0 or distance0 6= 0) do

if (movedir = positive), move packet to +x node; distance0 = distance0 − 1; endif;
if (movedir = negative), move packet to −x node; distance0 = distance0 + 1; endif;

endwhile;
end

Figure 7.3: Routing algorithm of the MH3DT network



7.2 Modified Hierarchical 3D-Torus Network 165

7.2.3 Deadlock-Free Routing

The most expensive part of an interconnection network is the wire that forms the physi-
cal channels; for a particular topology, the physical channel cost is constant. The second
most expensive elements are the buffers and switches. Since the networks we consider
are wormhole-routed, the main factor in buffer expense is the number of virtual channels.
Virtual channels [39] reduce the effect of blocking; they are used widely in parallel com-
puter systems, to improve dynamic communication performance by relieving contention
in the multicomputer network and to design deadlock-free routing algorithms. Since the
hardware cost increases as the number of virtual channels increases, the unconstrained use
of virtual channels is not cost-effective in parallel computers. Therefore, a deadlock-free
routing algorithm for an arbitrary interconnection network with a minimum number of
virtual channels is preferred. In this section, we discuss the minimum number of virtual
channels for deadlock-free routing of the MH3DT network. We also present a proof that
the MH3DT network is deadlock free.

To prove the proposed routing algorithm for the MH3DT network is deadlock free, we
divide the routing path into three phases, as follows:

• Phase 1: Intra-BM transfer path from source PE to the face of the BM.

• Phase 2: Higher level transfer path.

sub-phase 2.i.1 : Intra-BM transfer to the outlet PE of Level (L − i) through the
z-link.

sub-phase 2.i.2 : Inter-BM transfer of Level (L − i) through the z-link.

sub-phase 2.i.3 : Intra-BM transfer to the outlet PE of Level (L − i) through the
y-link.

sub-phase 2.i.4 : Inter-BM transfer of Level (L − i) through the y-link.

sub-phase 2.i.5 : Intra-BM transfer to the outlet PE of Level (L − i) through the
x-link.

sub-phase 2.i.6 : Inter-BM transfer of Level (L − i) through the x-link.

• Phase 3: Intra-BM transfer path from the outlet of the inter-BM transfer path to
the destination PE.

The proposed routing algorithm enforces some routing restrictions to avoid deadlocks
[38]. Since dimension-order routing is used in the MH3DT network, messages in the
network are routed first in the z-direction then in the y-direction, and finally in the x-
direction. The interconnection of the BM and the higher levels of the MH3DT network
is a toroidal connection. The number of virtual channels required to make the routing
algorithm deadlock-free for the MH3DT network is determined using Lemma 4.1.

Theorem 7.1 An MH3DT network with 2 virtual channels is deadlock free.

Proof: Both the BM and the higher levels of the MH3DT network have a toroidal
interconnection. In phase-1 and phase-3 routing, packets are routed in the source-BM
and destination-BM, respectively. The BM of the MH3DT network is a 3D-torus network.



7.2 Modified Hierarchical 3D-Torus Network 166

According to Lemma 4.1, the number of necessary virtual channels for phase-1 and phase-
3 is 2. Intra-BM links between inter-BM links are used in sub-phases 2.i.1, 2.i.3, and 2.i.5.
Thus, sub-phases 2.i.1, 2.i.3, and 2.i.5 utilize channels over intra-BM links, sharing the
channels of either phase-1 or phase-3. The gate nodes, as mentioned earlier, are used
for higher level interconnection. The free links in these gate nodes are used in sub-
phases 2.i.2, 2.i.4, and 2.i.6, and these links form a 3D-torus network for the higher level
network. According to Lemma 4.1, the number of necessary virtual channels for this
3D-torus network is also 2. The main idea is that messages are routed over one virtual
channel. Then, messages are switched over the other virtual channel if the packet is going
to use a wrap-around connection.

Therefore, the total number of necessary virtual channels for the whole network is 2.

7.2.4 Static Network Performance

In Section 3.3, we have discussed details about the static network performance of various
networks. In this section, we discuss some of the properties and performance metrics that
characterize the cost and performance of an interconnection network. The static network
performance of various networks with 4096 nodes, along with that of a CCC network with
4608 nodes, is tabulated in Table 7.1. The static network performance of the 4608-node
CCC network can not be compared with the other 4096-node networks. However, its
performance is included in Table 7.1 to show its topological properties.

Node Degree

For the MH3DT network, the node degree is independent of network size. Since each
node has eight channels, its degree is 8. Constant degree networks are easy to expand
and the cost of the network interface of a node remains unchanged with increasing size of
the network.

Diameter

The diameter of a network is the maximum inter-node distance, i.e., the maximum number
of links that must be traversed to send a message to any node along a shortest path.
Networks with small diameters are preferable. Table 7.1 shows a comparison of the
MH3DT network diameter with several other networks. Clearly, the MH3DT network
has a much smaller diameter than the conventional mesh, torus, TESH [47, 49], and H3D-
torus [61, 62] networks but larger than that of the hypercube network.

Cost

The product (diameter × node degree) is defined as the cost of a network in technology
independent manner. Table 7.1 shows that the cost of the MH3DT network is smaller than
that of the mesh, torus, and H3D-torus [61, 62] networks, equal to that of the hypercube
network, and a bit higher than the TESH [47, 49] network.



7.2 Modified Hierarchical 3D-Torus Network 167

Average Distance

The average distance is the mean distance between all distinct pairs of nodes in a net-
work. We have evaluated the average distance for different conventional topologies by
the corresponding formula and of different hierarchical networks by simulation. As we see
in Table 7.1, the MH3DT network has a smaller average distance than the conventional
mesh & torus network and hierarchical TESH and H3D-torus networks. However, the
average distance of the MH3DT network is higher than that of the hypercube network.

Arc Connectivity

Arc connectivity is the minimum number of links that must removed in order to break the
network into two disjoint parts. A network is maximally fault-tolerant if its connectivity
is equal to the degree of the network. The arc connectivity of several networks is shown
in Table 7.1. Clearly, the arc connectivity of the MH3DT network is higher than a
conventional mesh, TESH, and H3D-torus networks and it is closer to the node degree.
The arc connectivity of an interconnection networks is independent of its total number of
nodes. The arc connectivity of the torus and CCC network are exactly equal to the node
degree. Thus, torus and CCC are more fault tolerant than the MH3DT network.

Bisection Width

The Bisection Width (BW) of a network is defined as the minimum number of links that
must removed to partition the network into two equal halves. The bisection width of the
MH3DT network is calculated by:

BW(MH3DT ) = 2q+1 × (m × n) (7.5)

BW is calculated by counting the number of links that need to be removed to partition
the highest level (Level-L) torus. This equation is valid for higher level networks. We
don’t consider the interconnection of basic modules here. The basic module is simply a
3D-torus network so its bisection width is 2m2. Table 7.1 shows that the bisection width
of the MH3DT network is higher than that of the conventional mesh and TESH networks
and equal to that of the torus and H3D-torus networks.

Wiring Complexity

The wiring complexity of an interconnection network refers to the number of links needed
to be connected to a node as the network is scaled up. The wiring complexity depends
on the node degree, which is the number of channels incident to a node. The wiring
complexity has a direct correlation to hardware cost and complexity. An n-dimensional
torus network has n × N links, where N is the total number of nodes. The wiring
complexity of a Level-L MH3DT network is represented as shown in Eq. 7.6.

[

3m3 × n3(L−1) +
L
∑

i=2

3(2q)
{

n3(L−1)
}

]

(7.6)



7.2 Modified Hierarchical 3D-Torus Network 168

Table 7.1 compares the wiring complexity for a MH3DT network with several other
networks. The total number of physical links in the MH3DT network is higher than that
in the mesh, torus, TESH, and H3D-torus networks; therefore, the cost of physical links
is higher for the MH3DT network. However, it is almost half the wiring complexity of
the hypercube network.

Table 7.1: Comparison of static network performance of various network with 4096 node

Node Diameter Cost Average Arc Bisection Wiring
Degree Distance Connectivity Width Complexity

Hypercube 12 12 144 6 12 2048 24576

2D-Mesh 4 126 504 42.67 2 64 8064

2D-Torus 4 64 256 32 4 128 8192

CCC1 3 22 66 12.75 3 256 6912

H3D-torus 6 25 150 12.74 3 32 9408
(4,4,2,0)

MH3DT 8 20 160 10.36 6 32 12480
(4,4,2,0)

H3D-torus 6 21 126 10.77 3 128 9792
(4,4,2,2)

MH3DT 8 18 144 9.37 6 128 12864
(4,4,2,2)

TESH 4 32 128 17.80 2 8 8192
Network

†CCC network with 4608 nodes

7.2.5 Dynamic Communication Performance

The dynamic communication performance of a multicomputer is characterized by mes-
sage latency and network throughput. A network with low latency and high throughput
is preferable for massively parallel computers. To evaluate dynamic communication per-
formance, we have developed a wormhole routing simulator. In our simulation, we use
a dimension-order routing algorithm. The dimension-order routing algorithm, which is
exceedingly simple, provides the only route for the source-destination pair. Extensive
simulations for several networks have been carried out under the uniform traffic pattern,
in which each node sends messages to every other node with equal probability. Two vir-
tual channels per physical channel are simulated, and the virtual channels are arbitrated
by a round robin algorithm. For all of the simulation results, the packet size is 16 flits.
Two flits are used as the header flit. Flits are transmitted at 20, 000 cycles; in each clock
cycle, one flit is transferred from the input buffer to the output buffer, or from output to
input if the corresponding buffer in the next node is empty. Therefore, transferring data
between two nodes takes 2 clock cycles.



7.2 Modified Hierarchical 3D-Torus Network 169

Dynamic Communication Performance Evaluation

We have evaluated the dynamic communication performance of several 4096 node net-
works under uniform traffic patterns. As mentioned earlier that it is not possible to
construct a CCC network with 4096 nodes. Thus, we can not make a fair comparison
between the dynamic communication performance of the 4608-node CCC network and
the other, 4096-node networks.

Under the assumption of constant bisection width, low-dimensional networks with
wide channels provide lower latency, less contention, and higher throughput than higher-
dimensional networks with narrow channels [64]. However, if the bisection width is high
the network throughput will be high, and vice-versa. The bisection width of hypercube
networks is very high. Thus, their throughput is high, with the accompanying cost of
large latency [64]. Moreover, it has already been shown that the number of vertical links
between silicon wafers in the 3D-WSI implementation for the hypercube network is very
large; thus it is not suitable for 3D-WSI implementation [47, 49, 59]. This is why we
have considered conventional mesh networks rather than hypercubes for comparing the
dynamic communication performance. We have compared the dynamic communication
performance of various interconnection networks, including hierarchical interconnection
networks, with low bisection width.

To evaluate the dynamic communication performance of the H3D-torus and MH3DT
networks, we have used maximum inter-level connectivity, i.e., q = 2. For a fair com-
parison, we allocated 2 virtual channels to the router for performance evaluation. Figure
7.4(a) depicts the results of simulation under uniform traffic patterns for the various net-
work models. This figure presents the average transfer time as a function of network
throughput. Each curve stands for a particular network. As shown in Figure 7.4(a), the
average transfer time of the MH3DT network is lower than that of the H3D-torus, TESH,
and mesh networks; its maximum throughput is higher than that of the H3D-torus net-
work, TESH network, and mesh network with 1 virtual channel, but lower than that of
the mesh network with 2 virtual channels.

Effect of Buffer Size

In a large buffer , more flits can be stored in the one channel buffer; therefore, frequency
of packet blocking and deadlocks are decreased and the dynamic communication per-
formance of the interconnection network is increased. We have evaluated the dynamic
communication performance of various network models using a channel buffer size of 20
flits and the result is portrayed in Figure 7.4(b). As shown in Figure 7.4(b), the average
transfer time of the MH3DT network is lower than that of the H3D-torus, TESH, and
mesh networks; the maximum throughput of the MH3DT network is higher than that of
the H3D-torus network and mesh network with 1 & 2 virtual channels and equal to that
of the TESH network.

