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Abstract. This paper presents a systematic approach to scaling stacking­
based context-sensitive program analysis yielded by weighted pushdown 
systems, and demonstrates its effectiveness by applications to Java points­
to analysis. Our approach relies on the view offormulating stacking-based 
analysis as AGPs (abstract grammar problem), and reducing the analysis 
problem to fixed-point calculation over the equation system encoded by 
grammar productions. To characterize points-to analysis that does not 
assume an existing program control flow, we propose Contracted AGP, 
and a symbolic sliding-window based algorithm for it. The algorithm aims 
at reducing both time and memory costs, and its correctness is proved in 
terms of chaotic iteration. Finally, we instantiated the algorithm within 
Japot, a context-sensitive points-to analyzer for Java. Experiments show 
two-fold benefits of our approach in practice, with (i) scaling Japot to 
Dacapo benchmark suite, and (ii) a speed-up of 3x faster in average, 
given an adjustable memory budget. 

1 Introd uction 

Context-sensitive program analysis is precise yet prohibitive to scale, e.g., enor­
mous study has been devoted to scale up cloning-based points-to analysis [6]. 
Cloning-based analysis has an inherit limit to handle recursive procedures. How­
ever, as studied in [6], there are often many loops in the call graph, and each 
of which typically contains a large number of methods more than one thousand. 
As opposed to cloning-based approach, an alternative to context-sensitivity is 
stacking-based that models the program into a (weighted) pushdown system, 
and manages calling contexts with the finite yet unbounded pushdown stack [8]. 
This work is concerned with scaling stacking-based analysis as modular analysis, 
with retaining the original precision of the whole program analysis. 

This work is motivated by our work on Japot [8], a stacking-based points­
to analysis for Java yielded by weighted pushdown systems (WPDSs) [12]. As 
shown by previous empirical studies [8], the whole problem analysis in Japot 
could not scale to half applications of Dacapo Benchmark suite, due to memory 
overflow. To reduce the time cost, we attempted to carefully interleave the whole 
program analysis with local analysis in a heuristic manner, in which the whole 
program analysis is compulsory for ensuring soundness. Although the scalability 
issue remains, this technique brought us with 2x speed-up in average. A natural 



question is, whether it is possible to conduct local stacking-based analysis only, 
with preserving the original precision and soundness. 

The idea of using local (or modular) analysis for scalability is not new [3]. 
That is, program parts are analyzed separately, and the analysis result on the 
whole program is obtained by composing these partial ones. A known difficulty 
for local analysis is that program parts are not completely independent. Gener­
ally, classic techniques consist in, (1) building a dependency graph of program 
parts before the analysis, and analyzing parts in their topological order after 
grouping loops; or (2) breaking such dependencies by providing each part with 
(often conservative) summary information of external parts on which it depends. 

However, it turns out to be nontrivial to apply aforementioned techniques to 
stacking-based points-to analysis. As anticipated in [3] (§8.5), points-to analysis 
and call graph construction are mutually dependent, and the dependency graph 
expected by (1) is not known in advance. Moreover, it is known to be a chal­
lenging problem to compute precise, concise and efficient procedure summaries 
in modular (points-to) analysis [20]. In this work, we limit our focus to inves­
tigating the effects of language polymorphism like dynamic dispatch and field 
access on designing a precise modular stacking-based analysis. The dependency 
among parts exploited by (1) is detected on-the-fly when the analysis proceeds. 
The possibility of applying technique (2) is discussed as future work. 

One key of our approach is the view of formulating stacking-based analysis 
as AGPs (abstract grammar problems) [12], and the analysis problem is reduced 
to computing the fixed-point of the equation system encoded from grammar 
productions. To model points-to analysis for which the program control flow is 
not assumed, we present a conceptual framework named Contracted AGP, as well 
as generic algorithms for effectively solving it. Our proposal guides a systematic 
design of precise modular stacking-based analysis. 

The main results can be summarized as follows: 

- We present a new problem named CAGP (Contracted AGP), and show that 
stacking-based points-to analysis for Java is a typical instance of it (§3)). 
The original AGP are special instances of CAGP. 
We generalize chaotic iteration to chaotic contracted iteration (CCI), and 
prove that CAGP can be solved by CCI (§4). This insight sheds light on the 
ensuring generic algorithm for CAGP. 

- We present and prove a symbolic sliding window based algorithm for CCI, 
to reduce both (practical) time and memory costs (§5). By sliding window, 
the algorithm iteratively solves parts of the equation system. By symbolic, 
inputs of the equation system can be referred as symbolic names ih local 
analysis and bound with concrete values in a lazy manner. 

- We instantiate the aforementioned algorithm in Japot (§7). Empirical study 
showed that, this approach brings two-fold benefits in practice, by (i) scaling 
up Japot to Dacapo benchmark suite, and (ii) speeding up 3x faster in 
average, given an adjustable memory budget. 

Besides, §2 presents weighted pushdown systems, and motives the problem 
to be addressed. §8 discusses related and future work. 



2 Motivations 

2.1 Weighted Pushdown System [12] 

Definition 1. A pushdown system (PDS) Pis (Q, r, Ll, qo, wo), where Q is a 
finite set of control locations, r is a finite stack alphabet, and Ll ~ Q x r x Q x r* 
is a finite set of transition rules, and go E Q and Wo E r* are the initial control 
location and stack contents, respectively. A transition rule (p, 'Y, q, w) ELlis 
written as (p,'Y) <----+ (q,w). A configuration of P is a pair of (q,w) for q E Q 
and w E r*. A set of configurations C is regular if, for each configuration 
(p, w) E C, w is regular. A relation =* on configurations is defined, such that 
(P,'Yw') =* (q,ww')for each w' E r* if (p,'Y) <----+ (q,w). 

A pushdown system can be normalized (or simulated) by a pushdown system 
for which Iwl ::; 2 for each transition rule (p, 'Y) <----+ (q, w) [14]. In sequel, we 
always assume such normalized forms, and require the initial stack contents to 
be 'Yo E r, without loss of generality. 

Definition 2. A bounded idempotent semiring Sis (D, EB, 0, a ,I), where 
0,1 ED, and 

1. (D, EB) is a commutative monoid with a as its unit element, and EB is idem­
potent, i.e., a EB a = a for all a E D; 

2. (D, 0) is a monoid with 1 as the unit element; 
3. 0 distributes over EB, i.e., for all a, b, c E D, we have 

a 0 (b EB c) = (a 0 b) EB (a 0 c) and (b EB c) 0 a = (b 0 a) EB (c 0 a) ; 
4. for all a E D, a 0 a = a 0 a = 0; 
5. A partial ordering ~ is defined on D such that a ~ b iff a EB b = a for all 

a, bED, , and there are no infinite descending chains in D. 

By Def. 2, we have that a is the greatest element. From the standpoint of 
abstract interpretation, PDSs model the (recursive) control flows of the pro­
gram, weight elements encodes transfer functions, 0 corresponds to function 
composition, and EB joins data flows. 

