
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Modular Stacking-based Context-Sensitive Program

Analysis

Author(s) Li, Xin; Ogawa, Mizuhito

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2011-002: 1-22

Issue Date 2011-06-29

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/9813

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Modular Stacking-based Context-Sensitive Program Analysis

Xin Li, Mizuhito Ogawa

2011-06-29, JAIST Technical Report IS-RR-2011-002

Modular Stacking-based Context-Sensitive
Program Analysis

Xin Li and Mizuhito Ogawa

School of Information Science,
Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. This paper presents a systematic approach to scaling stacking­
based context-sensitive program analysis yielded by weighted pushdown
systems, and demonstrates its effectiveness by applications to Java points­
to analysis. Our approach relies on the view offormulating stacking-based
analysis as AGPs (abstract grammar problem), and reducing the analysis
problem to fixed-point calculation over the equation system encoded by
grammar productions. To characterize points-to analysis that does not
assume an existing program control flow, we propose Contracted AGP,
and a symbolic sliding-window based algorithm for it. The algorithm aims
at reducing both time and memory costs, and its correctness is proved in
terms of chaotic iteration. Finally, we instantiated the algorithm within
Japot, a context-sensitive points-to analyzer for Java. Experiments show
two-fold benefits of our approach in practice, with (i) scaling Japot to
Dacapo benchmark suite, and (ii) a speed-up of 3x faster in average,
given an adjustable memory budget.

1 Introd uction

Context-sensitive program analysis is precise yet prohibitive to scale, e.g., enor­
mous study has been devoted to scale up cloning-based points-to analysis [6].
Cloning-based analysis has an inherit limit to handle recursive procedures. How­
ever, as studied in [6], there are often many loops in the call graph, and each
of which typically contains a large number of methods more than one thousand.
As opposed to cloning-based approach, an alternative to context-sensitivity is
stacking-based that models the program into a (weighted) pushdown system,
and manages calling contexts with the finite yet unbounded pushdown stack [8].
This work is concerned with scaling stacking-based analysis as modular analysis,
with retaining the original precision of the whole program analysis.

This work is motivated by our work on Japot [8], a stacking-based points­
to analysis for Java yielded by weighted pushdown systems (WPDSs) [12]. As
shown by previous empirical studies [8], the whole problem analysis in Japot
could not scale to half applications of Dacapo Benchmark suite, due to memory
overflow. To reduce the time cost, we attempted to carefully interleave the whole
program analysis with local analysis in a heuristic manner, in which the whole
program analysis is compulsory for ensuring soundness. Although the scalability
issue remains, this technique brought us with 2x speed-up in average. A natural

question is, whether it is possible to conduct local stacking-based analysis only,
with preserving the original precision and soundness.

The idea of using local (or modular) analysis for scalability is not new [3].
That is, program parts are analyzed separately, and the analysis result on the
whole program is obtained by composing these partial ones. A known difficulty
for local analysis is that program parts are not completely independent. Gener­
ally, classic techniques consist in, (1) building a dependency graph of program
parts before the analysis, and analyzing parts in their topological order after
grouping loops; or (2) breaking such dependencies by providing each part with
(often conservative) summary information of external parts on which it depends.

However, it turns out to be nontrivial to apply aforementioned techniques to
stacking-based points-to analysis. As anticipated in [3] (§8.5), points-to analysis
and call graph construction are mutually dependent, and the dependency graph
expected by (1) is not known in advance. Moreover, it is known to be a chal­
lenging problem to compute precise, concise and efficient procedure summaries
in modular (points-to) analysis [20]. In this work, we limit our focus to inves­
tigating the effects of language polymorphism like dynamic dispatch and field
access on designing a precise modular stacking-based analysis. The dependency
among parts exploited by (1) is detected on-the-fly when the analysis proceeds.
The possibility of applying technique (2) is discussed as future work.

One key of our approach is the view of formulating stacking-based analysis
as AGPs (abstract grammar problems) [12], and the analysis problem is reduced
to computing the fixed-point of the equation system encoded from grammar
productions. To model points-to analysis for which the program control flow is
not assumed, we present a conceptual framework named Contracted AGP, as well
as generic algorithms for effectively solving it. Our proposal guides a systematic
design of precise modular stacking-based analysis.

The main results can be summarized as follows:

- We present a new problem named CAGP (Contracted AGP), and show that
stacking-based points-to analysis for Java is a typical instance of it (§3)).
The original AGP are special instances of CAGP.
We generalize chaotic iteration to chaotic contracted iteration (CCI), and
prove that CAGP can be solved by CCI (§4). This insight sheds light on the
ensuring generic algorithm for CAGP.

- We present and prove a symbolic sliding window based algorithm for CCI,
to reduce both (practical) time and memory costs (§5). By sliding window,
the algorithm iteratively solves parts of the equation system. By symbolic,
inputs of the equation system can be referred as symbolic names ih local
analysis and bound with concrete values in a lazy manner.

- We instantiate the aforementioned algorithm in Japot (§7). Empirical study
showed that, this approach brings two-fold benefits in practice, by (i) scaling
up Japot to Dacapo benchmark suite, and (ii) speeding up 3x faster in
average, given an adjustable memory budget.

Besides, §2 presents weighted pushdown systems, and motives the problem
to be addressed. §8 discusses related and future work.

2 Motivations

2.1 Weighted Pushdown System [12]

Definition 1. A pushdown system (PDS) Pis (Q, r, Ll, qo, wo), where Q is a
finite set of control locations, r is a finite stack alphabet, and Ll ~ Q x r x Q x r*
is a finite set of transition rules, and go E Q and Wo E r* are the initial control
location and stack contents, respectively. A transition rule (p, 'Y, q, w) ELlis
written as (p,'Y) <----+ (q,w). A configuration of P is a pair of (q,w) for q E Q
and w E r*. A set of configurations C is regular if, for each configuration
(p, w) E C, w is regular. A relation =* on configurations is defined, such that
(P,'Yw') =* (q,ww')for each w' E r* if (p,'Y) <----+ (q,w).