Effect of Message Length

In this section, we analyzed the effect of message length on dynamic communication
performance. We have evaluated the dynamic communication performance of the MH3DT
network for short, medium, and long messages to show the effect of message length. Figure



7.2 Modified Hierarchical 3D-Torus Network 170

 0

 100

 200

 300

 400

 500

 600

 0  0.005  0.010  0.015  0.020

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

TESH-VC2
H3DT-VC2

MH3DT-VC2
MESH-VC1
MESH-VC2

(a) Buffer size, 2 flits

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.005  0.010  0.015  0.020  0.025

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

TESH-VC2
H3DT-VC2

MH3DT-VC2
MESH-VC1
MESH-VC2

(b) Buffer size, 20 flits

Figure 7.4: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 4096 nodes, 2 VCs, 16 flits



7.2 Modified Hierarchical 3D-Torus Network 171

7.5 shows the average transfer time divided by message length for the uniform traffic
pattern. It is shown that in the MH3DT network, average transfer time decreases and
maximum throughput increases with an increase in message length.

Average message latency is smaller for long messages because wormhole switching is
used. Thus, the messages are pipelined in nature. Path setup time is amortized among
more flits when messages are long. Moreover, data flits can advance faster than message
headers because headers need a routing decision. Hence, headers have to wait for the
routing control unit to compute the output channel, and possibly, wait for the output
channel to become free. Therefore, when the header reaches the destination node, the
data flits advance faster, thus favoring long messages.

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s/

F
lit

)

 0

 5

 10

 15

 20

 0  0.005  0.010  0.015  0.020

Throughput (Flits/Cycle/Node)

16-Flits
64-Flits

256-Flits

Figure 7.5: Average transfer time divided by message length versus network throughput
of MH3DT network: 4096 nodes, 2 VCs, 16 flits, Buffer Size 2 flits.

Effect of Virtual Channels

We investigated the effect of adding extra virtual channels on the MH3DT network for
dimension-order routing. Figure 7.6 depicts the average transfer time as a function of
network throughput under the uniform traffic pattern for different virtual channels. The
minimum number of virtual channels for deadlock-free routing is 2. Adding 1 extra virtual
channel, for a total of 3, substantially improves the dynamic communication performance
of the MH3DT network. We have also evaluated the dynamic communication performance
of the MH3DT network using 4 virtual channels. Figure 7.6 shows that the maximum
throughput of the MH3DT network using 3 virtual channels is higher than that using
2 and almost same as that of 4 virtual channels. This striking difference of throughput
shows that we can significantly improve the dynamic communication performance of the
MH3DT network by adding 1 extra virtual channel over the minimum number.



7.2 Modified Hierarchical 3D-Torus Network 172

 0

 100

 200

 300

 400

 500

 600

 0  0.002  0.004  0.006  0.008  0.010  0.012  0.014  0.016

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

VC2
VC3
VC4

Figure 7.6: Dynamic communication performance of dimension order routing with uniform
traffic pattern on the MH3DT network: 4096 nodes, various virtual channels,, 16 flits,
Buffer Size 2 flits.

7.2.6 Summary

We have modified the H3D-torus network and presented a new hierarchical interconnection
network, called the MH3DT network for massively parallel computers. The architecture of
the MH3DT network, routing of messages, and static network performance were discussed
in detail. A deadlock-free routing algorithm with a minimum number of virtual channels
has been proposed for the MH3DT network. It has been proven that 2 virtual channels
per physical channel are sufficient for the deadlock-free routing algorithm of the MH3DT
network – 2 is also the minimum required number of virtual channels.

From the static network performance, it has been shown that the MH3DT network
possesses several attractive features including constant node degree, small diameter, small
cost, high connectivity, small average distance, and better bisection width. By using the
routing algorithm described in this paper and the uniform traffic pattern, we have evalu-
ated the dynamic communication performance of the MH3DT network as well as that of
several other interconnection networks. The average transfer time of the MH3DT network
is lower than that of the H3D-torus, TESH, and mesh networks. Maximum throughput
of the MH3DT network is also higher than that of those networks. A comparison of
dynamic communication performance reveals that the MH3DT network achieves better
results than the H3D-torus, TESH, and mesh networks. The MH3DT network yields low
latency and high throughput, which are very essential for high-performance massively
parallel computers.



7.3 Modified TESH Network 173

7.3 Modified TESH Network

A Tori connected mESH (TESH) network [42, 47–50, 69, 124, 142] is a new interconnec-
tion network for large-scale 3D multicomputers. The TESH network consists of multiple
basic modules (BMs) which are 2D-mesh networks. The BMs are hierarchically inter-
connected by a 2D-torus to build higher level networks. A TESH is a suitable network
for massively parallel computers. But the restricted use of physical links between basic
modules in the higher level networks reduces the dynamic communication performance
of this network. With the increase of inter-level connectivity, the communication perfor-
mance of the TESH network is better than that of mesh network. But with the increase
of inter-level connectivity, the vertical links between silicon planes will also be increased.
Thus, increasing the inter-level connectivity is not a suitable solution. It has already been
shown that a torus network has better dynamic communication performance than a mesh
network [64]. This is the key motivation that led us to replace the 2D-mesh of a TESH
network by a 2D-torus network.

The modified TESH network consists of BMs which are themselves 2D-tori, hierarchi-
cally interconnected in a 2D-torus networks. Analogous to the TESH network, we called
it as Tori connected Torus Network (TTN) .

7.3.1 Interconnection of the TTN

The TTN consists of BMs that are hierarchically interconnected to form higher level
networks. The BM of the TTN is a 2D-torus network of size (2m × 2m), where m is a
positive integer. However, in this section, we focus attention on (4 × 4) BM’s, for which
m = 2. The BM has some free ports at the contours for higher level interconnection. A
BM of (4× 4) torus is shown in Figure 7.7. All ports of the interior Processing Elements
(PEs) are used for intra-BM connections. All free ports of the exterior PEs, either one
or two, are used for inter-BM connections to form higher level networks. BM refers to a
Level-1 network.

Successive higher level networks are built by recursively interconnecting immediate
lower level subnetworks in a 2D-torus network. A higher-level network having a (2m×2m)
BM is built through a 2D-toroidal connection of (22m) immediate lower level subnetworks.
For example, considering (m = 2) a second-level subnetwork, can be formed by intercon-
necting 16 BMs. Similarly, a third-level network can be formed by interconnecting 16
second-level subnetworks, and so on. As illustrated in Figure 7.8, a Level-2 TTN, for
example, can be formed by interconnecting 16 BMs as a (4 × 4) 2D-torus network. Each
BM is connected to its logically adjacent BMs.

A TTN(m, L, q) is built using (2m × 2m) BMs and has L levels in its hierarchy. Here,
q is the inter-level connectivity. A (2m × 2m) BM has 2m+2 free ports at the contours for
higher level interconnection. It is useful to note that for each higher level interconnection,
a BM must use 4(2q) of its free links. 2(2q) free links for vertical interconnections and
2(2q) free links for horizontal interconnections. Here, q ∈ {0, 1, ....., m}, is the inter-
level connectivity. q = 0 leads to minimal inter-level connectivity, while q = m leads to
maximum inter-level connectivity. As shown in Figure 7.7, for example, the (4 × 4) BM
has 16 free ports. If we chose q = 0, then 4 of the free ports and their associated links
are used for each higher level interconnection. The highest level network which can be



7.3 Modified TESH Network 174

2H_out

2V_in 4H_in 4H_out 2H_in

3V_out 5H_in 5H_out 3H_in

3V_in

4V_out

4V_in

2V_out

5V_in

5V_out

3H_out3,0 3,1 3,2 3,3

2,0 2,1 2,2 2,3

1,0 1,1 1,2 1,3

0,0 0,1 0,2 0,3

} Free ports for higher
level interconnections

H        Horizonal
V        Vertical
in        incoming
out      outgoing

Figure 7.7: Basic module of the TTN

built from (2m × 2m) BM is Lmax = 2p−q + 1. With q = 0, Lmax = 22−0 + 1 = 5. Level-5
is the highest possible level that (4× 4) BM can be interconnected. The total number of
nodes in a TTN having (2m × 2m) BMs is N = 22mL. Lmax = 2p−q + 1 denotes maximum
level of hierarchy. Thus, the maximum number of nodes which can be interconnected by
a TTN(m, L, q) is N = 22m(2p−q).

Base-4 numbers are used for convenience of address representation. As seen in Figure
7.7, nodes in the BM are addressed by two digits, the first representing the row index
and the next representing the column index. More generally, in a Level-L TTN, the node
address is represented by:

A = ALAL−1AL−2 ... ... ... A2A1

= an−1an−2 an−3an−4 ... ... ... a3a2 a1a0

= a2L−1a2L−2 a2L−3a2L−4 ... ... ... a3a2 a1a0

= (a2L−1 a2L−2) (a2L−3 a2L−4) ... ... ... ... ... (a3 a2) (a1 a0) (7.7)

Here, the total number of digits is n = 2L, where L is the level number. Pairs of digits
run from group number 1 for Level-1, i.e., the BM, to group number L for the L-th level.
Specifically, i-th group (a2i−1 a2i−2) indicates the location of a Level-(i − 1) subnetwork
within the i-th group to which the node belongs; 2 ≤ i ≤ L. In a two-level network,



7.3 Modified TESH Network 175

PE

BM

Figure 7.8: Interconnection of a Level-2 TTN

for example, the address becomes A = (a4 a3) (a1 a0). The last group of digits (a4 a3)
identifies the BM to which the node belongs, and the first group of digits (a1 a0) identifies
the node within that BM.

7.3.2 Routing Algorithm

Routing of messages in the TTN is performed from top to bottom. That is, it is first done
at the highest level network; then, after the packet reaches its highest level sub-destination,
routing continues within the subnetwork to the next lower level sub-destination. This
process is repeated until the packet arrives at its final destination. When a packet is
generated at a source node, the node checks its destination. If the packet’s destination is
the current BM, the routing is performed within the BM only. If the packet is addressed
to another BM, the source node sends the packet to the outlet node which connects the
BM to the level at which the routing is performed.

Deterministic, dimension order routing algorithm is used by most existing multicom-
puters due to its simplicity. We have also considered the dimension order routing al-
gorithm for the TTN. We use the following strategy: at each level, vertical routing is



7.3 Modified TESH Network 176

performed first. Once the packet reaches the correct row, then horizontal routing is per-
formed. Routing in the TTN is strictly defined by the source node address and the des-
tination node address. Let a source node address be s = (s2L−1, s2L−2), (s2L−3, s2L−4), ...,
(s3, s2), (s1, s0), a destination node address be d = (d2L−1, d2L−2), (d2L−3, d2L−4), ..., (d3, d2),
(d1, d0), and a routing tag be t = (t2L−1, t2L−2), (t2L−3, t2L−4), ..., (t3, t2), (t1, t0), where
ti = di − si. Figure 7.9 shows the routing algorithm for the TTN.

In the case of q ≥ 1, there are multiple links for same level and direction. Logically,
in this case, each node selects the nearest link. For example, to transfer a packet from
Node-(2, 1) in a BM to Level-2 vertical link, the packet forwarded to Node(2, 0) since the
link of Node-(2, 0) is nearest among the nodes with the same level link. The function
get group number gets a group number. Arguments of this function are s, d, and routing
direction. Each free-link is labeled as (g, l, d, δ), where, 2 ≤ l ≤ L is the level, d ∈ {V, H}
is the dimension, and δ ∈ {+,−} is the direction. The function outlet x and outlet y
results the outlet node of the BM for higher level.

7.3.3 Deadlock-Free Routing

A deadlock-free routing algorithm can be constructed for an arbitrary interconnection
networks by introducing virtual channels. In this section, we investigate the number of
virtual channels required to make the routing algorithm deadlock-free for the TTN. We
also present a proof that the TTN is deadlock-free by these number of virtual channels.

To prove the proposed routing algorithm for the TTN is deadlock free, we divide the
routing path into three phases, as follows:

• Phase 1: Intra-BM transfer path from source PE to the outlet node of the BM.