Definition 3. A weighted pushdown system (WPDS) W is a triplet (P, S,j), 
where P = (Q, r, Ll, qo, 'Yo) is a pushdown system, S = (D, EB, 0, 0, I) is a bounded 
idempotent semiring, and f: Ll ---+ D is a weight assignment function. 

Let (j = [ro, ... , rk] with ri E Ll for 0 ::; i ::; k be a sequence of pushdown tran­
sition rules. A value associated with (j is defined by val((j) = f(ro) 0 ... 0 f(rk)' 
Given c,' cEQ x r*, we denote by path( c, c') the set of transition sequences 
that transform configurations from c into c'. 
Definition 4. Given a weighted pushdown system W = (P, S, j), where P = 
(Q, r, Ll, qo, 'Yo), and two regular sets of configurations C, 0' ~ Q x r*, the 
meet-over-all-valid-path (MOVP) problem computes 

MOVP(O,O') = EB{val((j) I (j Epath(c,c'),c E O,c' EO'} 
Let @(p, 'Y) = {(P, 'Yw) I w E r*} for any p E Q, 'Y E r. The Head-MOVP 
problem computes, for each p E Q, 'Y E r 

HMOVP(p,'Y) = MOVP({(qo,'Yo)},@(p,'Y)) 



2.2 Stacking-based Program Analysis by WPDSs 

Points-to analysis infers a points-to relation n that maps each reference to the 
set of objects it may point to at runtime. We denote by AbsRef the set of 
abstract references, and by AbsObj the set of abstract heap objects, and let 
o E AbsObj denote the null reference. Thus n is a mapping from AbsRef to 
2AbsObj, and we write r 1-+ n(r). We adopt allocation site based abstractions on 
heap, i.e., a unique abstract heap object models concrete heap objects allocated 
at the same program line. Also, array members of any array reference 0 are not 
distinguished, and denoted by [0]. Therefore, AbsObj is syntactically bounded, 
and can be represented as pairs of allocation sites and runtime types. 

Definition 5. Let P be the powerset constructor. We define a semiring Spta = 
(Dpta , EB, 0, 0, I), where D pta = P(AbsObj x AbsObj) is the set of all binary 
relation on AbsObj, I is the identity relation, 0 is the empty set, EB is set union, 
and d 0 d' = dod' U d' 0 d, where 0 denotes the relation composition. 

O. public class Main { 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. } 

public static void main(String[] args){ 
Object Xl = new StringO; 

} 

Object X2 = new Integer(O); 
Object Y1 = f(X1); 
Object Y2 = f(X2); 

public static Object f(Object a){ 
if(false) a = new ExceptionO; 
return a; 

} 

(a) A Java Code Snippet 

TO : (A, main) "--t (A, f main) id 

T1 : (A, lJt) "--t (A, main) id 
T2 : (A, main) "--t (Xl, main) {(_,01)} 
T3 : (A, main) "--t (X2, main) {(-,02)} 
T4: (Xl, main) "--t (arg,f l4) id 

(ret, l4) "--t (Y1, main) id 
TO : (ret, main) "--t (Y1, main) id 
T5 : (X2, main) "--t (arg, f l5) id 

(ret, l5) "--t (Y2, main) id 
To : (ret, main) "--t (Y2, main) id 
TS : (A, f) "--t (a,J) {(_,03)} 
Tg : (a, f) "--t (ret, f) id 

TlO : (ret, f) "--t (ret, €) id 

(b) WPDS for the Code in ( a) 

Fig. 1. Stacking-based Points-to Analysis in a Nutshell. Abstract heap objects allocated 
on line 2, 3, 8 are 01 : (2, String), 02 : (3, Integer), 03 : (8, Exception), respectively. A 
and lJt denote the abstract heap environment and dummy program entry, respectively. 
ret and arg denote return values and formal arguments, respectively. li denote the 
return point of the method call at line i. 

We use the relational weight domain Dpta in our analysis. Note that, 0 pta 

shows our choice of flow-insensitivity. Let {( _,o)} be a shorthand for {( i, 0) liE 
AbsObj}, and let id denote the identity relation {(i,i) liE AbsObj}. Fig. 1 
shows an Java code snippet and its WPDS encoding, where transitions ri(i > 0) 
correspond to statements at line i; A and 1Ji correspond to the initial control 
location and stack contents, respectively; A holds the thread of the program 
control flow that is encoded in ro. 



As shown in the figure, variables are encoded as control locations, methods, 
as well as return points of procedure calls, are encoded the stack alphabet. 
By this encoding, we have for any reference v E AbsRef of the method m, 
R(v) = {w(<» I W E HMOVP(v,m)}. The analysis on example in Fig. l(a) 
precisely infers Y1 1-7 {01' 03} and Y2 1-7 {02' 03}, whereas a context-insensitive 
analysis can not distinguish Y1 and Y2' Stacking-based analysis ensures that 
method calls correctly math with returns, a.k.a., valid paths. 

Our previous empirical study [8] showed that, the aforementioned points­
to analysis for Java (with handling language features of polymorphism) can 
not scale well. It turns out to be nontrivial to transform the analysis into a 
modular counterpart. As mentioned'shortly in §l, points-to analysis does not 
assume an existing program control flow, e.g., effects of dynamic dispatch like 
"y = x.f(al, ... , an)" and field access like "x.j = y" could not be analyzed 
before R( x) is resolved. We address the following problem in this work, 
"given a kEN, conduct a modular stacking-based analysis with analyzing at 
most k methods at once, without any loss of precision." 

3 Contracted Abstract Grammar Problem 

3.1 Abstract Grammar Problem (AGP) [12] 

Let N be the set of natural numbers, and let F be a finite ranked alphabet 
associated with the arity function arity : F -* N, and F(k) = {f E F I 
arity(f) = k} for all kEN. We denote by T(F) the set of ground terms over F. 
Let (D, n) be a meet semilattice. An F-algebra A is ((D, n), [']A), where [']A 
associates each function f E F with an interpretation [f]A : Darity(f) -* D. An 
evaluation on ground terms is [-]A : T(F) ---+ D, such that for each t E T(F), 

{ 

[t]A' if t E F(o); 
[t]A = [f]A([tdA' ... , [tk]A), if t = f(tl, ... , tk), f E F(k) , 

and ti E T(F) for 1 :s; i :s; k. 