A pushdown system can be normalized (or simulated) by a pushdown system
for which Iwl ::; 2 for each transition rule (p, 'Y) <----+ (q, w) [14]. In sequel, we
always assume such normalized forms, and require the initial stack contents to
be 'Yo E r, without loss of generality.

Definition 2. A bounded idempotent semiring Sis (D, EB, 0, a ,I), where
0,1 ED, and

1. (D, EB) is a commutative monoid with a as its unit element, and EB is idem­
potent, i.e., a EB a = a for all a E D;

2. (D, 0) is a monoid with 1 as the unit element;
3. 0 distributes over EB, i.e., for all a, b, c E D, we have

a 0 (b EB c) = (a 0 b) EB (a 0 c) and (b EB c) 0 a = (b 0 a) EB (c 0 a) ;
4. for all a E D, a 0 a = a 0 a = 0;
5. A partial ordering ~ is defined on D such that a ~ b iff a EB b = a for all

a, bED, , and there are no infinite descending chains in D.

By Def. 2, we have that a is the greatest element. From the standpoint of
abstract interpretation, PDSs model the (recursive) control flows of the pro­
gram, weight elements encodes transfer functions, 0 corresponds to function
composition, and EB joins data flows.

Definition 3. A weighted pushdown system (WPDS) W is a triplet (P, S,j),
where P = (Q, r, Ll, qo, 'Yo) is a pushdown system, S = (D, EB, 0, 0, I) is a bounded
idempotent semiring, and f: Ll ---+ D is a weight assignment function.

Let (j = [ro, ... , rk] with ri E Ll for 0 ::; i ::; k be a sequence of pushdown tran­
sition rules. A value associated with (j is defined by val((j) = f(ro) 0 ... 0 f(rk)'
Given c,' cEQ x r*, we denote by path(c, c') the set of transition sequences
that transform configurations from c into c'.
Definition 4. Given a weighted pushdown system W = (P, S, j), where P =
(Q, r, Ll, qo, 'Yo), and two regular sets of configurations C, 0' ~ Q x r*, the
meet-over-all-valid-path (MOVP) problem computes

MOVP(O,O') = EB{val((j) I (j Epath(c,c'),c E O,c' EO'}
Let @(p, 'Y) = {(P, 'Yw) I w E r*} for any p E Q, 'Y E r. The Head-MOVP
problem computes, for each p E Q, 'Y E r

HMOVP(p,'Y) = MOVP({(qo,'Yo)},@(p,'Y))

2.2 Stacking-based Program Analysis by WPDSs

Points-to analysis infers a points-to relation n that maps each reference to the
set of objects it may point to at runtime. We denote by AbsRef the set of
abstract references, and by AbsObj the set of abstract heap objects, and let
o E AbsObj denote the null reference. Thus n is a mapping from AbsRef to
2AbsObj, and we write r 1-+ n(r). We adopt allocation site based abstractions on
heap, i.e., a unique abstract heap object models concrete heap objects allocated
at the same program line. Also, array members of any array reference 0 are not
distinguished, and denoted by [0]. Therefore, AbsObj is syntactically bounded,
and can be represented as pairs of allocation sites and runtime types.

Definition 5. Let P be the powerset constructor. We define a semiring Spta =
(Dpta , EB, 0, 0, I), where D pta = P(AbsObj x AbsObj) is the set of all binary
relation on AbsObj, I is the identity relation, 0 is the empty set, EB is set union,
and d 0 d' = dod' U d' 0 d, where 0 denotes the relation composition.

O. public class Main {
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11. }

public static void main(String[] args){
Object Xl = new StringO;

}

Object X2 = new Integer(O);
Object Y1 = f(X1);
Object Y2 = f(X2);

public static Object f(Object a){
if(false) a = new ExceptionO;
return a;

}

(a) A Java Code Snippet

TO : (A, main) "--t (A, f main) id

T1 : (A, lJt) "--t (A, main) id
T2 : (A, main) "--t (Xl, main) {(_,01)}
T3 : (A, main) "--t (X2, main) {(-,02)}
T4: (Xl, main) "--t (arg,f l4) id

(ret, l4) "--t (Y1, main) id
TO : (ret, main) "--t (Y1, main) id
T5 : (X2, main) "--t (arg, f l5) id

(ret, l5) "--t (Y2, main) id
To : (ret, main) "--t (Y2, main) id
TS : (A, f) "--t (a,J) {(_,03)}
Tg : (a, f) "--t (ret, f) id

TlO : (ret, f) "--t (ret, €) id

(b) WPDS for the Code in (a)

Fig. 1. Stacking-based Points-to Analysis in a Nutshell. Abstract heap objects allocated
on line 2, 3, 8 are 01 : (2, String), 02 : (3, Integer), 03 : (8, Exception), respectively. A
and lJt denote the abstract heap environment and dummy program entry, respectively.
ret and arg denote return values and formal arguments, respectively. li denote the
return point of the method call at line i.

We use the relational weight domain Dpta in our analysis. Note that, 0 pta

shows our choice of flow-insensitivity. Let {(_,o)} be a shorthand for {(i, 0) liE
AbsObj}, and let id denote the identity relation {(i,i) liE AbsObj}. Fig. 1
shows an Java code snippet and its WPDS encoding, where transitions ri(i > 0)
correspond to statements at line i; A and 1Ji correspond to the initial control
location and stack contents, respectively; A holds the thread of the program
control flow that is encoded in ro.

As shown in the figure, variables are encoded as control locations, methods,
as well as return points of procedure calls, are encoded the stack alphabet.
By this encoding, we have for any reference v E AbsRef of the method m,
R(v) = {w(<» I W E HMOVP(v,m)}. The analysis on example in Fig. l(a)
precisely infers Y1 1-7 {01' 03} and Y2 1-7 {02' 03}, whereas a context-insensitive
analysis can not distinguish Y1 and Y2' Stacking-based analysis ensures that
method calls correctly math with returns, a.k.a., valid paths.