• Phase 2: Higher level transfer path.

sub-phase 2.i.1 : Intra-BM transfer to the outlet PE of Level (L − i) through the
y-link.

sub-phase 2.i.2 : Inter-BM transfer of Level (L − i) through the y-link.

sub-phase 2.i.3 : Intra-BM transfer to the outlet PE of Level (L − i) through the
x-link.

sub-phase 2.i.4 : Inter-BM transfer of Level (L − i) through the x-link.

• Phase 3: Intra-BM transfer path from the outlet of the inter-BM transfer path to
the destination PE.

The proposed routing algorithm enforces some routing restrictions to avoid deadlocks
[38]. Since dimension-order routing is used in the TTN, routing of message first performed
in the vertical direction and then in the horizontal direction. The interconnection of the
BM and the higher levels of the TTN is a toroidal connection. The number of virtual
channels required to make the routing algorithm deadlock-free for the TTN is determined
using Corollary 4.1.

Theorem 7.2 A TTN with 4 virtual channels is deadlock free.



7.3 Modified TESH Network 177

Routing TTN(s,d);
source node address:s2L−1, s2L−2, s2L−3, ..., s1, s0

destination node address: d2L−1, d2L−2, d2L−3, ..., d1, d0

tag: t2L−1, t2L−2, t2L−3, ..., t1, t0
for i = 2L − 1 : 2

if {(di − si + 2m) mod 2m} ≤ 2
m

2
then routedir = positive;

ti = {(di − si + 2m) mod 2m};
else routedir = negative;

ti = {2m − (di − si + 2m) mod 2m}; endif;

g = get group number(s, d, routedir);
while (ti 6= 0) do

if (i mod 2) = 0, then
outlet nodex = outlet x(g, b i

2
+ 1c, H, routedir);

outlet nodey = outlet y(g, b i
2
+ 1c, H, routedir); endif;

if (i mod 2) = 1, then
outlet nodex = outlet x(g, b i

2
+ 1c, V, routedir);

outlet nodey = outlet y(g, b i
2
+ 1c, V, routedir); endif;

BM Routing(outlet nodex, outlet nodey)

if (routedir = positive), move packet to next BM; endif;
if (routedir = negative), move packet to previous BM; endif;
if (ti > 0), ti = ti − 1; endif;

if (ti < 0), ti = ti + 1; endif;
endwhile;

endfor;
BM Routing(ty, tx)

end
BM Routing (t1, t0);

BM tag t1, t0 = receiving node address (r1, r0) − destination (d1, d0)
for i = 1 : 0

if (ti > 0 and ti ≤ 2m−1) or (ti < 0 and ti = −(2m − 1)), movedir = positive; endif;

if (ti > 0 and ti = (2m − 1)) or (ti < 0 and ti ≥ −2m−1), movedir = negative; endif;
if (movedir = positive and ti > 0), distance = ti; endif;

if (movedir = positive and ti < 0), distance = 2m + ti; endif;
if (movedir = negative and ti < 0), distance = ti; endif;

if (movedir = negative and ti > 0), distance = −2m + ti; endif;
endfor

while(t1 6= 0 or distance1 6= 0) do
if (movedir = positive), move packet to +y node; distance1 = distance1 − 1; endif;
if (movedir = negative), move packet to −y node; distance1 = distance1 + 1; endif;

endwhile;
while(t0 6= 0 or distance0 6= 0) do

if (movedir = positive), move packet to +x node; distance0 = distance0 − 1; endif;
if (movedir = negative), move packet to −x node; distance0 = distance0 + 1; endif;

endwhile;
end

Figure 7.9: Routing algorithm of the TTN



7.3 Modified TESH Network 178

Proof: Both the BM and the higher levels of the TTN have a toroidal interconnection.
In phase-1 and phase-3 routing, packets are routed in the source-BM and destination-
BM, respectively. The BM of the TTN is a 2D-torus network. According to Corollary
4.1, the number of necessary virtual channels for phase-1 and phase-3 is 2. The routing
of the message in source-BM and destination-BM is carried out separately. The virtual
channels required in phase-1 and phase-3 can share each other. Intra-BM links between
inter-BM links are used in sub-phases 2.i.1 and 2.i.3. Thus, sub-phases 2.i.1 and 2.i.3
utilize channels over intra-BM links, sharing the channels of either phase-1 or phase-3.
The free links of the BM are used in inter-BM routing, i.e., sub-phases 2.i.2 and 2.i.4, and
these links form a 2D-torus network for the higher level network. According to Corollary
4.1, the number of necessary virtual channels for this 2D-torus network is also 2.

Therefore, the total number of necessary virtual channels for the whole network is 4.

7.3.4 Static Network Performance

In this section, we discuss some of the properties and performance metrics that charac-
terize the cost and performance of an interconnection network. The static network per-
formance of various networks with 4096 nodes including the proposed TTN is tabulated
in Table 7.2. We did not consider hypercube because of it very high wiring complexity.
The performance of MH3DT is better than that of H3D-torus networks

Node Degree

For the TTN, the node degree is independent of network size. Since each node has six
channels, its degree is 6. Constant degree networks are easy to expand and the cost of
the network interface of a node remains unchanged with increasing size of the network.
The I/O interface cost of a particular node is proportional to its degree. The degree of
the TTN is higher than that of its counterpart TESH network but lower than that of
MH3DT network.

Diameter

The diameter of a network is the maximum inter-node distance, i.e., the maximum number
of links that must be traversed to send a message to any node along a shortest path. Table
7.2 shows a comparison of the TTN diameter with several other networks. Clearly, the
TTN has a much smaller diameter than the conventional mesh, torus, and TESH networks.
Although MH3DT provides a comparable diameter with the TTN, it requires more links.

Cost

The product (diameter × node degree) is defined as the cost of a network in technology
independent manner. Table 7.2 shows that the cost of the TTN is smaller than that of the
mesh, torus, TESH(2,3,0) and MH3DT networks. From the performance of TESH(2,3,0)
and TESH(2,3,1), it can be believed that the cost of TTN(2,3,1) is also lower than that
of the TESH(2,3,1).



7.3 Modified TESH Network 179

Average Distance

The average distance is the mean distance between all distinct pairs of nodes in a net-
work. We have evaluated the average distance for different conventional topologies by the
corresponding formula and of different hierarchical networks by simulation. As shown in
Table 7.2, the TTN has a smaller average distance than the conventional mesh & torus
network and hierarchical TESH network. However, the average distance of the TTN is
higher than that of the MH3DT network.

Arc Connectivity

Arc connectivity is the minimum number of links that must removed in order to break the
network into two disjoint parts. A network is maximally fault-tolerant if its connectivity
is equal to the degree of the network. The arc connectivity of various networks is shown
in Table 7.2. Clearly, the arc connectivity of the TTN is higher than a conventional mesh
and TESH networks and equal to that of the torus network. However, the arc connectivity
of the torus network is exactly equal to its degree. Thus, torus is more fault tolerant than
the TTN.

Table 7.2: Comparison of static network performance of various network with 4096 node

Node Diameter Cost Average Arc Bisection Wiring
Degree Distance Connectivity Width Complexity

2D-Mesh 4 126 504 42.67 2 64 8064

2D-Torus 4 64 256 32 4 128 8192

MH3DT 8 18 144 9.37 6 128 12864
(4,4,2,2)

TESH 4 32 128 17.80 2 8 8192
(2,3,0)

TESH 4 28 112 14.53 2 16 10240
(2,3,1)

TTN 6 20 120 10.59 4 8 10240
(2,3,0)

Bisection Width

The Bisection Width (BW) of a network is defined as the minimum number of links that
must removed to partition the network into two equal halves. Table 7.2 shows that the
bisection width of the TTN is lower than that of the mesh, torus, and MH3DT networks
and equal to that of the TESH network.

Wiring Complexity

The wiring complexity of an interconnection network refers to its total number of links.
The wiring complexity has a direct correlation to hardware cost and complexity. The
wiring complexity of a Level-L TTN is represented as shown in Eq. 7.8.



7.3 Modified TESH Network 180

[

k2(L−1) ×
{

2k2 + 4(2q)(L − 1)
}]

(7.8)

Table 7.1 compares the wiring complexity for a TTN with several other networks. The
total number of physical links in the TTN is higher than that in the mesh, torus, and
TESH, networks; therefore, the cost of physical links is higher for the TTN. But it is lower
than that of MH3DT network.

7.3.5 Dynamic Communication Performance

The dynamic communication performance of a multicomputer is characterized by mes-
sage latency and network throughput. A network with low latency and high throughput
is preferable for massively parallel computers. To evaluate dynamic communication per-
formance, we have developed a wormhole routing simulator. In our simulation, we use
a dimension-order routing algorithm. The dimension-order routing algorithm, which is
exceedingly simple, provides the only route for the source-destination pair. Extensive
simulations for several networks have been carried out under the uniform traffic pattern,
in which each node sends messages to every other node with equal probability. We did
not consider H3D-torus network in this section, rather we consider MH3DT network.
Four virtual channels per physical channel are simulated, and the virtual channels are
arbitrated by a round robin algorithm. For all of the simulation results, the packet size
is 16 flits. Two flits are used as the header flit. Flits are transmitted at 20, 000 cycles;
in each clock cycle, one flit is transferred from the input buffer to the output buffer, or
from output to input if the corresponding buffer in the next node is empty. Therefore,
transferring data between two nodes takes 2 clock cycles.

Dynamic Communication Performance Evaluation

We have evaluated the dynamic communication performance of several 4096 node net-
works under uniform traffic patterns. It is already shown that the dynamic communication
performance of the MH3DT network is better than H3D-torus network. This is why, in
this section, for comparison, we did not consider H3D-torus network. We also exclude
hypercube for its high cost. We have also consider conventional mesh and torus networks.

To evaluate the dynamic communication performance of the TESH and TTN networks,
we have used minimum inter-level connectivity, i.e., q = 0. For a fair comparison, we
allocated 4 virtual channels to the router for performance evaluation. Figure 7.10 shows
the results of simulation under uniform traffic patterns for the various network models.
This figure presents the average transfer time as a function of network throughput. Each
curve stands for a particular network. As shown in Figure 7.10, the average transfer time
of the TTN is far lower than that of the mesh network, remarkably lower than that of
TESH network, and a bit higher than that of MH3DT network. This benefit of latency
for MH3DT network is achieved with the cost of extra links. The maximum throughput
of the TTN is higher than that of the MH3DT, TESH, and mesh networks. Therefore, the
dynamic communication performance of the TTN with minimum inter-level connectivity
is better than that of mesh, TESH, and MH3DT networks.



7.3 Modified TESH Network 181

0

50

100

150

200

250

300

350

400

450

0 0.005 0.01 0.015 0.02 0.025 0.03

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Mesh

TESH

MH3DT

TTN

Figure 7.10: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 4096 nodes, 4 VCs, 16 flits, and q = 0.

0

50

100

150

200

250

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 T
ra

ns
fe

r 
T

im
e 

(C
yc

le
s)

Throughput (Flits/Cycle/Node)

Torus

TESH

TTN

Figure 7.11: Dynamic communication performance of dimension-order routing with uni-
form traffic pattern on various networks: 4096 nodes, 4 VCs, 16 flits, and q = 1.



7.3 Modified TESH Network 182

To show the superiority of the TTN over torus network, we have increased the inter-
level connectivity from q = 0 to q = 1. Figure 7.11 shows the results of simulation under
uniform traffic patterns for the TTN along with TESH and torus networks. Each curve
stands for a particular network. As shown in Figure 7.11, the average transfer time of
the TTN is far lower than that of the torus network and remarkably lower than that of
TESH network. The maximum throughput of the TTN is higher than that of the TESH
network. However, the maximum throughput of the TTN is a little bit higher than that
of torus, with the accompanying cost of large latency. Therefore, we can conclude that
the the dynamic communication performance of the TTN is better than that of torus and
TESH networks.