Definition 6. An abstract grammar Q = (V, T, 8, F) is a context-free gram­
mar (V, T, 8) over a finite ranked alphabet F, where V is a finite set of nonter­
minals, T = F i±J {"(", ")", ","} is a finite set of terminals, and e is a finite set 
of productions and each has the form Xo -* ge(X1 , X 2 , .•• , Xk) for ge E F(k)' 

We define a relation *9 on (V U T)*, such that wYw' *9 waw' for any 
w, w' E (V U T) * if Y -* a E e. Let * Q be the reflexive and transitive closure 
of *9, and let L(X) be the language generated by the non-terminal X, i.e., 
L(X) = {w E T* I X *9 w}. In sequel, we assume V = {Xl, ... ,Xn} in Q. We 
denote by Dn the Cartesian product of D, and by d[i] the ith projection of any 
dE Dn. We write d[Xi ] for d[i] when it is clear from the context. We extend n 
over D to Dn by dnd' = (d[l] nd'[l], ... ,d[n] nd'[n]) for any d,d' E Dn. 

Definition 7. Given an abstract grammar Q = (V, T, e, F) with V = {Xl, ... , X n }, 
and an F-algebra A = ((D, n), [']A) in which D has the greatest element T. The 



abstract grammar problem (AGP) is to compute val(8) E Dn, such that for 
each 1 ~ i ~ n, 

{ 

T if L(Xi ) = 0; 
val(8)[i] = n [W]A if L(Xi ) =1= 0. 

wEL(Xi) 

For each production X io ---+ ge (Xill X i2 , ..• , X ik ) where io < ... < ik with 
ij E {I, ... ,n} and 0 ~ j ~ k, we extend [ge]A to be an n-ary function on Dn 
with overloading ge, such that for each 1 ~ t ~ n, and d E Dn , 

(d)[t] = { [ge]A(d[iI], d[i2], ... , d[ik)) if t = io; 
ge d[t] otherwise. 

We say that ge is dependent of Xill X i2 , ... , X ik , and the set of ge is denoted by 
F(8). We are able to define a function f(8) on Dn by 

f(8) = AX.X n n ge(X) 
Xio-+ge(Xil ,Xi2 "",Xik) 

It is established in [10] that val(8) is the maximum fixed point of f, if [ge]A is 
distributive (and thus monotonic) for each ge E F. 1 

(0) N(qO,iO,qf) ---+ go(€) 

[go] = I 
(1) N(p'd,q') ---+ gl(N(p,i,q)C(q,i l ,ql)) r = (P,,) "--+ (p', e) E ..1 

[gl] = AX.Ay·y (2) x (2) fer), and q, q' E Q,,' E r 
(2) N(p'd,q) ---+ g2(N(p,i,q)) r = (P,,) "--+ (p',,') E ..1 

[g2] = AX.X (2) fer), and q E Q 
(3) N(pl'i',qp',-y/) ---+ g3(€) r = (P,,) "--+ (p',,',") E ..1 

[g3] = I 
(3') C(qpl,-y' d ' ,q) ---+ g~ (N(P,i,q)) 

[g~] = AX.X (2) fer), and q E Q 

(4) Head(p,i) ---+ g4(N(p'i,q)DummY(q,qf)) 

[g4] = AX.Ay.y (2) x, and p E Q" E r, q E Q 
(4') Head(p,i) ---+ g~(N(P'i,qf)) 

[g~] = AX.X, and PEP" E r 
(5) DummY(q,qf) ---+ g5(C(q'i,q,)DummY(q',qf)) 

[g5] = AX.Ay·y (2) x, and q' E Q, and, E r 
(5') DummY(q,qf) ---+ g~(C(q'i,qf)) 

[g~] = AX.X, and q E Q, , E r 

Fig. 2. An Abstract Grammar Problem for Solving the Head-MOVP Problem. Q = 
{qp,r I p E Q" E r}, and qf is a fresh symbol. 

Program analysis problems on WPDSs can be reduced to AGPs [12]. We give 
an instance of AGP for solving the Head-MOVP problem in Figure 2, where (1)­
(3') are production schemes encoded from pushdown transitions, and (4) - (5') 
and (0) are those specific to the Head-MOVP problem ((0) corresponds to the 

1 [10] works on the function f'(e) = AX. ngeE.r(B) ge(X). It is easy to see that f'(e) 
coincides with fee) on the maximum fixed point. 



initial configuration (Po, "(0), and (4)-(5') corresponds to the target configuration 
and are derived from (1) - (3')). We have for each p E Q and "I E r, 

HMOVP(p, "I) = vaZ(8)[H ead(p,'Y)] 

3.2 Contracted AGPs and Applications 

Due to language polymorphism like dynamic dispatch and field access, the pro­
gram control flow is not known in advance, and is discovered on-the-fly when 
points-to analysis proceeds. We present Contracted AGP in Def. 8, to offer some 
insights into the cyclic dependency between control flow and data flow analysis. 

Definition 8. Given an abstract grammar g = (V, T, 8, F), and an F -algebra 
A = ((D, n), [']A) in which D has the greatest element T. A Junction & : Dn -+ 

P(8) is a contract function iJ it is anti-monotonic. We define a Junction K 
on P(8) by K = AX.X U &(val(x)). Let 8* be the least fixed point oj K. The 
contracted abstract grammar problem (CAGP) is to compute val(8*). 

Remark 1. It is not hard to see that K is monotonic, and its least fixed point 
8* exists and can be computed as the limit of the iterates K(0)(0), K(1)(0), ... by 
Kleen's theorem. However, such an approach faces the scalability problem since 
the underlying grammar problem keeps enlarged. 

Java Points-to Analysis as Solving CAGPs 

We use the abstraction and modelling discussed in §2.2, and further assume a 
typed three-address form of the target language. Given the abstraction, the possi­
ble objects that a reference variable may point to is known as long as its declared 
type permits. We prepare a function allObj : AbsReJ -+ 2AbsObj by, for each 
v E AbsReJ, allObj(v) = {(Z, T) E AbsObj I T is a subtype of v's declared type}. 
Let Rl. be a points-to relation such that Rl.(r) = 0 for all r E AbsRef. Given 
os ~ AbsObj, and r E AbsReJ, for each r' E AbsReJ, R[r 1-* os](r') = os if 
r' = r, and R[r 1-* os] (r') = R(r) otherwise. Moreover, the union of Rand R' 
is defined as, for each r E AbsReJ, R U R'(r) = R(r) U R'(r). 

Let .c be the set of distinguished program line numbers, and let M be the set 
of methods. A labelled call graph G is (N, E), where N ~ M is the set of meth­
ods, and E ~ M x .c x M is the set of call edges. We define a labeling function 
rc from the call edges to points-to relations, such that rc(e) specifies possible 
conditions (i.e., points-to relations on runtime types of the receiver object) that 
enable the call relation e. We assume an imprecise call graph syntactically built, 
e.g., by CHA (Class Hierarchy Analysis) [4], and rc is decided by the language 
semantics, for each e = (m', Z, m) E E, 

1 
{Rl.[x 1-* {a}] I 0 E allObj(x), 

rc(e) = x 1-* {a} enables e}, 

{Rl.}, 

if Z is a dynamic dispatch with 
x being the implicit parameter; 

if Z is a static method invocation. 