Our previous empirical study [8] showed that, the aforementioned points­
to analysis for Java (with handling language features of polymorphism) can
not scale well. It turns out to be nontrivial to transform the analysis into a
modular counterpart. As mentioned'shortly in §l, points-to analysis does not
assume an existing program control flow, e.g., effects of dynamic dispatch like
"y = x.f(al, ... , an)" and field access like "x.j = y" could not be analyzed
before R(x) is resolved. We address the following problem in this work,
"given a kEN, conduct a modular stacking-based analysis with analyzing at
most k methods at once, without any loss of precision."

3 Contracted Abstract Grammar Problem

3.1 Abstract Grammar Problem (AGP) [12]

Let N be the set of natural numbers, and let F be a finite ranked alphabet
associated with the arity function arity : F -* N, and F(k) = {f E F I
arity(f) = k} for all kEN. We denote by T(F) the set of ground terms over F.
Let (D, n) be a meet semilattice. An F-algebra A is ((D, n), [']A), where [']A
associates each function f E F with an interpretation [f]A : Darity(f) -* D. An
evaluation on ground terms is [-]A : T(F) ---+ D, such that for each t E T(F),

{

[t]A' if t E F(o);
[t]A = [f]A([tdA' ... , [tk]A), if t = f(tl, ... , tk), f E F(k) ,

and ti E T(F) for 1 :s; i :s; k.

Definition 6. An abstract grammar Q = (V, T, 8, F) is a context-free gram­
mar (V, T, 8) over a finite ranked alphabet F, where V is a finite set of nonter­
minals, T = F i±J {"(", ")", ","} is a finite set of terminals, and e is a finite set
of productions and each has the form Xo -* ge(X1 , X 2 , .•• , Xk) for ge E F(k)'

We define a relation *9 on (V U T)*, such that wYw' *9 waw' for any
w, w' E (V U T) * if Y -* a E e. Let * Q be the reflexive and transitive closure
of *9, and let L(X) be the language generated by the non-terminal X, i.e.,
L(X) = {w E T* I X *9 w}. In sequel, we assume V = {Xl, ... ,Xn} in Q. We
denote by Dn the Cartesian product of D, and by d[i] the ith projection of any
dE Dn. We write d[Xi] for d[i] when it is clear from the context. We extend n
over D to Dn by dnd' = (d[l] nd'[l], ... ,d[n] nd'[n]) for any d,d' E Dn.

Definition 7. Given an abstract grammar Q = (V, T, e, F) with V = {Xl, ... , X n },
and an F-algebra A = ((D, n), [']A) in which D has the greatest element T. The

abstract grammar problem (AGP) is to compute val(8) E Dn, such that for
each 1 ~ i ~ n,

{

T if L(Xi) = 0;
val(8)[i] = n [W]A if L(Xi) =1= 0.

wEL(Xi)

For each production X io ---+ ge (Xill X i2 , ..• , X ik) where io < ... < ik with
ij E {I, ... ,n} and 0 ~ j ~ k, we extend [ge]A to be an n-ary function on Dn
with overloading ge, such that for each 1 ~ t ~ n, and d E Dn ,

(d)[t] = { [ge]A(d[iI], d[i2], ... , d[ik)) if t = io;
ge d[t] otherwise.

We say that ge is dependent of Xill X i2 , ... , X ik , and the set of ge is denoted by
F(8). We are able to define a function f(8) on Dn by

f(8) = AX.X n n ge(X)
Xio-+ge(Xil ,Xi2 "",Xik)

It is established in [10] that val(8) is the maximum fixed point of f, if [ge]A is
distributive (and thus monotonic) for each ge E F. 1

(0) N(qO,iO,qf) ---+ go(€)

[go] = I
(1) N(p'd,q') ---+ gl(N(p,i,q)C(q,i l ,ql)) r = (P,,) "--+ (p', e) E ..1

[gl] = AX.Ay·y (2) x (2) fer), and q, q' E Q,,' E r
(2) N(p'd,q) ---+ g2(N(p,i,q)) r = (P,,) "--+ (p',,') E ..1

[g2] = AX.X (2) fer), and q E Q
(3) N(pl'i',qp',-y/) ---+ g3(€) r = (P,,) "--+ (p',,',") E ..1

[g3] = I
(3') C(qpl,-y' d ' ,q) ---+ g~ (N(P,i,q))

[g~] = AX.X (2) fer), and q E Q

(4) Head(p,i) ---+ g4(N(p'i,q)DummY(q,qf))

[g4] = AX.Ay.y (2) x, and p E Q" E r, q E Q
(4') Head(p,i) ---+ g~(N(P'i,qf))

[g~] = AX.X, and PEP" E r
(5) DummY(q,qf) ---+ g5(C(q'i,q,)DummY(q',qf))

[g5] = AX.Ay·y (2) x, and q' E Q, and, E r
(5') DummY(q,qf) ---+ g~(C(q'i,qf))

[g~] = AX.X, and q E Q, , E r

Fig. 2. An Abstract Grammar Problem for Solving the Head-MOVP Problem. Q =
{qp,r I p E Q" E r}, and qf is a fresh symbol.

Program analysis problems on WPDSs can be reduced to AGPs [12]. We give
an instance of AGP for solving the Head-MOVP problem in Figure 2, where (1)­
(3') are production schemes encoded from pushdown transitions, and (4) - (5')
and (0) are those specific to the Head-MOVP problem ((0) corresponds to the

1 [10] works on the function f'(e) = AX. ngeE.r(B) ge(X). It is easy to see that f'(e)
coincides with fee) on the maximum fixed point.

initial configuration (Po, "(0), and (4)-(5') corresponds to the target configuration
and are derived from (1) - (3')). We have for each p E Q and "I E r,

HMOVP(p, "I) = vaZ(8)[H ead(p,'Y)]

3.2 Contracted AGPs and Applications

Due to language polymorphism like dynamic dispatch and field access, the pro­
gram control flow is not known in advance, and is discovered on-the-fly when
points-to analysis proceeds. We present Contracted AGP in Def. 8, to offer some
insights into the cyclic dependency between control flow and data flow analysis.