In [124, 125], it is shown that the dynamic communication performance, especially net-
work throughput, of the TESH network is lower than that of mesh network with q = 0 and
higher than that of mesh network with q = 1. But, the benefits 3D-WSI implementation
of TESH network is diminishing with the increase of inter-level connectivity (q). Because
the the vertical links between wafer planes will increase with q. As shown in Figure 7.10,
it is shown that the dynamic communication performance of the TTN is better than that
of mesh network with q = 0, i.e. minimum inter-level connectivity. As shown in Table
7.2, it is shown that the total number of physical links of TESH(231) and TTN(231) is
equal. Therefore, with the same physical link cost, TTN yields better performance than
that of TESH network.

Torus is a suitable network for parallel computers due to its symmetry and regularity.
However, the length of the longest wire is a limiting factor for a network with thousands
or millions of nodes. The operating speed of a network is limited by the physical length
of links. With the cost of some additional short length links, the dynamic communication
performance of the TTN is better than that of torus network.

To show the versatility of the TTN, it is required do more experiments with various
point of view such as deadlock-free routing with minimum number of virtual channels,
dynamic communication performance under various traffic patterns, effect of message
length, and effect of virtual channels.

7.3.6 Summary

We have modified the TESH network and presented a new hierarchical interconnection
network, called TTN for massively parallel computers. The architecture of the TTN,
routing of messages, and static network performance were discussed in detail. A deadlock-
free routing algorithm with 4 virtual channels has been proposed for the TTN.

From the static network performance, it has been shown that the TTN possesses sev-
eral attractive features including constant node degree, small diameter, small cost, high
connectivity, small average distance, and better bisection width. By using the routing
algorithm described in this paper and the uniform traffic pattern, we have evaluated the
dynamic communication performance of the TTN as well as that of several other inter-
connection networks. The average transfer time of the TTN is lower than that of the
mesh, torus, TESH, and MH3DT networks. Maximum throughput of the MH3DT net-
work is also higher than that of those networks. A comparison of dynamic communication
performance reveals that the TTN achieves better results than the mesh, torus, TESH,
and MH3DT networks. The TTN yields low latency and high throughput with reasonable



7.4 Conclusion 183

cost. Therefore, TTN is a good choice would be a good interconnection network for future
generation massively parallel computers.

7.4 Conclusion

In this chapter, we have modified two hierarchical (H3D-torus and TESH) networks us-
ing torus-torus networks. We called these networks as Modified Hierarchical 3D-Torus
(MH3DT) Network and Tori connected Torus Network (TTN). The architecture of these
networks, routing of messages, static network performance, and dynamic communication
performance were discussed in detail. Form the performance evaluation, the modification
using torus-torus networks gives better result than that of its original one as well as other
networks.



Chapter 8

“I do not know what I may appear to the world,
but to myself I seem to have been only like a
boy playing at the seashore, and diverting my-
self in now and then finding a smoother peb-
ble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before
me.”

– Sir Isaac Newton (1642–1727)

Conclusions

8.1 Introduction

The interconnection network is a crucial component in massively parallel computer sys-
tems because any interaction between the processing elements ultimately depends on its
effectiveness [156]. Although many network architectures have been studied, and indeed
deployed, none has proved clearly superior in all aspects, since the communication re-
quirements of different applications vary widely. Communication bottlenecks in parallel
computers arise from the fact that richly connected networks are impractical for large
number of nodes. The k-ary n-cube has undoubtedly been the most popular interconnec-
tion network used in practice because it has the most desirable properties. However, it is
impractical for 3D-WSI implementation with several thousands or millions of nodes. The
research for this dissertation began with the search for a superior interconnection network
for massively parallel computer systems.

8.2 Conclusions

Parallel computers are generally built from processing elements which are interconnected
in a network. In this dissertation, we have proposed a new hierarchical interconnection
network called Hierarchical Torus Network (HTN) to overcome the drawbacks of
conventional networks. Using the proposed HTN, millions of nodes can be connected to-
gether while retaining good network properties. The design of an interconnection network
is a trade-off among attributes. We studied various aspects of HTN to demonstrate its
superiority over other networks.

The network architecture of the HTN, routing of messages in the network, static net-
work performance, and 3D-WSI issues have been discussed in detail. From the static
network performance, it can be seen that the HTN possesses several attractive features.



8.2 Conclusions 185

These include constant node degree, small diameter, small average distance, and high
connectivity. A large bisection width implies a high degree of fault tolerance; however, it
requires a larger layout area for VLSI implementation. A small bisection width network
is wire efficient for VLSI implementation; however, it slows down the data and informa-
tion exchange between the two halves of the network, making a network with moderate
bisection width preferable. The bisection width of the HTN is higher than that of TESH
and H3D-mesh networks, equal to that of a H3D-torus network, and smaller than that
of conventional mesh and torus networks. Finally, we can conclude that the HTN has
better bisection width. Using the HTN, millions of nodes can be interconnected while
maintaining good static network performance.

The HTN is well suited for 3D stacked-implementation. It is shown that the peak
number of vertical links in 3D stacked-implementation is quite low for HTN as compared
to similar networks. Thus, HTN permits efficient VLSI/ULSI/WSI realization. The
layout area of HTN in 3D stacked-implementation is amenable to 3D implementation. In
part, this is due to the lower number of vertical wires needed than in almost all other
multi-computer networks. 3D-WSI implementation reduces the longest wire length 4.20
times over planar implementation.

We have used wormhole routing for switchingbecause it has low buffering requirements,
and more importantly, it makes latency independent of the message distance. Since
wormhole routing relies on a blocking mechanism for flow control, deadlock can occur
because of cyclic dependencies over network resources during message routing. Since the
hardware cost increases as the number of virtual channels increases, the unconstrained
use of virtual channels is cost-prohibitive in parallel computers. Therefore, a deadlock
free routing algorithm with a minimum number of virtual channels is needed. In this
dissertation, we have presented a deadlock free routing algorithm using dimension order
routing with a minimum number of virtual channels for the HTN. It has been proven
that two virtual channels per physical channel are sufficient for the deadlock free routing
algorithm of the HTN; two is also the minimum number of virtual channels for dimension
order routing.

By using the deterministic, dimension-order routing algorithm and the uniform traffic
pattern, we have evaluated the dynamic communication performance of the HTN as well as
that of several other commonly used networks and hierarchical interconnection networks
with two virtual channels. The average transfer time of HTN is lower than that of
the H3D-mesh, TESH, mesh, and torus networks. Maximum throughput of the HTN
is also higher than that of those networks. A comparison of dynamic communication
performance reveals that the HTN outperforms the H3D-mesh, TESH, mesh, and torus
networks because it yields low latency and high throughput, which are indispensable for
high performance massively parallel computers.

A deadlock-free routing algorithm for an arbitrary interconnection network with a
minimum number of virtual channels is preferred. However, there is a trade-off between
dynamic communication performance and the number of virtual channels. The perfor-
mance improves significantly as virtual channels are initially added. The benefits then
diminish as more channels are added. Therefore, it is better to use as many virtual chan-
nels as will yield optimum performance. In this dissertation, we have analyzed the effect
of the number of virtual channels and selected the number of virtual channels to achieve
optimum performance. It is shown that 3 virtual channels per physical channel is the best



8.2 Conclusions 186

choice to achieve optimum performance. We have investigated the impact of non-uniform
traffic patterns on the HTN using dimension order routing with 3 virtual channels. Under
various nonuniform traffic patterns, the dynamic communication performance of the HTN
is always better than that of the H3D-mesh, H3D-torus, TESH, and mesh networks. It
is also shown that the impact of non-uniform traffic patterns on the HTN is less than on
the other networks.

In this dissertation, we have described a suite of low-cost adaptive routers, link-
selection (LS), channel-selection (CS), and combination of link-selection and channel-
selection (LS+CS), with dimension order routing, analyzed their cost, and evaluated the
dynamic communication performance of the HTN. The hardware cost for the LS, CS, and
LS+CS algorithms is exactly equal to dimension order routing. Based on a 0.8 micron
gate array technology, we characterized the speed of those adaptive routers including the
popular dimension order router. The inter-node router delay of path setup and data
through are 9.69 ns and 6.69 ns for dimension-order routing and 12.99 ns and 6.69 ns
for the LS, CS, and LS+CS algorithms. The only overhead imposed is router delay for
header selection.

The proposed adaptive routing algorithms – CS, LS, and LS+CS – are simple and
efficient for using the physical links and virtual channels of an HTN to improve dynamic
communication performance. The freedom from deadlock of the proposed CS, LS, and
LS+CS algorithms using 3 virtual channels has been proved. Using these adaptive routing
algorithms and several traffic patterns, we have evaluated the dynamic communication
performance of the HTN. In all traffic patterns, the average transfer time of the HTN
using the CS, LS, and LS+CS algorithms is lower than when the dimension order routing
is used, but the differences are not impressive. On the other hand, maximum throughput
using the CS, LS, and LS+CS algorithms is higher than when the dimension order routing
algorithm is used. Efficient use of physical links and virtual channels significantly improves
the dynamic communication performance. A comparison of dynamic communication per-
formance reveals that the LS+CS algorithm outperforms all other algorithms; an HTN
using the LS+CS algorithm yields low latency and high throughput. The hardware cost
of the LS+CS algorithm is exactly equal to that of dimension order routing. Therefore,
an HTN with the LS+CS algorithm would be a good choice for future massively parallel
computers.

A fault tolerant network is essential for the reliability of massively parallel computer
systems, because a single node failure in a massively parallel computer system may make
the computer crash or produce an erroneous computational result. We have presented a
reconfiguration scheme for replacing faulty nodes with redundant nodes for the HTN. A
hierarchical redundancy approach is explored, in which redundancy is provided at each
level of the network. We have evaluated the yield of the HTN. The results indicate that,
with a 25% redundancy at each level, the system yield at the basic module and second
level are satisfactory. In short, we conclude that we have accomplished the reconfiguration
by redundancy and successfully estimated the yield of the HTN.

The interconnection network used in a multicomputer system plays a key role in de-
termining how fast applications can be executed on the system. To show the suitability
of the HTN, we discuss mapping of some commonly used advanced applications, such as
bitonic merge, FFT, and finding the maximum. The processing time of an application
mapping in an interconnection network depends on the number of communication steps.



8.2 Conclusions 187

The versatility of the HTN in various application mappings is investigated by evaluating
the total number of communication steps. It is shown that the number of communica-
tion steps required for various advanced application mappings on the HTN is lower than
for conventional and other hierarchical interconnection networks. A comparison of the
total number of communication steps reveals that the HTN outperforms the H3D-mesh,
H3D-torus, TESH, and k-ary n-cube networks.

Pruning is the process of removing links from a basis network in a periodic fashion
for reduced hardware complexity and increased performance. The wiring complexity of
the system is an important issue since the silicon area is limited and in general networks
are wiring intensive. HTN consists of multiple basic modules, where each basic module
is a 3D-torus network. The wrap-around links of the end-to-end nodes result in a large
number of links. The application of pruning techniques on the HTN reduces the wiring
complexity and hence the hardware cost. The architecture of the pruned HTN and the
3D-Integration issue are discussed in detail in this dissertation. Pruned HTN reduces both
the I/O interface cost and hardware cost and complexity. The pruned HTN is well suited
for 3D-wafer stacked-implementations. It is shown that the peak number of vertical links
in a 3D stacked-implementation is low for pruned HTN as compared to its non-pruned
counterpart. The layout area of pruned HTN in 3D-WSI is less than that of non-pruned
HTN. Therefore, HTN permits efficient VLSI/ULSI/WSI realization.

We have shown through the HTN that a hierarchical interconnection network where
both the basic module and Level-2 networks have toroidal connection and yields better
dynamic communication performance than other hierarchical networks. To show the
versatility of the torus-torus combination for hierarchical networks, we have modified two
hierarchical networks (H3D-torus and TESH) using torus-torus networks.