Let mo E N be the initial node. For each m EM, we define conditions for 
m being reachable from mo, denoted by RC(m), by 

RC(m) = {{R..L}' if m = mo; 
{R' URI R' E RC(m'), R E rc(e), e = (m', l, m) E E}, otherwise. 

Fig. 3 shows the encoding of a WPDS W = (P, S,!) with P = (Q, r, .1, qo, '"Yo), 
given G. We define a labelling function rc from .1 to points-to relations, such 
that for any transition r E .1, rc(r) specifies runtime types of the base variable 
(Le., x in x.f(rl, ... , rn), or x.f, or x[i] for any i E N) that enable r. To reduce the 
exponential growth of transitions, we distinguish a global reference (Le., array 
or field reference) in each method as if it is a local one, and the unified result 
is referred from A on demand [8]. Our analysis is context-sensitive and field­
sensitive (and flow-insensitive). Context-sensitive and field-sensitive analysis is 
undecidable [11]. Instead of matching field (resp. array) read and write during 
the context-sensitive analysis, we first cast aliasing in field (resp. array) reference. 

{(_,(I,T»} 
I[x = new T] = {(A,m) '---' (x,m)} 

c 

I[x = y] = {(y, m) '---' (x, m)} 
c 

I[x := (T)y] = {(y, m) '---' (x, m)} 
c 

I[x := @this: T] = {(this, m) '---' (x, m)} 
c 

I[x := @parameterk : T] = {(argk , m) '---' (x, mn 
c 

I[return x] = {(x, m) '---' (ret, mn 
c 

I[y.f = x] = {(x, m) '---' (o.f, m) I 0 E aIIObj(y)} 
cU {'R..JJy ....... {o}]} 

I[x = y[i]] = {([o] , m) '---' (x, m) I 0 E aIlObj(y)} U A g , where 
cu{'R..-L[y ....... {o}]} 

Ag {(A, m) {(~)} ([0], m) I 0' E aIlObj([o])} 
cU{'R..-L [[oD ....... { o'}]} 

I[z = 1'o.f(1'1, ... , 1'n)] = Ac U A r , where (m, l, m') E E, c' = rc((m, l, m')) 
Ac = {(1'o, m) '---' (this, m' In U 

cUe' 

U {(1'i' m) '---' (argi , m' In 
O<i<n cUe' 

Ar = {(r-et, m') '---' (ret, l)} U {(ret, l) '---' (z, m)}. 
c c 

Fig. 3. I[_] generates W for a statement at l E .c of the method m, where c = RC(m). 

For any l' : (p, ,) '---' (q, w) E .d, we write (p, ,) Ie!!) (q, w), and omit f(1') if it is 1. 
rc(r) 

Let 8 pta be the abstract grammar generated for the program (Fig. 3 and Fig. 
2), and let n be the number of non-terminals in 8 pta . We define the contract 
function E by, for each d E D;ta, and for any () E 8 pta , () E £(d) if either 

- (i) there exists a transition r E .1 and R E rc(r), such that, for each r E 
AbsRef, EB'(Er d[Head(r,,),)] ~ R(r), and (ii) () is a production generated 
from r by (1)-(3') in Fig. 2; or 
() is any production generated by (0) or (4) - (5') in Fig. 2. 



4 Chaotic Contracted Iteration 

Definition 9. Given a set D, and an element d ED, and a finite set of func­
tions F = {iI, ... , fn} on D. 

- A run is an infinite sequence of functions in F. 
- An iteration of F associated with a run fil' f i2, ... and starting with d is an 

infinite sequence of values do, d1 , ... , such that do = d and dj = fij (dj_ d· 
- A run fi l , f i2' '" is fair if, for each m 2: 0, F ~ U {iij}. 

j>m 

- An iteration of F is chaotic if it is associated with a fair run. 

Definition 10. Given a partially ordered set (D, ~). A function f on D is in­
flationary if f (x) ~ x and downward inflationary if f (x) ~. x, for each 
xED, respectively. 

In sequel we fix the following notations, 

(D, n) for a meet semi-lattice with the greatest element T and the descending 
chain condition (Le., there are no infinite descending chains in D), 

- x ~ y when x n y = x for x, y ED, and 
- F = {iI, ... , f n} for a finite set of monotonic and downward inflationary 

functions on D. 

Theorem 1 (Chaotic Iteration 2 [1]). The limit of any chaotic iteration of 
00 n 

F exists and coincides with n fj (T), where f = AX. n fi (x). 
j=O i=O 

Instead of starting from T, we can iteratively apply the function f starting 
00 

at d ED, and its limit n fj (d) uniquely exists. We refer it by fix(f, d). 
j=O 

Definition 11. Let d ED. 

- A function ¢ : D ---+ 2F is a contract function if ¢ is anti-monotonic. 
- A contracted iteration ( CJ) of F associated with a run iiI, 1i2 , ... and start-

ing with d is an infinite sequence of values do, d1 , ... , such that do = d and 
dj = lij (dj- 1 ) where ij E ¢(dj- 1 ). 

- A run fil , f i2, ... is fair for a contracted iteration do, d1 , ... if, for each m > 0, 
¢(dj ) ~ U {i j }. 

j>m 

- A contracted iteration of F is chaotic if it is associated with a fair run. 

Definition 12. Let S = {iI, ... , ik} ~ F. We define, 

{ 

Fun(S) = AX. n f(x), and 
fEB 

Ser(S) = {fil oli2 o ... ofik I (il,i2, ... ,ik) is a permutation of{l, ... ,k}} 

2 Theorem 1 holds for a cpo, in which the direction of the ordering is reversed [1]. 



Lemma 1. Let S ~ F. For each xED and hE SereS), Fun(S)(x) ~ hex). 

Proof. Since each function in F is downward inflationary, for each 1 ::; j ::; k, 
xED, and h E SereS), fij (x) ~ hex) holds. D 

Theorem 2 (Chaotic Contracted Iteration). Given a contract function ¢ : 
D ---+ 2F. The limit of any chaotic contracted iteration of F starting with d E D 
exists and coincides with fix(7"d, d), where the function 7"d on D is defined by 
7"d = Az.fix(gz, d) and gz = Fun(¢(z)). 

Proof. The theorem follows from the following steps. 
(1) Consider any given chaotic contracted iteration do, dl , d2 , ... of F starting 

with d. Since each function in F is downward inflationary, we have di ~ di+l for 
i 2: 0. Moreover, since there are no infinite descending chains in D, we have that 
the limit of any chaotic contracted iteration of F exists. 

(2) Consider any dl , d2 E D with dl r;;;;; d2. Since ¢ is anti-monotonic and 
¢(dl ) ~ ¢(d2), we have gd1 (x) r;;;;; gd2 (x) for all xED and fix(gd1 , d) r;;;;; fix(gd2 , d). 
We have 7"d(dl ) r;;;;; 7"d(d2)i thus 7"d is monotonic. Since gd is downward inflationary, 
7"d(d) r;;;;; d by definition of 7"d. Therefore, we have that d ~ 7"d(d) ~ 7"J(d) ~ .,. 
and the limit fixe 7" d, d) exists, since there are no infinite descending chains in D. 