Definition 8. Given an abstract grammar g = (V, T, 8, F), and an F -algebra
A = ((D, n), [']A) in which D has the greatest element T. A Junction & : Dn -+

P(8) is a contract function iJ it is anti-monotonic. We define a Junction K
on P(8) by K = AX.X U &(val(x)). Let 8* be the least fixed point oj K. The
contracted abstract grammar problem (CAGP) is to compute val(8*).

Remark 1. It is not hard to see that K is monotonic, and its least fixed point
8* exists and can be computed as the limit of the iterates K(0)(0), K(1)(0), ... by
Kleen's theorem. However, such an approach faces the scalability problem since
the underlying grammar problem keeps enlarged.

Java Points-to Analysis as Solving CAGPs

We use the abstraction and modelling discussed in §2.2, and further assume a
typed three-address form of the target language. Given the abstraction, the possi­
ble objects that a reference variable may point to is known as long as its declared
type permits. We prepare a function allObj : AbsReJ -+ 2AbsObj by, for each
v E AbsReJ, allObj(v) = {(Z, T) E AbsObj I T is a subtype of v's declared type}.
Let Rl. be a points-to relation such that Rl.(r) = 0 for all r E AbsRef. Given
os ~ AbsObj, and r E AbsReJ, for each r' E AbsReJ, R[r 1-* os](r') = os if
r' = r, and R[r 1-* os] (r') = R(r) otherwise. Moreover, the union of Rand R'
is defined as, for each r E AbsReJ, R U R'(r) = R(r) U R'(r).

Let .c be the set of distinguished program line numbers, and let M be the set
of methods. A labelled call graph G is (N, E), where N ~ M is the set of meth­
ods, and E ~ M x .c x M is the set of call edges. We define a labeling function
rc from the call edges to points-to relations, such that rc(e) specifies possible
conditions (i.e., points-to relations on runtime types of the receiver object) that
enable the call relation e. We assume an imprecise call graph syntactically built,
e.g., by CHA (Class Hierarchy Analysis) [4], and rc is decided by the language
semantics, for each e = (m', Z, m) E E,

1
{Rl.[x 1-* {a}] I 0 E allObj(x),

rc(e) = x 1-* {a} enables e},

{Rl.},

if Z is a dynamic dispatch with
x being the implicit parameter;

if Z is a static method invocation.

Let mo E N be the initial node. For each m EM, we define conditions for
m being reachable from mo, denoted by RC(m), by

RC(m) = {{R..L}' if m = mo;
{R' URI R' E RC(m'), R E rc(e), e = (m', l, m) E E}, otherwise.

Fig. 3 shows the encoding of a WPDS W = (P, S,!) with P = (Q, r, .1, qo, '"Yo),
given G. We define a labelling function rc from .1 to points-to relations, such
that for any transition r E .1, rc(r) specifies runtime types of the base variable
(Le., x in x.f(rl, ... , rn), or x.f, or x[i] for any i E N) that enable r. To reduce the
exponential growth of transitions, we distinguish a global reference (Le., array
or field reference) in each method as if it is a local one, and the unified result
is referred from A on demand [8]. Our analysis is context-sensitive and field­
sensitive (and flow-insensitive). Context-sensitive and field-sensitive analysis is
undecidable [11]. Instead of matching field (resp. array) read and write during
the context-sensitive analysis, we first cast aliasing in field (resp. array) reference.

{(_,(I,T»}
I[x = new T] = {(A,m) '---' (x,m)}

c

I[x = y] = {(y, m) '---' (x, m)}
c

I[x := (T)y] = {(y, m) '---' (x, m)}
c

I[x := @this: T] = {(this, m) '---' (x, m)}
c

I[x := @parameterk : T] = {(argk , m) '---' (x, mn
c

I[return x] = {(x, m) '---' (ret, mn
c

I[y.f = x] = {(x, m) '---' (o.f, m) I 0 E aIIObj(y)}
cU {'R..JJy {o}]}

I[x = y[i]] = {([o] , m) '---' (x, m) I 0 E aIlObj(y)} U A g , where
cu{'R..-L[y {o}]}

Ag {(A, m) {(~)} ([0], m) I 0' E aIlObj([o])}
cU{'R..-L [[oD { o'}]}

I[z = 1'o.f(1'1, ... , 1'n)] = Ac U A r , where (m, l, m') E E, c' = rc((m, l, m'))
Ac = {(1'o, m) '---' (this, m' In U

cUe'

U {(1'i' m) '---' (argi , m' In
O<i<n cUe'

Ar = {(r-et, m') '---' (ret, l)} U {(ret, l) '---' (z, m)}.
c c

Fig. 3. I[_] generates W for a statement at l E .c of the method m, where c = RC(m).

For any l' : (p, ,) '---' (q, w) E .d, we write (p, ,) Ie!!) (q, w), and omit f(1') if it is 1.
rc(r)

Let 8 pta be the abstract grammar generated for the program (Fig. 3 and Fig.
2), and let n be the number of non-terminals in 8 pta . We define the contract
function E by, for each d E D;ta, and for any () E 8 pta , () E £(d) if either

- (i) there exists a transition r E .1 and R E rc(r), such that, for each r E
AbsRef, EB'(Er d[Head(r,,),)] ~ R(r), and (ii) () is a production generated
from r by (1)-(3') in Fig. 2; or
() is any production generated by (0) or (4) - (5') in Fig. 2.

4 Chaotic Contracted Iteration

Definition 9. Given a set D, and an element d ED, and a finite set of func­
tions F = {iI, ... , fn} on D.