We have modified the H3D-torus network and presented a new hierarchical inter-
connection network, called the MH3DT network for massively parallel computers. The
architecture of the MH3DT network, routing of messages, and static network performance
were discussed in detail. A deadlock-free routing algorithm with a minimum number of
virtual channels has been proposed for the MH3DT network. We proved that 2 virtual
channels per physical channel are sufficient for the deadlock-free routing algorithm of the
MH3DT network – 2 is also the minimum required number of virtual channels. From
the static network performance, it was shown that the MH3DT network possesses sev-
eral attractive features including constant node degree, small diameter, small cost, high
connectivity, small average distance, and better bisection width. By using the dimension-
order routing algorithm and the uniform traffic pattern, we have evaluated the dynamic
communication performance of the MH3DT network as well as that of several other in-
terconnection networks. The average transfer time of the MH3DT network is lower than
that of the H3D-torus, TESH, and mesh networks. Maximum throughput of the MH3DT
network is also higher than that of those networks. A comparison of dynamic commu-
nication performance reveals that the MH3DT network achieves better results than the
H3D-torus, TESH(2, 3, 0), and mesh networks.

We have also modified the Tori connected mESH (TESH) network. Analogous to the
TESH network, we refer to it as the Tori connected Torus Network (TTN). The architec-
ture of the TTN, routing of messages, and static network performance were discussed in
detail. A deadlock-free routing algorithm with 4 virtual channels has been proposed for
the TTN. From the static network performance, it has been shown that the TTN, like



8.3 Future Directions 188

MH3DT, possesses several attractive features that include constant node degree, small di-
ameter, small cost, high connectivity, small average distance, and better bisection width.
By using the dimension-order routing algorithm and the uniform traffic pattern, we have
evaluated the dynamic communication performance of the TTN as well as that of several
other interconnection networks. The average transfer time of the TTN is lower than that
of the mesh, torus, TESH, and MH3DT networks. Maximum throughput of the TTN is
also higher than that of those networks. A comparison of dynamic communication per-
formance reveals that the TTN achieves better results than the mesh, torus, TESH, and
MH3DT networks. The TTN yields low latency and high throughput with reasonable
cost.

8.3 Future Directions

There are many areas in which the research presented in this dissertation could be ex-
tended. Some of these areas for further exploration are discussed below

• Many studies [157–162] have been conducted on the design, implementation, and
simulation-based and experimental-based performance evaluation of collective com-
munication algorithms on various networks. In this dissertation, for routing message
in the HTN, we have considered only one-to-one communication. A deadlock-free
wormhole routed multicast routing system for the HTN would also be an interesting
future research topic.

• There are two ways to evaluate the dynamic communication performance of an
interconnection network, viz., computer simulation and analytical model [163]. We
have evaluated the dynamic communication performance by computer simulation.
However, an analytical model is a cost-effective and versatile tool for evaluating
system performance under different design alternatives. Using analytical models,
one can see the effect of each parameter on the system performance including those
parameters related to the network configuration, implementation choices and traffic
load. In future, we would like to evaluate the dynamic communication performance
of the HTN using a new analytical model and compare its performance with the
simulation results.

• In real systems increasing size increases failure rates, and the incorporation of fault
tolerant techniques will be of great importance. Parallel computers tend to be quite
large and they could benefit greatly from fault-tolerant capabilities. Redundancy
and yield of HTN is presented in this dissertation but is not sufficient for fault
tolerance. Therefore, we would like to develop fault-tolerant routing algorithms for
an HTN with faulty nodes.

• The ability of a network topology to efficiently simulate another topology is often
of considerable interest when designing parallel algorithms for a multicomputer net-
work. The communication patterns in some parallel algorithms inherently favor
certain topologies – for example, matrix operations often map naturally to a mesh
network and divide-and-conquer algorithms are easily implemented on a hypercube.



8.3 Future Directions 189

Thus, we plan to investigate the embedding of other frequently used topologies into
the HTN.

• We have pointed out pruning technique for HTN and studied the 3D-WSI issue
for the pruned HTN. Due to a shortage of time, we could not explore various is-
sues regarding pruned HTN. Thus, the static network performance and dynamic
communication performance of the pruned HTN have been kept as future works.

• The prototyping approach, implemented on Field Programmable Gate Array (FPGA),
provides another middle ground between paper design and full scale implementation
efforts where a designer can quickly test the ideas without committing undue re-
sources. Prototype implementation on an FPGA significantly reduce the effort, cost,
and risk of hardware implementation. After analyzing both analytic and simulation
performance, we will implement an HTN on FPGA.

• A deadlock free routing algorithm using dimension order routing with 4 virtual
channels has been proposed for the TTN. However, the minimum number of virtual
channels required for deadlock-free routing is 2. A deadlock free routing algorithm
using dimension order routing with a minimum number of virtual channels and the
evaluation of dynamic communication performance under various traffic pattern will
be the subject of future works.

Of course, we would like to see the Hierarchical Torus Network (HTN) made fully
operational and in use by the research and industrial community.



Bibliography

[1] T. Boku, K. Itakura, H. Nakamura, and K. Nakazawa, “CP-PACS: a massively par-
allel processor for large scale scientific calculations,” Proceedings of ACM Supercom-
puting Conference, pp.108–115, 1997.

[2] W.C. Athas and C.L. Seitz, “Multicomputers: message passing concurrent comput-
ers,” IEEE Computer, vol. 21, no. 8, pp.9–24, 1988.

[3] P. Mohapatra, “Wormhole routing techniques in multicomputer systems,” ACM
Computing Surveys, vol. 30, no. 3, pp.375–411, 1998.

[4] L.M. Ni and P.K. McKinley, “A survey of wormhole routing techniques in direct
networks,” IEEE Computer, vol. 26, pp. 62–76, 1993.

[5] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni, “Interconnection Network: an
Engineering Approach”, IEEE Computer Society Press, Los Alamitos, California,
USA, 1997.

[6] W.J. Dally and B. Towles, “Principles and Practices of Interconnection Networks ”,
Morgan Kaufmann Publishers, San Francisco, California, USA, 2004.

[7] H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, M. Koga, O. Ishihara, M. Kashiyama, H.
Wada, and T. Sumimoto, “Architecture and performance of the Hitachi SR 2201 mas-
sively parallel processor system,” Proceedings 11th International Parallel Processing
Symposium, pp. 233–241, 1997.

[8] Y. Yasuda, H. Fujii, H. Akashi, Y. Inagami, T. Tanaka, J. Nakagoshi, H. Wada, and
T. Sumimoto,“Deadlock-free fault tolerant routing in the multidimensional crossbar
network and its implementation for the Hitachi SR2201,” Proceedings of 11th Inter-
national Parallel Processing Symposium, pp. 346–352, 1997.

[9] J. Konicek, T. Tilton, A. Veidenbaum, C.Q. Zhu, E.S. Davidson, R. Downing, M.
Haney, M. Sharma, P.C. Yew, P.M. Farmwald, D. Kuck, D. Lavery, R. Lindsey,
D. Pointer, J. Andrews, T. Beck, T. Murphy, S. Turner, and N. Warter,“The Or-
ganization of the Cedar System,” Proceedings of International Conference Parallel
Processing, pp. 49–56, 1991.

[10] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P.
McAuliffe, F.A. Melton, V.A. Norton, and J. WEiss,“The IBM research parallel pro-
cessor prototype (RP3): introduction and architecture,” Proceedings of International
Conference Parallel Processing, pp. 764–771, 1985.

190



BIBLIOGRAPHY 191

[11] M. Banikazemi, V. Moorthy, L. Herger, D. K. Panda, and B. Abali,“Efficient Virtual
Interface Architecture Support for the IBM SP Switch-Connected NT Clusters,”
Proceedings International Parallel and Distributed Processing Symposium (IPDPS
2000), pp. 33–42, 2000.

[12] C. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman, M. Ganmukhi, J. Hill, W.
Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong-Chan, Y. Saw-Wen, and
R. Zak,“The network architecture of the Connection Machine CM-5,” Journal of
Parallel and Distributed Computing, vol. 33, no. 2, pp. 145-158, 1996.

[13] A. Ferreira, A.G. vel Lejbman, and S.W. Song, “Bus-based parallel computers: a
viable way for massive parallelism,” Proceedings of Parallel Architectures and Lan-
guages, pp. 553–564, 1994.

[14] Intel Corp., iPSC/1 reference manual, 1986.

[15] R. Arlanskas, “iPSC/2 system: a second generation hypercube,” Proceedings of 3rd
ACM Conference on Hypercube Concurrent Computers and Applications, pp. 38–42,
1988.

[16] S.F. Nugent, “The iPSC/2 direct-connect communication technology,” Proceedings
Conference Hypercube Concurrent Computers and Applications, pp. 51–60, 1988.

[17] Intel Corporation, A Touchstone DELTA system description, 1991.

[18] Intel Corp., Paragon XP/S product overview, Supercomputer Systems Division,
Beaverton, Oregon, 1991.

[19] C.L. Seitz, “The Cosmic cube,” Communication of the ACM, vol. 28, no. 1, pp.
22–33, 1985.

[20] nCUBE Systems, N-cube handbook, 1986.

[21] nCUBE Systems, nCUBE 2: nCUBE 6400 processor manual, 1990.

[22] nCUBE Systems, nCUBE-3, at http//www.ncube.com.

[23] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J. Kubiatowicz,
B.H. Lim, K. Mackenzie, and D. Yeung, “The MIT Alewife machine: architecture
and performance,” Proceedings of 22nd Annual International Symposium Computer
Architecture, pp. 2–13, 1995.

[24] M. Noakes, D.A. Wallach, and W.J. Dally, “The J-machine multicomputer: an ar-
chitectural evaluation,” Proceedings of the 20th International Symposium Computer
Architecture, pp. 224–235, 1993.

[25] M. Noakes and W.J. Dally, “System design of the J-machine,” Proceedings of Ad-
vanced Research in VLSI, pp. 179–192, 1990.



BIBLIOGRAPHY 192

[26] M. Fillo, S.W. Keckler, W.J. Dally, N.P. Carter, A. Chang, Y. Gurevich, and W.S.
Lee,“The M-Machine Multicomputer,” International Journal of Parallel Program-
ming - Special Issue on Instruction-Level Parallel Processing Part II, vol. 25, no. 3,
pp. 183–212, 1997.

[27] C. Peterson, J. sutton, and P. Wiley, “iWARP: a 100-MPOS VLIW microprocessor
for multicomputers,” IEEE Micro, vol. 11, no. 13, 1991.

[28] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M.
Horowitz, and M.S. Lam., “The Stanford DASH multicomputer,” IEEE Computer,
vol. 25, no. 3, pp. 63–79, 1992. .

[29] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy,
“The Stanford FLASH multiprocessor,” Proceedings of the 21st International Sym-
posium Computer Architectures, pp. 302–313, 1994.

[30] R.E. Kessler, J.L Swarszmeier, “Cray T3D: a new dimension for Cray research,”
Proceedings CompCon, pp. 176–182, 1993.

[31] Cray Research Inc., The Cray T3E scalable parallel processing system, on Cray s
Web Page at http://www.cray.com/PUBLIC/product-info/T3E/ CRAY T3E.html.

[32] SGI. Origin2000 Rackmount Owner’s Guide, 007-3456-003, 1997. Web Psge at
http://teckpubs.sgi.com/

[33] A. Verma and C.S. Raghavendra, “Interconnection Networks for Multiprocessors and
Multicomputers: Theory and Practice”, IEEE Computer Society Press, 1994.

[34] Isaac D. Scherson and Abdou S. Youssef, “Interconnection Networks for High-
Performance Parallel Computers”, IEEE Computer Society Press, 1994.

[35] W.C. Athas and C.L. Seitz, “Multicomputers: Message-Passing Computers,” IEEE
Computer, vol. 21, no.8, pp.9-24, Aug. 1988.

[36] S.A. Felperin, L. Gravano, G. Pifarre, and J.L. Sanz, “Routing techniques for mas-
sively parallel communication.” Proc. IEEE, vol.79, no. 4, pp. 488–503, 1991.

[37] W.J. Dally and C.L. Seitz, “The Torus Routing Chip,” Journal of Distributed Com-
puting, vol.1, no. 3, pp. 187–196, 1986.

[38] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks,” IEEE Trans. on Computers vol.C-36, no.5, pp. 547–553,
May 1987.

[39] W.J.Dally, “Virtual-Channel Flow Control,” IEEE Transactions on Parallel and De-
stributed Systems, vol.3, no.2, pp. 194–205, 1992

[40] S. Ramany, “Routing in wormhole networks,” Ph.D. Dissertation, Computer Science
Department, University of Saskatchewan, 1995.