(3) Consider any given chaotic contracted iteration ao, al, a2, ... of F associ­
ated with the run fill fi2' ... and starting with d, and the descending sequence 
bo, bl, b2, ... where bo = d and bj = 7"d(bj- l ) for j 2: 1. To prove they converge at 
the same limit follows the following claims: 

\/j. aj ~ bj . 
By induction on j. (i) Obvious when j = 0, ao = bo = d. (ii) Assume that 
aj ~ bj for some j > 0, then we have 

aj+l = fij(aj) (where ii j E ¢(aj)) 

~ ii j (bj ) ~ fij (bj+d 

~ gbj (bj+l) (aj ~ bj ~ ii j E ¢(bj )) 

= bj +l 

- \/j 3j'. bj ~ ajl. 
By induction on j. (i) Obvious when j = 0, ao = bo = d. (ii) Assume that, 
for j > 0, there exists j' > ° such that bj ~ aj'. Let k is the smallest number 
that satisfies g~. (d) = g~~C(d) for each c 2: 0. By definition, we have 

J J 

Since d = bo ~ bj , we have 

gbj ked) ~ gbj k(bj) ~ gbj k(aj/) = Fun(¢(bj))k(aj/) 

~ hl 0 ••. 0 hk(aj') (by Lemma 1) 

where hi E Sere ¢(bj )) for each 1 ::; i ::; k. 



Consider the suffix fi jl+ 1
, fi jl+2

' ••• of the run associated with the chaotic 
contracted iteration ao, al, .... For each h E Ser(¢(bj )), fairness implies the 
existence of th E N such that hl 0 .•• 0 hk is embedded into fith 0'" 0 fijI +2 0 

fi jl+ 1
' Let tH be the smallest tho We have hl 0 ••• ohk(ajl) ;;;;) fitH o· .. 0 fi jl+2 

0 

fijI +1 (aj') due to downward inflationary, and thus bj+l ;;;;) atH' D 

Theorem 2 says that we can solve CAGPs in terms of CCls, by instantiating 
¢ with £, and F with F(8). 

5 A Symbolic Sliding Window based Algorithm for CCl 

As shown in the proof of Theorem 2, fix( Td, d) would have faster convergence 
than a contracted chaotic iteration. However, it is prohibitive to scale when ¢(z) 
becomes larger and larger for ¢ is anti-monotonic. To reduce memory costs, 
we present two techniques for effectively solving CCI, a sliding window based 
algorithm and further acceleration by symbolic computation. 

5.1 A Sliding Window based Algorithm 

Algo. 1 gives a sliding window based CCI algorithm that will continue forever. 
We maintain a boolean variable checked for each function f in F, and refer 
it by f.checked. We use the iteration number (starting with 1) enclosed with 
parenthesis as the superscript of variables in the algorithm, to refer their value 
at the entry of the loop (line 2) in that iteration, e.g., d(i) , F~i), F~i), j.checked(i). 
Note that by replacing the condition "+ + iteration> 0" of the while loop (line 
2) with the negation of "f. checked = 1 for each f E Fr", we obtain a terminating 
algorithm that computes the same limit. 

Definition 13. For an n-ary function f over Dn, f is independent of the i-th 
variable if, for each dl , ... , di- l , di+l' ... , dn, d, d' E D, 

In Algo. 1, we assume n variables Xl, ... , Xn such that Xi is always the i-th 
variable of each function. DepVar(f) denotes a set of variables such that its 
complement consists of independent variables of f. 

Definition 14. A function S ch : 2F x N ~ 2F is a scheduler for Algorithm 1 
if, for each F' ~ F and i EN, SCh(F', i) ~ F' n {f E"F I j.checked(i) = O}. A 
scheduler is fair if, for each i > 0, there exists f E F~i) with f.checked(i) = 0, 
then there exists j 2:: i with f E F~P . 

Remark 2. By sliding window, we refer to parts of equations Fw in the iterates. 
Although Fw is defined (Def. 14) to take functions from {f I f.checked == O}, 
it is safe to include any functions {f I j.checked == I}, as revealed in the proof 



Algorithm 1: A Sliding Window based CCI Algorithm 

1 Fr:= 0; d := (T, ... , T) E Dn; iteration := 0; 
2 while (+ + iteration> 0) do 
3 Fr := ¢(d); 

4 Fw := Sch(Fr , iteration) ; 

5 d' := fix(Fun(Fw), d) ; 

6 foreach f in Fw do f.checked:= 1; 
7 UpdatedVar := {Xt I d[t] i= d'[t] for each 1 :::; t:::; n} ; 
8 NewRules := ¢(d') \ Fr ; 
9 foreach f in Fr \ Fw do 

10 I if DepVar(f) n UpdatedVar i= 0 then f.checked:= 0; 
11 end 
12 foreach f in N ewRules do f.checked := 0; 
13 d:= d'; 
14 end 

for Theorem 3. Algo. 1 says that sliding window are freely chosen under fairness. 
As the most rewarding result, we are enabled to impose any given threshold k 
on IFwl, i.e., IFwl < k, without violating its sound convergence. It works for the 
occasion where the memory budget is limited. 

In sequel we prove the correct convergence of Algo. l. 

Definition 15. Given a contract function ¢ : D ---+ 2F. 

- A batched run is an infinite sequence of sets of functions from 2F. 
A batched contracted iteration (BGI) of F starting with d E D is an 
infinite sequence of values do, db ... associated with a batched run F l , F2, ... 
such that do = d, and for each j > 0, dj = fix(gj, dj - l ) where gj = Fun(Fj ), 
and Fj ~ ¢(dj - l ). 
A batched run Fl , F2, ... is fair for a batched contracted iteration do, dl , ... if 
each i ~ 0, ¢(di ) ~ U Fj . 

j>i 
- A BGI is chaotic if it is associated with a fair batched run. 

Lemma 2 (Chaotic BCI). Given a contract function ¢ : D ---+ 2F. The limit 
of any chaotic BGI of F starting with d E D exists and coincides with the limit 
of any chaotic contracted iteration of F starting with d. 

Proof. For a chaotic BCI of F starting with d ED, we can construct a CCI of F 
starting with d by element-wise enumeration over each set of functions Fj in the 
batched run. Since any chaotic contracted iteration of F stabilizes at the same 
limit by Theorem 2, the theorem holds. 0 

Theorem 3. Assume running Algorithm 1 with a fair scheduler. We have 

1. The limit of d(l), d(2), ... reaches at d(i) if j.checked(i) = 1 for each f E F;i). 



2. The limit of del) , d(2) , ... exists and there exists a chaotic Bel of F starting 
with (T, ... , T) E Dn, such that two limits coincide. 

Proof. 1. d(i) is the limit, since the loop invariant that "for each f, if f.checkedU) = 
1 then f(d(j)) = dU)" holds (at line 2). 