- A run is an infinite sequence of functions in F.
- An iteration of F associated with a run fil' f i2, ... and starting with d is an

infinite sequence of values do, d1 , ... , such that do = d and dj = fij (dj_ d·
- A run fi l , f i2' '" is fair if, for each m 2: 0, F ~ U {iij}.

j>m

- An iteration of F is chaotic if it is associated with a fair run.

Definition 10. Given a partially ordered set (D, ~). A function f on D is in­
flationary if f (x) ~ x and downward inflationary if f (x) ~. x, for each
xED, respectively.

In sequel we fix the following notations,

(D, n) for a meet semi-lattice with the greatest element T and the descending
chain condition (Le., there are no infinite descending chains in D),

- x ~ y when x n y = x for x, y ED, and
- F = {iI, ... , f n} for a finite set of monotonic and downward inflationary

functions on D.

Theorem 1 (Chaotic Iteration 2 [1]). The limit of any chaotic iteration of
00 n

F exists and coincides with n fj (T), where f = AX. n fi (x).
j=O i=O

Instead of starting from T, we can iteratively apply the function f starting
00

at d ED, and its limit n fj (d) uniquely exists. We refer it by fix(f, d).
j=O

Definition 11. Let d ED.

- A function ¢ : D ---+ 2F is a contract function if ¢ is anti-monotonic.
- A contracted iteration (CJ) of F associated with a run iiI, 1i2 , ... and start-

ing with d is an infinite sequence of values do, d1 , ... , such that do = d and
dj = lij (dj- 1) where ij E ¢(dj- 1).

- A run fil , f i2, ... is fair for a contracted iteration do, d1 , ... if, for each m > 0,
¢(dj) ~ U {i j }.

j>m

- A contracted iteration of F is chaotic if it is associated with a fair run.

Definition 12. Let S = {iI, ... , ik} ~ F. We define,

{

Fun(S) = AX. n f(x), and
fEB

Ser(S) = {fil oli2 o ... ofik I (il,i2, ... ,ik) is a permutation of{l, ... ,k}}

2 Theorem 1 holds for a cpo, in which the direction of the ordering is reversed [1].

Lemma 1. Let S ~ F. For each xED and hE SereS), Fun(S)(x) ~ hex).

Proof. Since each function in F is downward inflationary, for each 1 ::; j ::; k,
xED, and h E SereS), fij (x) ~ hex) holds. D

Theorem 2 (Chaotic Contracted Iteration). Given a contract function ¢ :
D ---+ 2F. The limit of any chaotic contracted iteration of F starting with d E D
exists and coincides with fix(7"d, d), where the function 7"d on D is defined by
7"d = Az.fix(gz, d) and gz = Fun(¢(z)).

Proof. The theorem follows from the following steps.
(1) Consider any given chaotic contracted iteration do, dl , d2 , ... of F starting

with d. Since each function in F is downward inflationary, we have di ~ di+l for
i 2: 0. Moreover, since there are no infinite descending chains in D, we have that
the limit of any chaotic contracted iteration of F exists.

(2) Consider any dl , d2 E D with dl r;;;;; d2. Since ¢ is anti-monotonic and
¢(dl) ~ ¢(d2), we have gd1 (x) r;;;;; gd2 (x) for all xED and fix(gd1 , d) r;;;;; fix(gd2 , d).
We have 7"d(dl) r;;;;; 7"d(d2)i thus 7"d is monotonic. Since gd is downward inflationary,
7"d(d) r;;;;; d by definition of 7"d. Therefore, we have that d ~ 7"d(d) ~ 7"J(d) ~ .,.
and the limit fixe 7" d, d) exists, since there are no infinite descending chains in D.

(3) Consider any given chaotic contracted iteration ao, al, a2, ... of F associ­
ated with the run fill fi2' ... and starting with d, and the descending sequence
bo, bl, b2, ... where bo = d and bj = 7"d(bj- l) for j 2: 1. To prove they converge at
the same limit follows the following claims:

\/j. aj ~ bj .
By induction on j. (i) Obvious when j = 0, ao = bo = d. (ii) Assume that
aj ~ bj for some j > 0, then we have

aj+l = fij(aj) (where ii j E ¢(aj))

~ ii j (bj) ~ fij (bj+d

~ gbj (bj+l) (aj ~ bj ~ ii j E ¢(bj))

= bj +l

- \/j 3j'. bj ~ ajl.
By induction on j. (i) Obvious when j = 0, ao = bo = d. (ii) Assume that,
for j > 0, there exists j' > ° such that bj ~ aj'. Let k is the smallest number
that satisfies g~. (d) = g~~C(d) for each c 2: 0. By definition, we have

J J

Since d = bo ~ bj , we have

gbj ked) ~ gbj k(bj) ~ gbj k(aj/) = Fun(¢(bj))k(aj/)

~ hl 0 ••. 0 hk(aj') (by Lemma 1)

where hi E Sere ¢(bj)) for each 1 ::; i ::; k.

Consider the suffix fi jl+ 1
, fi jl+2

' ••• of the run associated with the chaotic
contracted iteration ao, al, For each h E Ser(¢(bj)), fairness implies the
existence of th E N such that hl 0 .•• 0 hk is embedded into fith 0'" 0 fijI +2 0

fi jl+ 1
' Let tH be the smallest tho We have hl 0 ••• ohk(ajl) ;;;;) fitH o· .. 0 fi jl+2

0

fijI +1 (aj') due to downward inflationary, and thus bj+l ;;;;) atH' D

Theorem 2 says that we can solve CAGPs in terms of CCls, by instantiating
¢ with £, and F with F(8).

5 A Symbolic Sliding Window based Algorithm for CCl

As shown in the proof of Theorem 2, fix(Td, d) would have faster convergence
than a contracted chaotic iteration. However, it is prohibitive to scale when ¢(z)
becomes larger and larger for ¢ is anti-monotonic. To reduce memory costs,
we present two techniques for effectively solving CCI, a sliding window based
algorithm and further acceleration by symbolic computation.