BIBLIOGRAPHY 193

[41] G.L. Frazier, “Buffering and flow control in communication switches for scalable
multicomputers,” Ph.D. Thesis, University of California, Los Angles, 1995.

[42] B.M. Maziarz and V.K. Jain, “Autometic Reconfiguration and Yield of the TESH
Multicomputer Network,” IEEE Trans. on Computers, vol. 51, no. 8, pp.963-972,
Aug. 2002.

[43] M.J. Little, J. Grinberg, S.P. Laub, J.G. Nash, and M.W. Yung, “3-D Computer”,
IEEE Int’l. Conf. on Wafer Scale Integration, pp. 55–64, 1989.

[44] M.L. Campbell, S.T. Toborg, and S.L. Taylor, “3-D Wafer Stack Neuro-computing”,
IEEE Int’l. Conf. on Wafer Scale Integration, pp. 67–74, 1993.

[45] J. Carson,“The Emergence of Stacked 3D Silicon and Impacts on Microelectronics
System Integration,” IEEE Int’l Conf. on Innovative Systems in Silicon, pp.1–8, Aug.
1996.

[46] H. Kurino, T. Matsumoto, K.H. Yu, N. Miyakawa, H. Itani, H. Tsukamoto, and M.
Koyanagi, “Three-dimensional Integration Technology for Real Time Micro Vision
Systems”, IEEE Int’l. Conf. on Innovative system in Silicon pp.203–212, 1997.

[47] V.K. Jain, T. Ghirmai, and S. Horiguchi, “TESH: A New Hierarchical Interconnec-
tion Network for Massively Parallel Computing”, IEICE Transactions, vol.E80-D,
no. 9, pp.837–846, 1997.

[48] V.K. Jain, T. Ghirmai, and S. Horiguchi, “Reconfiguration and Yield for TESH: A
New Hierarchical Interconnection Network for 3-D Integration”, Proc. IEEE Int’l.
Conf. SISI, pp.288–297, 1996.

[49] V.K. Jain and S. Horiguchi, “VLSI Considerations for TESH: A New Hierarchical
Interconnection Network for 3-D Integration”, IEEE Trans on VLSI Systems, vol.6,
no. 3, pp. 346–353, 1998.

[50] S. Horiguchi, T. Ooki, and V.K. Jain, “Network Performance of TESH: A New Hierar-
chical Interconnection Network for 3-D Integration”, Proc. of IASTED. International
Conf on Parallel and Distributed Computing and Networks, pp. 170–175, Brisbane,
Australis, 1998.

[51] Y.R. Potlapalli, “Trends in Interconnection Network Topologies: Hierarchical Net-
works”, Int’l. Conf. on Parallel Processing Workshop, pp. 24–29, 1995.

[52] Peter Kok, Keong Loh, and Wen Jing Hsu,“Study of Hierarchical Interconnection
Networks,” Technical report, 2002.

[53] A. El-Amawy and S. Latifi, “Properties and Performance of Folded Hypercube,”
IEEE Trans. on Parallel and Distributed Systems, vol. 2, no. 1, pp. 31–42, 1991.

[54] A. Esfahanian, L.M. Ni, and B.E. Sagan, “The Twisted n-Cube with Application to
Multiprocessing,” IEEE Trans. on Computers, vol. 40, no. 1, pp. 88–93, 1991.



BIBLIOGRAPHY 194

[55] J.M. Kumar and L.M. Patnaik, “Extended Hypercube: A Hierarchical Interconnec-
tion Network of Hypercube,” IEEE Trans. on Parallel and Distributed Systems, vol.
3, no. 1, pp. 45–57, 1992.

[56] N.F. Tzeng and S. Wei, “Enhanced Hypercube,” IEEE Trans. on Computers, vol.
40, no. 3, pp. 284–294, 1991.

[57] S.G. Ziavras, “A Versatile Family of Reduced Hypercube Interconnection Network,”
IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 11, pp. 1210–1220, 1994.

[58] L.N. Bhuyan and D.P. Aggarwal, “Generalized hypercube and hyperbus structurtes
for a computer network,”IEEE Trans. on Computers, vol.C-33, no. 4, pp. 323–333,
1984.

[59] S. Horiguchi, “New Interconnection for massively Parallel and Distributed Sys-
tem,” Research Report, Grant-in-Aid Scientific Research, Project Number: 09044150,
JAIST, pp. 1–72,1999.

[60] M.M. Hafizur Rahman, Y. Miura, and S. Horiguchi, “Dynamic Communication Per-
formance of Hierarchical Interconnection Network: H3D-Mesh,” Proc. of the 2nd
Int’l. Conf. on Electrical & Computer Engineering (ICECE), pp.352-355, Dhaka,
Bangladesh, Dec. 26–28, 2002.

[61] S. Horiguchi and T. Ooki, “Hierarchical 3D-Torus Interconnection network for Mas-
sively Parallel Computers”, JAIST Research Report, IS-RR-2000-022, pp. 1-15, ISSN
0918–7553, 2000.

[62] S. Horiguchi and T. Ooki, “Hierarchical 3D-Torus Interconnection Network,” Proc.
of ISPAN’00 , Texas, USA, pp.50–56, 2000.

[63] Franco P. Preparata and Jean Vuillemin, “The Cube-Connected Cycles: A Versatile
Network for Parallel Computation”, Communications of the ACM, vol.24, no. 5,
pp.300–309, May 1981.

[64] W.J. Dally , “Performance Analysis of k-ary n-cube Interconnection Networks”,
IEEE Trans. on Computers, vol. 39, no. 6, pp.775–785, June 1990.

[65] S. Horiguchi, “Wafer Scale Integration”, Proc. 6th Int’l Microelectronics Conference,
pp. 51–58, 1990.

[66] J.M. Wills and V.K. Jain, “Data Manipulator Interconnection Network for WSI
design,” Proc. Int. Conf. on Wafer Scale Integration, pp. 138–144, 1990.

[67] Jose Duato, “A new theory of Deadlock-Free Adaptive Routing in Wormhole Net-
works,” IEEE Trans. on Parallel and Distributed Systems, vol.4., no. 12, pp.1320–
1331, 1993.

[68] L. Schwiebert and D. N. Jayasimha, “A Necessary and Sufficient Condition for
Deadlock-Free Wormhole Routing,” Journal of Parallel and Distributed Computing,
vol. 32, no. 1, pp. 103–117, 1996.



BIBLIOGRAPHY 195

[69] Y. Miura and S. Horiguchi, “An Adaptive Routing for Hierarchical Interconnection
Network TESH,” Proc. of the 3rd Int’l Conf. on PDCAT0, Kanazawa, Japan, pp.
335–342, 2002.

[70] Andrew A. Chien and Jae H. Kim, “Planer-Adaptive Routing: Low-cost Adaptive
Networks for Multiprocessors,” Journal of the ACM, vol.42, no.1, pp.91–123, 1995.

[71] Jae H. Kim, “Planer-Adaptive Routing: Low-cost Adaptive Networks for Multipro-
cessors,” M.Sc. Thesis, University of Illinois at Urbana-Champaign, 1993.

[72] S. Horiguchi and S. Fukuda, “A Hierarchical Redundant Cube-Connected Cycles
for WSI yield enhancement”, Proc. IEEE Int’l. Conf. Wafer Scale Integration, pp.
163–171, 1995.

[73] D.A. Reed, “Cost-performance bounds for multicomputer networks,” IEEE Trans-
actions Computers, vol. C-32, no. 1, pp. 1183–1196, 1984.

[74] Daniel A. Reed and Drik C. Grunwald, “The Performance of Multicomputer Inter-
connection Networks,” IEEE Computer, pp.63–73, June 1987.

[75] L.R. Dennison, “The Reliable Router: An Architecture for Fault Tolerant Intercon-
nect,” Ph.D. Dissertation, MIT, 1996.

[76] S. Konstantinidou and L. Snyder, “The Chaos Router,” IEEE Transactions on Com-
puters, vol. 43, no. 12, pp. 1386–1397, 1994.

[77] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, “Introduction to
Parallel Computing Design and Analysis of Algorithms”, The Benjamin/Cummings
Publishing Company, Inc., Redwood city, California, USA, 1994.

[78] S.B. Akers, D. Harel, and B. Krishnamurthy, “The Star Graph: An Attractive Alter-
native to the n-Cube”, Proc. of the Int’l. Conf. on Parallel Processing, pp.393–400,
1987.

[79] S.B. Akers and B. Krishnamurthy, “A group-Theoretic Model for Symmetric Inter-
connection Network”, IEEE Trans. on Computers, vol.38, no.4, pp.555–566, 1989.

[80] F.T. Leighton, “Complexity Issues in VLSI”, MIT Press, Cambridge, Massachusetts,
1983.

[81] F.T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercube”, Morgan Kaufmann Publishers, San Mateo, California, USA,
1992.

[82] C. Leiserson, “Fat=trees: Universal Networks for Hardware-Efficient Super-
computing,” IEEE Trans. on Computers, vol. 34, no. 10, pp. 892–901, 1985.

[83] J. Schwartz“Ultracomputers,” IEEE Trans. on Programming Languages and Sys-
tems, vol. 2, no. 4, pp. 484–521, 1980.



BIBLIOGRAPHY 196

[84] Ted Nesson, “Randomized, Oblivious, Minimal Routing Algorithms for Multicom-
puters,” Ph.D. Dissertation, Harvard University, Cambridge, 1995.

[85] L. Gravano, G. Pifarre, P. Berman, and J. Sanj, “Adaptive Deadlock- and Livelock-
Free Routing with All Minimal Paths in Torus Networks”, IEEE Trans. on Parallel
and Distributed Systems, vol. 5, no. 12, pp.1233–1251, June 1994.

[86] D.A. Reed, R.M. Fujimoto, “Multicomputer networks: message-based parallel pro-
cessing,” MIT Press, 1987.

[87] D. Nassimi, S. Sahni, “Finding connected components and connected ones on a mesh-
connected parallel computer,” SIAM journal on Computing, vol. 9, pp. 744–757, 1980.

[88] C.H. Yeh and B. Parhami, “Unified formulation of a wide class of scalable intercon-
nection networks based on recursive graphs,” Proc. Int’l. Conf. System Engineering,
1996.

[89] C.H. Yeh and B. Parhami, “Swapped networks: unifying the architectures and al-
gorithms of a wide class of hierarchical parallel processors,” Proc. Internat. Conf.
Parallel and Distributed Systems, pp. 230–237, 1996.

[90] R. Muller and Q.F. Stout, “Parallel Algorithms for Regular Architectures: Meshes
and Pyramids”, The MIT Press, Cambridge, Massachusetts, 1996.

[91] R. Miller and Q.F. Stout, “Data Movement Techniques for the Pyramid Computer,”
SIAM Journal on Computing, vol. 16, no. 1, pp. 38–60, 1987.

[92] S. Campbell, M. Kumar, and S. Olariu, “The Hierarchical Cliques Interconnection
Network,” Journal of Parallel Distributed Computing, vol. 64, no. 1, pp. 16–28, 2004.

[93] W.J. Hsu, “Fibonacci Cubes – A New Interconnection Topology,” IEEE Trans. on
Parallel and Distributed Systems, vol. 4, no. 1, pp. 3–12, 1993.

[94] K. Ghosh and K.R. Desai, “Hierarchical Cubic Networks,” IEEE Trans. on Parallel
and Distributed Systems, vol. 6, no. 4, pp. 427–435, 1995.

[95] Y. Yang, A. Funahashi, A. Jouraku, H. Nisji, H. Amano, and T. Sueyoshi, “Recursive
Diagonal Torus: An Interconnection Network for Massively Parallel Computers”,
IEEE Trans. on Parallel and Distributed Systems, vol. 12, no. 7, pp. 701–715, Jul.
2001.

[96] Y. Inoguchi and S. Horiguchi, “Shifted Recursive Torus Interconnection for High
Performance Computing”, Proc. HPC Asia ’97, pp. 61–66, Seoul, Korea, April,28 -
May,02, 1997.