2. Since all functions in F are downward inflationary, we have del) ~ d(2) ~ 
.... The limit of d(l), d(2), ... exists, otherwise the descending chain condition is 
violated. We define a Bel do, d l , ... of F associated with a batched run F l , F2 , •••. 

and do = (T, ... , T) E Dn such that F2m- l = "FSm) and F2m = F~m), where 

"FSm) = {I E Fjm) I f.checked(m) = I} for m > O. 
(1) Since "for each I, f.checked(m) = 1 implies f(d(m)) = d(m)" is a loop in­

variant (at line 2), d2m = d2m+l = d(m). Thus, the limit of d(l), d(2) , ... coincides 
with the limit of do, dl, .. .. 

(2) We show Fl, F2 , ... is fair, i.e., for each i ~ 0, ¢(di ) ~ U Fj . Since 
j>i 

d2m = d2m+l = d(m) , ¢(d2m ) = ¢(d2m+l ) = ¢(d(m)) = Fjm+l). For each 

f E F~m+l), if f.checked(m+l) = 1, I E "FSm +l
) = F2m+3 ; otherwise, by the 

definition of fair scheduler, there exists m' ~ m + 1 with f E F~m') = F2m,. D 

5.2 Acceleration by Symbolic Computation 

As the application size grows, the points-to sets of reference variables could be 
enormous. To prevent local analyses from operating on such huge data, we in­
troduce symbolic computation technique, to further improve Algo. 1. The idea 
is to allow (arbitrary subset of) inputs of the equation system to be referred 
as symbolic names in the fixed point calculation, and the analysis result is ob­
tained by binding symbolic names to their concrete values lazily. This approach 
anticipates that the cost of substitution would· be paid off on the whole. 

To show that such a symbolic algorithm will soundly converge as Algo. 1, we 
limit our discussion to the type of equation systems derived from stacking-based 
program analysis by WPDSs, as shown in Fig. 2, and base our presentation in 
terms of formal power series [13] 3. Let E be an alphabet, and let S be a set. 
Mappings r from E* to D are called (formal) power series. For w E E*, we write 
(r, w) for r(w), and r is written as a sum r = LWEE* (r, w)w. The collection of 
all power series r as defined above is denoted by D((E*)). For r, r' E D((E*)) , 
the sum r + r' and the product r . r' are power series in D((E*)) defined as 

(r + r' , w) = (r, w) + (r', w) and (r . r', w) = LWl W2 =w (r, wd (r' , W2) 
In the rest of this section, we assume that (i) D is a bounded idempotent 

semiring (D, +",0, I), (ii) D is finite with the greatest element T, and (iii) . is 
idempotent and commutative. We further assume that (iv) the concatenation of 
words is idempotent and commutative, i.e., for any w, w' E E*, ww' = w'w and 
ww = w. Then, it is easy to check that, (D((E*)), +, ,,0, I) is also a bounded 

3 An alternative could be in terms of symbolic execution that re-interprets the lan­
guage constructs over symbolic values. 



idempotent semiring. Note that the idempotent laws and commutativity laws in 
(iii) and (iv) ensure termination of the following symbolic computation. 

Let X = {Xl, ... , Xn} be a finite set of variables. We define a set of functions 
Func in which each function has the form AX1 , ... , Xn,(Xl + rl, ... , Xn + rn), 
where rl, ... ,rn E D((X*)). Note that, the function scheme AX.X + r satisfies 
downward inflationary property. A fresh distinguished symbolic value Si is as­
signed to each variable Xi E X (1 :::; i :::; n). The set of symbolic values {Sl' ... , sn} 
is denoted by SymX. For dE Dn and seeds ~ {I, ... ,n}. We denote by 

- Cl seeds,d the ground substitution such that, for each 1 :::; i :::; n, 

{ 
d[i] if i E seeds; 

Clseeds,d(Si) = T otherwise. 

dseeds the value from (D((SymX*)))n such that, for each 1 :::; i :::; n, 
d [.] _ { Si if i E seeds; 

seeds ~ - d[i] otherwise. 

Lemma 3. Foranyfunctionf E Func, anyd E Dn, and any seeds ~ {l, ... ,n}, 
we have fix(j, dseeds)Cl seeds,d = fix(f, d). 

Proof. The proof is straightforward based on assumptions above. D 

Theorem 4. Given seeds ~ {I, ... , n} and F ~ Func. Assume replacing line 
5 in Algo. 1 with d' := fix(Fun(Fw ) , dseeds)Clseeds,d and running Algo. 1 with a 
fair scheduler. 

1. The limit of d(l), d(2), ... reaches at d(i) if f.checked = 1 for all f E F. 
2. The limit of d(l), d(2), ... exists and there exists a chaotic Bel of F starting 

with (T, ... , T) E Dn, such that two limits coincide. D 

6 Modular Stacking-based Points-to Analysis 

We implemented a modular stacking-based points-to analysis, by instantiating 
the algorithm in §5. Our analysis consists of two modules: the front-end points­
to analysis engine implemented in Java, and the back-end WPDS engine imple­
mented in C. Those two modules communicated with each other by writing and 
reading files shared on the disk, e.g., the front-end engine generates and outputs 
the WPDS model on the disk for each local analysis, and the back-end engine 
loads the partial model, calculates the fixed-point, and outputs the intermediate 
values of variables to some files on the disk. These values are later read-off by 
the front-end analysis to enlarge the underlying problem to be solved (Le., ¢) 
and to decide the sliding window for the next iteration. 

6.1 An Adapted Algorithm for CCI 

When analyzing realistic applications, the induced variables (Le., nonterminals 
of CAGPs) turn out to be enormous. First, we organize the analysis method-wise. 
The compound grammar productions generated from each method and all its 



incoming edges such as method calls and returns, is treated as an atomic function 
in the chaotic iteration. Then, we adapt the analysis to a demand-driven manner, 
such that only nonterminals H ead(p,'Y) are observed by the front-end analysis for 
their concrete values in the iterates, where p E AbsRef is any variable that is 
either sensitive (Def. 16) or shared among methods. To ensure soundness, we 
introduce an extra step of convergence check in the iterates. Such a choice turns 
out to be cost-effective by empirical studies, as shown in §7. 

Definition 16. For any i E {I, ... , n}, we say that Xi is sensitive if, there 
exists d, d' E Dn, with d[i] =J d'[i], and d[j] = d[j] for any j =J i E {I, ... , n}, such 
that ¢( d) =J ¢( d'). The indexes for all sensitive variables is denoted by Sen V ar. 

Definition 17. Given any ObsVar ~ {I, ... ,n}, dE (D((SymX*)))n, dE Dn, 
and seeds ~ {I, ... ,n}. For each 1 :::; i:::; n, 

d-(Ob V )[.] {d[i]o-seeds d ifi E ObsVar; s ar, 0-seeds,d ~ = d-[,;] , 
u otherwise. 

and given Var ~ {I, ... , n}, for each 1 :::; i :::; n, 

(d Ivar )[i] = {d[i], if i E ~ ar; 
T, otherwzse. 