5.1 A Sliding Window based Algorithm

Algo. 1 gives a sliding window based CCI algorithm that will continue forever.
We maintain a boolean variable checked for each function f in F, and refer
it by f.checked. We use the iteration number (starting with 1) enclosed with
parenthesis as the superscript of variables in the algorithm, to refer their value
at the entry of the loop (line 2) in that iteration, e.g., d(i) , F~i), F~i), j.checked(i).
Note that by replacing the condition "+ + iteration> 0" of the while loop (line
2) with the negation of "f. checked = 1 for each f E Fr", we obtain a terminating
algorithm that computes the same limit.

Definition 13. For an n-ary function f over Dn, f is independent of the i-th
variable if, for each dl , ... , di- l , di+l' ... , dn, d, d' E D,

In Algo. 1, we assume n variables Xl, ... , Xn such that Xi is always the i-th
variable of each function. DepVar(f) denotes a set of variables such that its
complement consists of independent variables of f.

Definition 14. A function S ch : 2F x N ~ 2F is a scheduler for Algorithm 1
if, for each F' ~ F and i EN, SCh(F', i) ~ F' n {f E"F I j.checked(i) = O}. A
scheduler is fair if, for each i > 0, there exists f E F~i) with f.checked(i) = 0,
then there exists j 2:: i with f E F~P .

Remark 2. By sliding window, we refer to parts of equations Fw in the iterates.
Although Fw is defined (Def. 14) to take functions from {f I f.checked == O},
it is safe to include any functions {f I j.checked == I}, as revealed in the proof

Algorithm 1: A Sliding Window based CCI Algorithm

1 Fr:= 0; d := (T, ... , T) E Dn; iteration := 0;
2 while (+ + iteration> 0) do
3 Fr := ¢(d);

4 Fw := Sch(Fr , iteration) ;

5 d' := fix(Fun(Fw), d) ;

6 foreach f in Fw do f.checked:= 1;
7 UpdatedVar := {Xt I d[t] i= d'[t] for each 1 :::; t:::; n} ;
8 NewRules := ¢(d') \ Fr ;
9 foreach f in Fr \ Fw do

10 I if DepVar(f) n UpdatedVar i= 0 then f.checked:= 0;
11 end
12 foreach f in N ewRules do f.checked := 0;
13 d:= d';
14 end

for Theorem 3. Algo. 1 says that sliding window are freely chosen under fairness.
As the most rewarding result, we are enabled to impose any given threshold k
on IFwl, i.e., IFwl < k, without violating its sound convergence. It works for the
occasion where the memory budget is limited.

In sequel we prove the correct convergence of Algo. l.

Definition 15. Given a contract function ¢ : D ---+ 2F.

- A batched run is an infinite sequence of sets of functions from 2F.
A batched contracted iteration (BGI) of F starting with d E D is an
infinite sequence of values do, db ... associated with a batched run F l , F2, ...
such that do = d, and for each j > 0, dj = fix(gj, dj - l) where gj = Fun(Fj),
and Fj ~ ¢(dj - l).
A batched run Fl , F2, ... is fair for a batched contracted iteration do, dl , ... if
each i ~ 0, ¢(di) ~ U Fj .

j>i
- A BGI is chaotic if it is associated with a fair batched run.

Lemma 2 (Chaotic BCI). Given a contract function ¢ : D ---+ 2F. The limit
of any chaotic BGI of F starting with d E D exists and coincides with the limit
of any chaotic contracted iteration of F starting with d.

Proof. For a chaotic BCI of F starting with d ED, we can construct a CCI of F
starting with d by element-wise enumeration over each set of functions Fj in the
batched run. Since any chaotic contracted iteration of F stabilizes at the same
limit by Theorem 2, the theorem holds. 0

Theorem 3. Assume running Algorithm 1 with a fair scheduler. We have

1. The limit of d(l), d(2), ... reaches at d(i) if j.checked(i) = 1 for each f E F;i).

2. The limit of del) , d(2) , ... exists and there exists a chaotic Bel of F starting
with (T, ... , T) E Dn, such that two limits coincide.

Proof. 1. d(i) is the limit, since the loop invariant that "for each f, if f.checkedU) =
1 then f(d(j)) = dU)" holds (at line 2).

2. Since all functions in F are downward inflationary, we have del) ~ d(2) ~
.... The limit of d(l), d(2), ... exists, otherwise the descending chain condition is
violated. We define a Bel do, d l , ... of F associated with a batched run F l , F2 , •••.

and do = (T, ... , T) E Dn such that F2m- l = "FSm) and F2m = F~m), where

"FSm) = {I E Fjm) I f.checked(m) = I} for m > O.
(1) Since "for each I, f.checked(m) = 1 implies f(d(m)) = d(m)" is a loop in­

variant (at line 2), d2m = d2m+l = d(m). Thus, the limit of d(l), d(2) , ... coincides
with the limit of do, dl,

(2) We show Fl, F2 , ... is fair, i.e., for each i ~ 0, ¢(di) ~ U Fj . Since
j>i

d2m = d2m+l = d(m) , ¢(d2m) = ¢(d2m+l) = ¢(d(m)) = Fjm+l). For each

f E F~m+l), if f.checked(m+l) = 1, I E "FSm +l
) = F2m+3 ; otherwise, by the

definition of fair scheduler, there exists m' ~ m + 1 with f E F~m') = F2m,. D

5.2 Acceleration by Symbolic Computation

As the application size grows, the points-to sets of reference variables could be
enormous. To prevent local analyses from operating on such huge data, we in­
troduce symbolic computation technique, to further improve Algo. 1. The idea
is to allow (arbitrary subset of) inputs of the equation system to be referred
as symbolic names in the fixed point calculation, and the analysis result is ob­
tained by binding symbolic names to their concrete values lazily. This approach
anticipates that the cost of substitution would· be paid off on the whole.