[97] M.M. Hafizur Rahman, Yasushi Inoguchi, and Susumu Horiguchi, “Modified Hier-
archical 3D-Torus Network,” IEICE Transactions on Information and Systems, vol.
E88-D, no. 2, pp.177–186, 2005.



BIBLIOGRAPHY 197

[98] Y. Yamada, H. Amano, M. Koibuchi, A. Jouraku, K. Anjo, and K. Nishimura,
“Folded Fat H-Tree: an interconnection topology for Dynamically Reconfigurable
Processor Array,” Proc. of EUC04, pp. 301–311, 2004. (LNCS 3207)

[99] M. M. de Azevedo, N. Bagherzadeh, Martin Dowd, and S. Latifi, “Some Topological
Properties of Star Connected Cycles”, Information Processing Letters vol. 58, pp.
81–85, 1996.

[100] Q.M.Malluhi and M.A.Bayoumi, “The Hierarchical Hypercube: A New Intercon-
nection Topology for Massively Parallel Systems,” IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 5, no. 1, pp.17-30, 1994.

[101] Yamin Li, Shietung Peng, and Wanming Chu, “Metacube - A New Interconnection
Network for Large Scale Parallel Systems,” Proc. 7th Asia-Pacific Computer Systems
Architecture Conference (ACSAC’2002), Melbourne, Australia.

[102] Jie Wu, “Extended Fibonacci Cubes,” IEEE Trans. on Parallel and Distributed
systems, vol. 8, no. 12, pp. 1203–1210, 1997.

[103] R.A. Ayoubi, Q.M. Malluhi, and M.A. Bayoumi, “The extended cube connected cy-
cles: an efficient interconnection for massively parallel systems,” IEEE Transactions
on Computers, vol. 45, no. 5, pp. 609 – 614, 1996.

[104] C. Chen, D.P. Agrawal, and J.R. Burke, “dBCube: A new class of hierarchical
multiprocessor networks and it’s area efficient layout,” IEEE Trans. on Parallel and
Distributed System, vol.4, no. 12, pp. 1332–1343, 1993.

[105] E.Ganesan and D.K.Pradhan, “The Hyper-deBruijn Networks: Scalable Versatile
Architecture”, IEEE Trans. on Parallel and Distributed Systems ’, vol. 4, no. 9,
pp.962-978, 1993.

[106] ,“Network Performance of Hierarchical Interconnection Network de-Bruijn Con-
nected Torus (BCT),” Information Processing Society of Japan, vol. , no. , pp. –,
2005.

[107] B.W.Arden and H.Lee, “Analysis of Chordal Ring Network”, IEEE Trans. on Com-
puters, vol. C-30, no. 4, pp.291-295, 1981.

[108] J.J.Park, K.Y.Chwa, “Recursive Circulant: A New Topology for Multicomputer
Networks,” Proc. of ISPAN94, pp.73–80, 1994.

[109] W.J.Dally, “Express Cubes: Improving the performance of k-ary n-cube intercon-
nectin networks,” IEEE Trans. on Computers, vol. 40, no. 9, pp.1016-1023, 1991.

[110] H.Li and M.Maresca, ”Poly¿morphic-Torus Network”, IEEE Trans. on computers,
vol. C-38, no. 9, pp.1345-1351, 1989.

[111] A. Agarwal, “Limits on Interconnection Network Performance,” IEEE Trans. on
Parallel and Distributed System, vol. 2, no. 4, pp.398–411, Oct. 1991.



BIBLIOGRAPHY 198

[112] Guihai Chen, “A tutorial on Interconnection Networks,”
http://cs.nju.edu.cn/ gchen/teaching/fpc/fpc99.html

[113] J. Upadhyay, V. Varavithya, and P. Mohapatra, “Routing Algorithm for Torus
Network.” Int’l Conf. on High Performance Computing, pp.773–778, 1995.

[114] J. Duato, “On the design of deadlock-free adaptive routing algorithms for multi-
computers: design methodologies,” Proceedings Parallel Architectures and languages
Europe, pp. 390–405, 1991.

[115] J. Duato, “Deadlock-free adaptive routing algorithms for multicomputers: evalua-
tion of a new algorithm,” Proceedings 3rd IEEE International Symposium on Parallel
and Distributed Processing, pp. 840–847, 1991.

[116] P. Lopez and J. Duato, “Deadlock-free adaptive routing algorithms for the 3D-
torus: limitations and solutions,” Proceedings Parallel Architectures and Languages,
pp. 684–687, 1993.

[117] S. Warnakulasuriya and T. M. Pinkston, “A Formal Model of Message Blocking
and Deadlock Resolution in Interconnection Networks,” IEEE Transactions Parallel
and Distributed Systems, vol. 11, no. 3, pp. 212–229, 2000.

[118] T. M. Pinkston and S. Warnakulasuriya, “ On deadlocks in interconnection net-
works,” Proceedings 24th International Symposium on Computer Architecture (ISCA
97), pp. 38–49, 1997.

[119] J. Duato, “Improving the efficiency of virtual channels with time-dependent se-
lection functions,” Proceedings Parallel Architectures and Languages, pp. 635–650,
1992.

[120] K. Aoyama and Andrew A. Chien, “The cost of Adaptivity and Virtual Lanes in a
Wormhole Router,” Journal of VLSI Design, vol. 2, no. 4, pp. 315–333, 1995.

[121] D. Dai and D.K. Panda, “Effective use of virtual channels in wormhole routed DSM
systems,” Technical Report, OSU-CISRC-10/97-TR46, Department of Computer and
Information Science, The Ohio-State University, 1997.

[122] W. Feng and K.G Shin, “The effect of virtual channels on the performance of worm-
hole algorithms in multicomputer networks,” University of Michigan directed Study
Report, May 1994.

[123] H.S. azad, L.M. Mackenzie, and M.O. Khaoua, “The Effect of the Number of Virtual
Channels on the Performance of Wormhole-Routed Mesh Interconnection Networks,”
Proc. of UK Performance Engineering Workshop, pp. 95-102, 2000.

[124] Y.Miura and S.Horiguchi,“A Deadlock-Free Routing for Hierarchical Interconnec-
tion Network: TESH,” Proc. of the 4th Int’l. Conf. on High Performance Computing
in Asia-Pacific Region, pp. 128–133, 2000.



BIBLIOGRAPHY 199

[125] Yasuyuki Miura, “Wormhole Routing for Hierarchical Interconnection Networks,”
Ph.D. Dissertation, School of Information Science, Japan Advanced Institute of Sci-
ence and Technology, 2002. (in japanese)

[126] M Schroeder and et al., “Autonet A high speed self configuring local area network
using point to point links,” IEEE Journal of Selected Areas in Communications, vol.
9, no. 10, pp. 1318–1335, 1991.

[127] Xiaoding Zhang, “System Effets of Interprocessor Communication Latency in Mul-
ticomputers,” IEEE Micro, vol. 11, no. 2, pp.12–55, April 1991.

[128] W. Hsu, “Performance issues in wire-limited hierarchical networks,” PhD Thesis,
University of Illinois-Urbana Champaign, 1992.

[129] L. Schwiebert, “A Performance Evaluation of Fully Adaptive Wormhole Routing
including Selection Function Choice,” IEEE International Performance, Computing,
and Communications Conference, pp. 117–123, 2000.

[130] G.F. Pfister and V.A. Norton, “Hot Spot Contention and Combining in Multistage
Interconnection Networks,” IEEE Trans. on Computers, vol. 34, no. 10, pp. 943–948,
1985.

[131] F. Petrini and M. Vanneschi, “k-ary n-trees: High Performance Networks for Mas-
sively Parallel Architectures,” Technical Report TR-95-18, Universita di Pisa, Dec.
1995.

[132] K. Bolding, M. Fulgham, and L. Synder, “The Case of Chaotic Adaptive Routing,”
IEEE Trans. on Computers, vol. 46, no. 12, pp. 1281–1292, 1997.

[133] H.H. Najaf-abadi and H. Sarbazi Azad, “The Effects of Adaptivity on the Perfor-
mance of the OTIS-Hypercube Under Different Traffic Patterns,” Proc. of IFIP Int’l.
Conf. NPC2004, LNCS, pp.390–398, 2004.

[134] P.R. Miller, “Efficient Communications for Fine-Grain Distributed Computers,”
Ph.D. Dissertation, Southampton University, U.K., 1991.

[135] M. Grammatikakis, D. F. Hsu, M. Kratzel and J. F. Sibeyn, “Packet routing in
fixedconnection networks: a survey,” Journal of Parallel and Distributed Computing,
vol. 54, no. 2, pp. 77–132, 1998.

[136] W.J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer networks
using virtual channels,” IEEE Transactions on Parallel and Distributed Systems, vol.
4, no. 4, pp. 66–74, 1993.

[137] K. Hwang, “Advanced computer architecture: parallelism, scalability and pro-
grammability”, McGraw-Hill (Ed.), 1993.

[138] J.H. Kim and A.A. Chien, “An Evaluation of Planar-Adaptive Routing (PAR),”
Proc. 4th IEEE Symp. on Parallel and Distributed Processing, New-York, pp.470–
478, 1992.



BIBLIOGRAPHY 200

[139] A.A. Chien, “A Cost and Speed Model for k-ary n-cube Wormhole Routers,” IEEE
Trans. on Parallel and Distributed Systems, vol.9, no.2, pp.150–162, 1998.

[140] K. Aoyama, “Design Issues in Implementing an Adaptive Router,” M aster’s thesis,
Univ. of Illinois, Dept. of Computer Science, 1993.

[141] M. Slimine-kadi, A. Boubekeur, and G. Saucier, “Interconnection Networks with
Fault Tolerance Properties”, Proc. of Int. Conf. on Wafer Scale Integration, pp.
213–222, 1993.

[142] B.M. Maziarz and V.K. Jain, “Yield Estimates for the TESH Multicomputer Net-
work”, Proc. of the 17th Int. Symp. Defect and Fault Tolerance, pp. 1–9, 2002.

[143] D. Nassimi and S. Sahni, “Bitonic Sort on a Mesh-connected Parallel Computer,”
IEEE Trans. on Computers, vol.c-27, no.1, pp.2–5, Jan. 1979.

[144] Selim G. Akl, “Parallel Sorting Algorithms,” Academic Press, vol. 11, no. 2, pp.17–
37 & 81–108, 1985.

[145] Ding-Ming Kwai and Behrooz Parhami, “Pruned three-dimensional toroidal net-
works,” Information Processing Letters, vol. 68, pp. 179–183, 1998.

[146] Behrooz Parhami and Ding-Ming Kwai, “A Unified Formulation of Honeycomb and
Diamond Networks,” IEEE Trans. on Parallel and Distributed Systems, vol. 12, no.
1, pp. 74–80, 2001.

[147] Behrooz Parhami and Ding-Ming Kwai, “Incomplete k-ary n-cube and its deriva-
tives,” Journal of Parallel and Distributed Computing, vol. 64, no. 2, pp. 183–190,
2004.

[148] Behrooz Parhami and Ding-Ming Kwai, “Comparing Four Classes of Torus-Based
Parallel Architectures: Network :Parameters and Communication Performance,”
Mathematical and Computer Modeling, vol. 40, no. 7-8, pp. 701–720 , 2004.

[149] Ding-Ming Kwai and Behrooz Parhami, “A Class of Fixed-Degree Cayley-Graph
Interconnection Networks Derived by Pruning k-ary n-cubes,” Proc. of the Interna-
tional Conf. on Parallel Processing (ICPP), pp. 92–95, 1997.

[150] Joseph Gil and Alan Wagner, “A New Technique for 3-D Domain Decomposition
on Multicomputers which reduces Message Passing,” Proc. of International Parallel
Processing Symposium, Honlulu, pp. 831–835 , 1996.

[151] Behrooz Parhami and Ding-Ming Kwai, “Periodically regular chordal rings,” IEEE
Trans. on Parallel and Distributed Systems, vol. 10, no. 6, pp. 658–672, 1999.