Remark 3. For any d E (D((SymX*)))n, we have ¢(d) = ¢(d Isenvar). 

In Algo. 2, we assume ObsVar ~ SenVar and ObsVar ~ seeds as input 
conditions. In contrast with Algo. 1, it differs in that, (i) at line 6, only observed 
variables are bound to concrete values in each iteration; (ii) at line 8, only 
variables from ObsVar are observed; (iii) at line 14-20, an extra convergence 
check (i.e., Vf E F.f(d) = d) is introduced when f.checked = 1 for all f E F. 
By replacing the condition "+ + iteration> 0" of the while loop (line 3) with 
the negation of "f. checked == 1 for each f E Fr and mayStabilized == 1", 
we obtain a terminating algorithm that computes the same limit as that of any 
chaotic BCL 

Theorem 5. Assume running Algorithm 2 with a fair scheduler. We have 

1. The limit of d(l), d(2), ... reaches at d(i) if f.checked = 1 for all f E F and 
mayStabilized = 1. 

2. The limit of d(l) , d(2) , ... exists and there exists a chaotic Bel of F starting 
with (T, ... , T) E Dn, such that its limit coincides with d(i)o-seeds,d(i). 

Proof. After adding the explicit convergence check, it becomes easy to anticipate 
the soundness. We give a proof sketch below. 

1. d(i) is the limit, since the loop invariant "for each f, if j.checked(j) = 1 
and mayStabilizedU) = 1, then f(d(j)) = dU)" holds (at line 3). 

2. The limit exists otherwise the descending chain property of (D((SymX*))) 
is violated. We define a BCI do, dI , .. of F associated with a batched run 
FI , F2, '" and do = (T, ... , T) E Dn, such that Fi = UI<k<i :F~k) U {f E 

F~i) I f.checked = I}. To show the two limits coincides, (i) ~ ~ d(i)o-seeds,d(i) 
is obvious; (ii) Vi.3j. di ~ d(j)o-seeds,d(j) is proved by induction on i, based on 
Lemma 1, fairness of the scheduler, and Lemma 3. 0 



Algorithm 2: An Adapted Symbolic Sliding Window based Algorithm 

1 Fr := 0; d:= (T, ... , T) E Dn; iteration:= 0; mayStabilized:= 0; 
2 foreach f E F do f.checked := 0; 
3 while (+ + iteration> 0) do 
4 Fr := ¢(d Isenvar) ; 
5 Fw := Sch(Fr' iteration) ; 
6 d' := fix(Fun(Fw), dseeds) (ObsVar, aseeds,d); 
7 foreach f in Fw do f.checked:= 1; 
8 U pdatedVar := {Xt I d[t] =1= d' [t], t E Obs V ar} ; 

9 N ewRules := ¢( d') \ Fr ; 
10 foreach f in Fr \ Fw do 
11 I if DepVar(f) n UpdatedVar =1= 0 then f.checked:= 0; 
12 end 
13 foreach f in N ewRules do f.checked := 0; 
14 if U pdatedV ar =1= 0 then may Stabilized := 0; 
15 if f.checked = 1 for each f E Fr then 
16 if mayStabilized = 0 then 
17 I mayStabilized:= 1; 
18 foreach f E Fr do f.checked := 0 
19 end 
20 end 
21 d:= d'; 
22 end 

6.2 Correspondence with Language Features 

ObsVar: Based on the aforementioned method-wise decomposition of the pro­
gram and the grammar scheme and encodings in §3, the set of observed variables 
ObsVar consists of all nonterminals Head(v,m) , where v E AbsRef is any of the 
following variables of the method m, 

1. all base variables (Le., variables like x in x.f(rl, ... , rn ), or x.f, or x[i] for 
any i E N) that correspond to SenVar; and 

2. all variables shared among methods including (i) real arguments of any 
method invocation, (ii) return variables ret of each method if it has, and 
(ii) global variables; and 

3. formal arguments argi of each method. 

Moreover, the set of unobservable variables (that are shared among methods) 
contains nonterminals N(p,'Y,q) where p is any return variable ret. The inter­
mediate values of observed variables are stored in the memory, whereas the 
unobservable ones are stored on the disk. Although nonterminals induced by 
formal arguments (item 3) are neither sensitive nor shared among methods (un­
der the aforementioned method-wise decomposition), they are observed for an 
easy experimental configuration to be shown afterwards. 



Sch: The analysis maintains a workset that contains all methods to be analyzed 
in the later iterates (Le., any function f with f.checked == 0). The workset 
is updated as follows, for any method m, m is included into workset if m ~ 
workset, and 

- m is a newly detected reachable method after resolving virtual calls; or 
- the base variable x of any field or array reference like x.f or x[i] within m 

has been updated in the previous iteration; or 
- some global variable that is referred within m has been updated in the 

previous iteration; or 
- at any call site of some method m', real arguments passed to m has been 

updated in the previous iteration; or 
at any call site of m that calls some method m', the return variable of m' 
has been updated in the previous iteration. 

Note that, the first two items correspond to line 13 in Algo. 2, and others cor­
respond to line 11. Given kEN. We take each sliding window Fw from works'et 
with IFw I ::; k. Besides, for an easy experimental configuration, we choose to 
always analyze m and m' above involved in the last two items together. Such a 
choice also leads to the following way of specifying symbolic seeds. 

seeds: All nonterminals H ead(v,m) are taken as symbolic seeds, where v E 

AbsRef is (i) either global variables or (ii) formal arguments argi of each 
method. To supply the fixed-point computation with symbolic names, we make 
use of the grammar scheme of CAGPs in Fig. 2, and introduce extra transitions 
as follows for each method m in the sliding window, 

r : (A, lJ!) "--+ (argi , m i) and f(r) = Sargi 

r : (A, m) "--+ (glob, m) and f(r) = Sglob 

where argi is the ith formal argument of m for i ~ 0, and glob is any global 
variable that is referred within m, and Sargi and Sglob are symbolic names for 
Head(argi,m) and Head(glob,m) , respectively. i is a fresh stack symbol. These 
rules plus rule (0) in Fig. 2 equally set the initial value of val( 8)[H ead(argi,m)] 
to be Sarg

i
' It goes for global variables. 

¢: Our points-to analysis builds the call graph on-the-fiy when the analysis 
proceeds. After any sensitive variables are updated in the previous iteration, the 
underlying problem to be resolved is updated in two ways, 

- new reachable methods are resolved according to the updated values of the 
base variables for dynamic dispatch, as well as static methods that can be 
triggered in the current iteration; and 

- new grammar productions for each method are generated according to the 
updated values of base variables for any field or array references referred 
within this method. 