To show that such a symbolic algorithm will soundly converge as Algo. 1, we
limit our discussion to the type of equation systems derived from stacking-based
program analysis by WPDSs, as shown in Fig. 2, and base our presentation in
terms of formal power series [13] 3. Let E be an alphabet, and let S be a set.
Mappings r from E* to D are called (formal) power series. For w E E*, we write
(r, w) for r(w), and r is written as a sum r = LWEE* (r, w)w. The collection of
all power series r as defined above is denoted by D((E*)). For r, r' E D((E*)) ,
the sum r + r' and the product r . r' are power series in D((E*)) defined as

(r + r' , w) = (r, w) + (r', w) and (r . r', w) = LWl W2 =w (r, wd (r' , W2)
In the rest of this section, we assume that (i) D is a bounded idempotent

semiring (D, +",0, I), (ii) D is finite with the greatest element T, and (iii) . is
idempotent and commutative. We further assume that (iv) the concatenation of
words is idempotent and commutative, i.e., for any w, w' E E*, ww' = w'w and
ww = w. Then, it is easy to check that, (D((E*)), +, ,,0, I) is also a bounded

3 An alternative could be in terms of symbolic execution that re-interprets the lan­
guage constructs over symbolic values.

idempotent semiring. Note that the idempotent laws and commutativity laws in
(iii) and (iv) ensure termination of the following symbolic computation.

Let X = {Xl, ... , Xn} be a finite set of variables. We define a set of functions
Func in which each function has the form AX1 , ... , Xn,(Xl + rl, ... , Xn + rn),
where rl, ... ,rn E D((X*)). Note that, the function scheme AX.X + r satisfies
downward inflationary property. A fresh distinguished symbolic value Si is as­
signed to each variable Xi E X (1 :::; i :::; n). The set of symbolic values {Sl' ... , sn}
is denoted by SymX. For dE Dn and seeds ~ {I, ... ,n}. We denote by

- Cl seeds,d the ground substitution such that, for each 1 :::; i :::; n,

{
d[i] if i E seeds;

Clseeds,d(Si) = T otherwise.

dseeds the value from (D((SymX*)))n such that, for each 1 :::; i :::; n,
d [.] _ { Si if i E seeds;

seeds ~ - d[i] otherwise.

Lemma 3. Foranyfunctionf E Func, anyd E Dn, and any seeds ~ {l, ... ,n},
we have fix(j, dseeds)Cl seeds,d = fix(f, d).

Proof. The proof is straightforward based on assumptions above. D

Theorem 4. Given seeds ~ {I, ... , n} and F ~ Func. Assume replacing line
5 in Algo. 1 with d' := fix(Fun(Fw) , dseeds)Clseeds,d and running Algo. 1 with a
fair scheduler.

1. The limit of d(l), d(2), ... reaches at d(i) if f.checked = 1 for all f E F.
2. The limit of d(l), d(2), ... exists and there exists a chaotic Bel of F starting

with (T, ... , T) E Dn, such that two limits coincide. D

6 Modular Stacking-based Points-to Analysis

We implemented a modular stacking-based points-to analysis, by instantiating
the algorithm in §5. Our analysis consists of two modules: the front-end points­
to analysis engine implemented in Java, and the back-end WPDS engine imple­
mented in C. Those two modules communicated with each other by writing and
reading files shared on the disk, e.g., the front-end engine generates and outputs
the WPDS model on the disk for each local analysis, and the back-end engine
loads the partial model, calculates the fixed-point, and outputs the intermediate
values of variables to some files on the disk. These values are later read-off by
the front-end analysis to enlarge the underlying problem to be solved (Le., ¢)
and to decide the sliding window for the next iteration.

6.1 An Adapted Algorithm for CCI

When analyzing realistic applications, the induced variables (Le., nonterminals
of CAGPs) turn out to be enormous. First, we organize the analysis method-wise.
The compound grammar productions generated from each method and all its

incoming edges such as method calls and returns, is treated as an atomic function
in the chaotic iteration. Then, we adapt the analysis to a demand-driven manner,
such that only nonterminals H ead(p,'Y) are observed by the front-end analysis for
their concrete values in the iterates, where p E AbsRef is any variable that is
either sensitive (Def. 16) or shared among methods. To ensure soundness, we
introduce an extra step of convergence check in the iterates. Such a choice turns
out to be cost-effective by empirical studies, as shown in §7.

Definition 16. For any i E {I, ... , n}, we say that Xi is sensitive if, there
exists d, d' E Dn, with d[i] =J d'[i], and d[j] = d[j] for any j =J i E {I, ... , n}, such
that ¢(d) =J ¢(d'). The indexes for all sensitive variables is denoted by Sen V ar.

Definition 17. Given any ObsVar ~ {I, ... ,n}, dE (D((SymX*)))n, dE Dn,
and seeds ~ {I, ... ,n}. For each 1 :::; i:::; n,

d-(Ob V)[.] {d[i]o-seeds d ifi E ObsVar; s ar, 0-seeds,d ~ = d-[,;] ,
u otherwise.

and given Var ~ {I, ... , n}, for each 1 :::; i :::; n,

(d Ivar)[i] = {d[i], if i E ~ ar;
T, otherwzse.

Remark 3. For any d E (D((SymX*)))n, we have ¢(d) = ¢(d Isenvar).