[152] W.J. Hsu, M.J. Chung, and Z. Hu, “Gaussian networks for scalable distributed
systems,” Computer Journal, vol. 39, no. 5, pp. 417–426, 1996.

[153] A. Youssef, “Design and analysis of product networks,” Proceedings of the Sympo-
sium Frontiers of Massively Parallel Computation, pp. 521–528, 1995.



BIBLIOGRAPHY 201

[154] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter eld, and B. Smith,
“The tera computer system,” Proceedings of the ACM International Conference on
Supercomputing, pp. 1–6, Amsterdam, 1990.

[155] J. Nguyen, J. Pezaris, G. Pratt, and S. Ward, “Three-dimensional network topolo-
gies,” Proceedings of the International Workshop Parallel Computer Routing and
Communication, pp. 101–115, 1994.

[156] L.M. Ni and D.K. Panda, “Sea of Interconnection Networks: What’s Your Choice?,”
A panel report of International Conference on Parallel Processing (ICPP), 1994.

[157] R.V. Boppana, S. Chalasani, and C.S. Raghavendra, “Resource deadlocks and per-
formance of wormhole multicast routing algorithms,” IEEE Transactions on Parallel
and Distributed Systems, vol. 9, no. 6, pp. 535–549, 1998.

[158] X. Lin and L.M. Ni, “Deadlock-free multicast wormhole routing in multicomputer
networks,” Proceedings 18th International Symposium Computer Architecture, pp.
116–125, 1991.

[159] X. Lin, P. McKinley, and L.M. Ni, “Deadlock-free multicast wormhole routing in
2Dmesh multicomputers,” IEEE Transactions Parallel and Distributed Systems, vol.
5, no. 8, pp. 793–804, 1994.

[160] M. Malumbres and J. duato, “An efficient implementation of tree-based multicast
routing for distributed shared-memory multiprocessors,” Journal of Systems Archi-
tecture, vol. 46, no. 11, pp. 1019–1032, 2000.

[161] P.K. Mckinley, H. Xu, A.H. Esfahanian, and L.M. Ni, “Unicast-based multicast
communication in wormhole-routed networks,,” IEEE Transactions Parallel and Dis-
tributed Systems, vol. 5, no. 12, pp. 1254–1265, 1994.

[162] D. Panda, S. Singal, and R. Kesavan, “Multidestination message passing in worm-
hole kary n-cube networks with base routing conformed paths,” IEEE Transactions
Parallel and Distributed Systems, vol. 10, no. 1, pp. 76–96, 2000.

[163] Hamid Sarbazi-Azad, “Performance Analysis of Wormhole Routing in Multicom-
puter Interconnection Networks,” Ph.D. Dissertation, The Faculty of Science, Uni-
versity of Glasgow, 2001.

[164] H.J. Siegel, “Interconnection Networks Large Scale Parallel Processing,” McGraw-
Hill, 1990.

[165] H.J. Siegel and C.B. Stunkel, “Trends in parallel machine interconnection networks,”
IEEE Computing in Science and Engineering, pp. 69–71, 1996.

[166] I. Koren, Z. Koren, and C.H. Stapper, “,A unified negative-binomial distribution for
yield analysis of defect-tolerant circuits” IEEE Trans. on Computers, vol. 42, no.6,
pp. 724–733, 1993.



Publications

• Journals:

1. M.M. Hafizur Rahman, Masaru Fukushi, and Susumu Horiguchi, “Reconfigu-
ration and Yield for the HTN: A New Hierarchical Interconnection Network,”
International Journal of Embedded Systems, 2005. (submitted)

2. M.M. Hafizur Rahman and Susumu Horiguchi, “A High Performance Hierar-
chical Torus Network,” International Journal of High Performance Computing
and Networking, vol.4, no.2, pp. – , 2006.

3. M.M. Hafizur Rahman and Susumu Horiguchi, “Routing Performance En-
hancement in Hierarchical Torus Network by Link-Selection Algorithm,” Jour-
nal of Parallel and Distributed Computing, vol.65, no.11, pp.1453-1461, 2005.

4. M.M. Hafizur Rahman, Yasushi Inoguchi, and Susumu Horiguchi, “Modified
Hierarchical 3D-Torus Network,” IEICE Transactions on Information and Sys-
tems, vol.E88-D, no.2, pp.177-186, 2005.

5. M.M. Hafizur Rahman and Susumu Horiguchi, “Dynamic Communication Per-
formance of a Hierarchical Torus Network under Non-uniform Traffic Patterns,”
IEICE Transactions on Information and Systems, vol.E87-D, no.7, pp.1887-
1896, 2004.

6. M.M. Hafizur Rahman and Susumu Horiguchi, “HTN: A new Hierarchical In-
terconnection Networks for Massively Parallel Computers,” IEICE Transac-
tions on Information and Systems, vol.E86-D, no.9, pp.1479-1486, 2003.

• International Conferences Proceedings:

1. M.M. Hafizur Rahman and Susumu Horiguchi, “High Performance Hierarchical
Torus Network under Matrix Transpose Traffic Patterns” Proc. of the 7th
International Symposium on Parallel Architectures, Algorithms, and Networks
(I-SPAN) , pp. 111-116, Hong-Kong, PRC, May 10-12, 2004.

2. M.M. Hafizur Rahman and Susumu Horiguchi, “Efficient Applications on High-
Performance Network of Hierarchical Torus,” Proc. of the First Int’l Sympo-
sium on Towards Peta-Bit Ultra-Networks, pp.68-77, Ishikawa, Japan, Sept.
08-09, 2003.

3. M.M. Hafizur Rahman and Susumu Horiguchi, “Network Performance of Hier-
archical Torus Network (HTN),” Proc. of the 3rd Int’l. Conf. on Parallel and

202



BIBLIOGRAPHY 203

Distributed Computing, Applications and Technologies (PDCAT02), pp.122-
129, Kanazawa, Japan, Sept. 03-06, 2002.

4. M.M. Hafizur Rahman and Susumu Horiguchi, “A Deadlock-Free Routing Al-
gorithm of Hierarchical Torus Network: HTN,” Proc. of the 6th High Perfor-
mance Computing in Asia Pacific Region (HPC Asia), pp.114-119, Bangalore,
India, Dec. 16-19, 2002.

5. M.M. Hafizur Rahman, Yasuyuki Miura and Susumu Horiguchi, “Dynamic
Communication Performance of Hierarchical Interconnection Network: H3D-
Mesh,” Proc. of the 2nd Int’l. Conf. on Electrical and Computer Engineering
(ICECE), pp.352-355, Dhaka, Bangladesh, Dec. 26-28, 2002.

• National Conferences Proceedings:

1. Susumu Horiguchi and M.M. Hafizur Rahman, “階層型トーラスネットワークの
デッドロックフリー.ルーティング (Deadlock Free Routing of Hierarchical Torus
Network),” IEICE Technical Report, FIIS-03-115, Miyazaki, Japan, March 7,
2003.

2. M.M. Hafizur Rahman and Susumu Horiguchi, “Dimension Order Routing on
Hierarchical Torus Networks” Proc. of the JCHC of IEE, Japan, pp.241, Fukui,
Japan, Sept. 18-19, 2002.



Index

HTN0, 157
HTN1, 155
HTN2, 155
HTN3, 156
k-ary n-cube Networks, 26
3D-WSI

Definition, 54
Layout Area, 60, 159
Normalized Layout Area, 62, 159
Peak Number of Vertical Links, 54,

157
Vertical Links, 54

Adaptive Routing, 114
Arc Connectivity, 51, 167, 179
Array Networks, 22
Average Distance, 49, 167, 179

Binary Cube, 21
Binary Tree, 17
Bisection Width, 15, 53, 167, 179
Bit-Flip Traffic Pattern, 91, 107
Bit-Reversal Traffic Pattern, 91, 93, 104
Bitonic

Merge, 141
Sequence, 140

BPC, 93
Buffer, 14
Buffer Size, 169

Channel Dependency Graph, 77
Communication Time, 143
Complement Traffic Pattern, 91, 104
Completely-Connected Network, 16
Connectivity, 51
Converge, 140
Cube-Connected Cycles (CCC), 21, 39,

60

Deadlock, 73

Deadlock-free Routing
of HTN, 84, 118
of MH3DT Network, 165
of TTN, 176

Degree, 14, 46, 166, 178
Diameter, 15, 47, 166, 178
Dimension-Reversal Traffic Pattern, 91,

93, 102
Direct Network, 2, 12
Diverge, 140
DOR, 81
Dynamic Communication Performance

of HTN using Adaptive Routing, 125
of HTN using Dimension Order Rout-

ing, 94
of MH3DT Network using Dimension

Order Routing, 169
of TTN using Dimension Order Rout-

ing, 180
Parameters, 15, 89

Dynamic Network, 12

E-cube Routing, 81
Exafloaps, 2
Execution Time, 143

Fast Fourier Transform (FFT), 142
Fat-Tree, 19
Fault-Tolerance, 4
Fibonacci Cube, 31
Finding the Maximum, 142
Flits, 70, 90
Flow Control, 4
FPGA, 189

Header Flit, 4, 69, 71, 73
Hierarchical 3-Dimensional mesh (H3D-

mesh), 37
Hierarchical 3-Dimensional torus (H3D-

torus), 35

204



INDEX 205

Hierarchical Cliques Network(HiC), 30
Hierarchical Cubic Networks (HCN), 31
Hierarchical Torus Network (HTN)

Basic Module, 40
Definition, 40
Higher Level Networks, 41
Pruned HTN, 155

HIN, 26
Hot-spot Traffic Pattern, 91, 99
Hypercube Network, 21

Indirect Network, 2, 12, 22
Inter-level Connectivity, 43
Interconnection Network

Conventional Networks, 16
Definition, 14
Hierarchical Networks, 26
Network Topology, 3

Latency, 15, 122
Definition, 89
Flow Control, 122
Set-up, 122

Linear Array Networks, 23
Livelock, 74

Maximum Throughput, 89
Maximum Wire Length, 15, 64
Mesh Networks, 24
Mesh-of-Trees Network, 18
Message, 69
Message Latency, 89
Message Length, 90, 91, 110, 171
Modified Hierarchical 3D-Torus (MH3DT)

Network, 161
Multi-level Fully-Connected (MFC) Net-

works, 27

Network Throughput, 89
Nonuniform Traffic Patterns, 93

Packet, 69
Perfect Shuffle Traffic Pattern, 93
Petafloaps, 2
Phits, 70
Processing Time, 143
Pruned Torus Network, 151
Pyramid Network, 29

Reconfiguration of HTN, 133
Recursive Diagonal Torus (RDT), 33
Ring Networks, 23
Round-robin Arbiter, 90
Router Cost, 120
Router Speed, 122
Routing Algorithm

Adaptive, 111
Channel-Selection (CS), 117
Definition, 70
Dimension-order, 81
Link-Selection (LS), 114
LS+CS Algorithm, 117

Routing Algorithm of HTN
by Dimension-Order Routing, 44, 82
by LS Algorithm, 115

Saturation Throughput, 89
Shifted Recursive Torus (SRT), 34
Star Graph Network, 17
Star-Connected Network, 16
Starvation, 74
Static Network, 12
Static Network Performance, 46

Arc Connectivity, 51, 167, 179
Average Distance, 49, 167, 179
Bisection Width, 53, 167, 179
Cost, 51, 166, 178
Degree, 46, 166, 178
Diameter, 47, 166, 178
Wiring Complexity, 167, 179

Swapped Network, 27
Switching Method, 4
System Yield, 136

Terafloaps, 2
Throughput, 15, 89
Tori connected mESHes (TESH), 34
Tori connected Torus Network (TTN), 173
Torus Networks, 25
Traffic Patterns, 91
Transpose Traffic Pattern, 91
Tree Network, 17
Tree-of-Mesh Network, 18

Uniform Traffic Pattern, 91, 94, 168, 180

Vertical Link, 54



INDEX 206

Virtual Channel, 75, 111

Wiring Complexity, 167, 179
Wormhole Routing, 71
Wraparound Mesh, 25

X-Tree, 18
XY Routing, 81

Zero-load Latency, 89