7 Experiments 

-We are aware of two implementations of WPDSs: Weighted PDS Library 4 and 
WPDS++ 5, and used the former in our experiments. We instantiated the algo­
rithm presented in §5 within our Java points-to analyzer Japot (implemented in 
Java), with using Soot2.3.0 [18] for preprocessing from Java programs to Jimple 
codes, and the Weighted PDS Library as the oracle for computing the fixed point 
of the equation system. We evaluate Japot on the Ashes benchmark suite [17] 
and the DaCapo benchmark suite [2] (the "#App." column in Table 1). These 
applications are de facto benchmarks when evaluating Java points-to analysis. 
We analyze DaCapo benchmark with JDK 1.5, and Ashes benchmarks for which 
JDK 1.3 suffices. All experiments were performed on a Mac OS X v.l0.5.2 with 
a Xeon 2x2.66 GHz Dual-Core processor, and 4GB RAM. Only one processor is 
used in the following experiments. A 2GB RAM is set for Java virtual machine 
when running Japot. 

To measure the performance of points-to analysis, we take call graph gener­
ation in terms of reachable methods as client analysis. Table 1 shows the pre­
liminary experimental results. The number of reachable methods is given in the 
"# Methods" column with taking Java libraries into account. The sub-column 
" CHA" is the result by conducting CHA of Spark in soot-2.3.0. The sub-column 
"Japot" gives results computed by our context-sensitive analysis, and the "# 
Statements" column gives the number of Jimple statements that Japot analyzed. 

# App. #WPA(s) # SSWA(s) # Acc. # Methods # Stmts 
win(104

) win(5000) win(3000) CHA Japot (Japot) 
soot-c 1751 605 607 676 2.9 5460 5079 83,936 
sablecc-j 2785 1030 1087 1274 2.6 13,055 9004 143,140 
antlr x 1401 1506 1832 00 10,728 9133 156,913 
bloat 41434 11704 12323 0 3.4 12,928 11,090 194,063 
chart - - - - - 30,831 - -
jython x 9581 10305 0 00 14,603 12,033 202,326 
pmd x 1611 1696 1584 00 12,485 10,406 180,170 
hsqldb 2910 - 1037 1119 1239 2.8 9983 8394 142,629 
xalan 2926 1064 1085 1255 2.7 9977 8392 141,415 
luindex 3880 1329 1292 1511 3.0 10,596 8961 152,592 
lusearch 4057 1369 1441 1678 2.8 11,190 9580 163,958 
eclipse x 1955 2042 2555 00 12,703 10,404 179,179 

.. 
Table 1. Scalmg Japot by SymbolIc SlIdmg Wmdow based AlgorIthm. 0: tIme out at 
4 hours. x: memory overflow on WPDS. _ : memory overflow on JVM. 

The "# WPA" column gives the time in seconds of the original whole program 
analysis, i.e., solving contracted AGPs by computing the limit of Kleen chains. 

4 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/ 
5 http://www.cs.wisc.edu/wpis/wpds++/index.php 



The "# SSWA" column gives the time of the symbolic sliding window based 
analysis. To measure the analysis given an adjustable memory budget, we set a 
bound k on the number of methods that can be taken in each sliding window. 
The sub-column "win(104 )", "win(5000)" and "win(3000)" gives the analysis time 
for k E {10000, 5000, 3000}, respectively. As shown in the "# Acc." column, over 
all the experiments we performed, SSWA provided us an average 3X speedup over 
WPA (when k = 5000). Interestingly, it works almost the same when k = 10000 
and k = 5000, which means that we can safely reduce the memory without 
affecting the performance a lot. Moreover, the analysis works well for most of 
applications when the memory budget is extremely shrunk (when k = 3000). 

8 Related and Future Work 

There has been a host of work on points-to analysis. A long standing difficulty in 
the realm is that, context-sensitivity is crucial to the analysis precision, whereas 
prohibitive to scalability. To our knowledge, practical points-to analysis do not 
handle recursive procedure calls in a context-sensitive way. On the one hand, they 
took cloning-based approach that has an inherit limit on analyzing recursions. On 
the other hand, it will become a bottleneck to precisely handle recursions. After 
all, scalability remains a problem even after approximating recursive procedures. 

The first scalable cloning-based context-sensitive Java points-to analysis is 
presented in [19], where programs and analysis problems are encoded as logic 
rules in Datalog. The BDD (Binary Decision Diagram) based implementation, as 
well as approximations by collapsing loops in the call graph, enable the analysis 
to scale. Manu et al proposed refinement-based techniques that explores CFL­
reachability to effectively detect unrealizable dataflow over pointer assignments 
[15,16]. The demand- and client-driven manner serves as the key to their scal­
ability. Loops in the call graph is again collapsed for decidability. As discussed 
in [6], there are often rich and large loops within the call graph, and the loss of 
precision is incurred after approximating recursions. 

Our attempt is to design a scalable stacking-based points-to analysis for Java 
that precisely handles recursive procedures. We place no restrictions on recur­
sions, by managing the program calling contexts with the unbounded pushdown 
stack. The work is an enhancement of our previous work [8] that tried the local 
analysis methods to reduce the time costs in a heuristic manner, and relied on 
the whole program analysis for soundness. In this work, we presented a system­
atic approach of scaling the stacking-based analysis as a modular analysis, with 
reducing both time and memory costs yet retaining precision. There are a host 
of work on modular analysis. We refer to [3] for an elegant review. 

We didn't compare with existing cloning points-to analyzers, because at 
present, context-sensitivity with respect to object-oriented' features, such as 
context-sensitive heap abstraction and context-sensitive call graph, are not sup­
ported in Japot. To provide those features demands Conditional WPDS [7]. 
However, techniques proposed in this work is applicable to the lifted analysis 
since analysis problems on Conditional WPDS is reduced to that on WPDS. 



Akash et al [5] proposed a technique to improve the running time for (weighted) 
pushdown model checking. In their approach, dataflow equations of intra-graphs 
are grouped as regular expressions, and the update on those expressions are 
incrementally propagated through shared interfaces interprocedurally. The ef­
ficiency gain makes use of Tarjan's algorithm for efficiently computing regular 
expressions. Their work is a complementary to ours, and can be plugged-in as a 
back-end for Weighted PDS Library. Our analysis can be also regarded as incre­
mental for only affected program parts are taken as the next sliding window. 

In this paper we limit our focus to the effects of unknown program control 
flow on designing a precise modular stacking-based analysis. As future work, 
smarter iteration strategies can be introduced when choosing sliding windows, 
and proper procedure summaries could be generated to avoid revisiting some 
program parts in the iterates for a better efficiency. We anticipate that generating 
context-sensitive summaries for stacking-based analysis demands Conditional 
WPDSs. Besides, since analysis that assume a program control flow are specific 
cases of CAGPs, we plan to apply techniques in this paper to taint-like analysis 
for detecting web vulnerabilities [9]. Last but not least, modularity opens the 
possibility of parallization. We hope to further scale up Japot by parallization. 
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