In Algo. 2, we assume ObsVar ~ SenVar and ObsVar ~ seeds as input
conditions. In contrast with Algo. 1, it differs in that, (i) at line 6, only observed
variables are bound to concrete values in each iteration; (ii) at line 8, only
variables from ObsVar are observed; (iii) at line 14-20, an extra convergence
check (i.e., Vf E F.f(d) = d) is introduced when f.checked = 1 for all f E F.
By replacing the condition "+ + iteration> 0" of the while loop (line 3) with
the negation of "f. checked == 1 for each f E Fr and mayStabilized == 1",
we obtain a terminating algorithm that computes the same limit as that of any
chaotic BCL

Theorem 5. Assume running Algorithm 2 with a fair scheduler. We have

1. The limit of d(l), d(2), ... reaches at d(i) if f.checked = 1 for all f E F and
mayStabilized = 1.

2. The limit of d(l) , d(2) , ... exists and there exists a chaotic Bel of F starting
with (T, ... , T) E Dn, such that its limit coincides with d(i)o-seeds,d(i).

Proof. After adding the explicit convergence check, it becomes easy to anticipate
the soundness. We give a proof sketch below.

1. d(i) is the limit, since the loop invariant "for each f, if j.checked(j) = 1
and mayStabilizedU) = 1, then f(d(j)) = dU)" holds (at line 3).

2. The limit exists otherwise the descending chain property of (D((SymX*)))
is violated. We define a BCI do, dI , .. of F associated with a batched run
FI , F2, '" and do = (T, ... , T) E Dn, such that Fi = UI<k<i :F~k) U {f E

F~i) I f.checked = I}. To show the two limits coincides, (i) ~ ~ d(i)o-seeds,d(i)
is obvious; (ii) Vi.3j. di ~ d(j)o-seeds,d(j) is proved by induction on i, based on
Lemma 1, fairness of the scheduler, and Lemma 3. 0

Algorithm 2: An Adapted Symbolic Sliding Window based Algorithm

1 Fr := 0; d:= (T, ... , T) E Dn; iteration:= 0; mayStabilized:= 0;
2 foreach f E F do f.checked := 0;
3 while (+ + iteration> 0) do
4 Fr := ¢(d Isenvar) ;
5 Fw := Sch(Fr' iteration) ;
6 d' := fix(Fun(Fw), dseeds) (ObsVar, aseeds,d);
7 foreach f in Fw do f.checked:= 1;
8 U pdatedVar := {Xt I d[t] =1= d' [t], t E Obs V ar} ;

9 N ewRules := ¢(d') \ Fr ;
10 foreach f in Fr \ Fw do
11 I if DepVar(f) n UpdatedVar =1= 0 then f.checked:= 0;
12 end
13 foreach f in N ewRules do f.checked := 0;
14 if U pdatedV ar =1= 0 then may Stabilized := 0;
15 if f.checked = 1 for each f E Fr then
16 if mayStabilized = 0 then
17 I mayStabilized:= 1;
18 foreach f E Fr do f.checked := 0
19 end
20 end
21 d:= d';
22 end

6.2 Correspondence with Language Features

ObsVar: Based on the aforementioned method-wise decomposition of the pro­
gram and the grammar scheme and encodings in §3, the set of observed variables
ObsVar consists of all nonterminals Head(v,m) , where v E AbsRef is any of the
following variables of the method m,

1. all base variables (Le., variables like x in x.f(rl, ... , rn), or x.f, or x[i] for
any i E N) that correspond to SenVar; and

2. all variables shared among methods including (i) real arguments of any
method invocation, (ii) return variables ret of each method if it has, and
(ii) global variables; and

3. formal arguments argi of each method.

Moreover, the set of unobservable variables (that are shared among methods)
contains nonterminals N(p,'Y,q) where p is any return variable ret. The inter­
mediate values of observed variables are stored in the memory, whereas the
unobservable ones are stored on the disk. Although nonterminals induced by
formal arguments (item 3) are neither sensitive nor shared among methods (un­
der the aforementioned method-wise decomposition), they are observed for an
easy experimental configuration to be shown afterwards.

Sch: The analysis maintains a workset that contains all methods to be analyzed
in the later iterates (Le., any function f with f.checked == 0). The workset
is updated as follows, for any method m, m is included into workset if m ~
workset, and

- m is a newly detected reachable method after resolving virtual calls; or
- the base variable x of any field or array reference like x.f or x[i] within m

has been updated in the previous iteration; or
- some global variable that is referred within m has been updated in the

previous iteration; or
- at any call site of some method m', real arguments passed to m has been

updated in the previous iteration; or
at any call site of m that calls some method m', the return variable of m'
has been updated in the previous iteration.

Note that, the first two items correspond to line 13 in Algo. 2, and others cor­
respond to line 11. Given kEN. We take each sliding window Fw from works'et
with IFw I ::; k. Besides, for an easy experimental configuration, we choose to
always analyze m and m' above involved in the last two items together. Such a
choice also leads to the following way of specifying symbolic seeds.

seeds: All nonterminals H ead(v,m) are taken as symbolic seeds, where v E

AbsRef is (i) either global variables or (ii) formal arguments argi of each
method. To supply the fixed-point computation with symbolic names, we make
use of the grammar scheme of CAGPs in Fig. 2, and introduce extra transitions
as follows for each method m in the sliding window,

r : (A, lJ!) "--+ (argi , m i) and f(r) = Sargi

r : (A, m) "--+ (glob, m) and f(r) = Sglob

where argi is the ith formal argument of m for i ~ 0, and glob is any global
variable that is referred within m, and Sargi and Sglob are symbolic names for
Head(argi,m) and Head(glob,m) , respectively. i is a fresh stack symbol. These
rules plus rule (0) in Fig. 2 equally set the initial value of val(8)[H ead(argi,m)]
to be Sarg

i
' It goes for global variables.

¢: Our points-to analysis builds the call graph on-the-fiy when the analysis
proceeds. After any sensitive variables are updated in the previous iteration, the
underlying problem to be resolved is updated in two ways,

- new reachable methods are resolved according to the updated values of the
base variables for dynamic dispatch, as well as static methods that can be
triggered in the current iteration; and

- new grammar productions for each method are generated according to the
updated values of base variables for any field or array references referred
within this method.

7 Experiments

-We are aware of two implementations of WPDSs: Weighted PDS Library 4 and
WPDS++ 5, and used the former in our experiments. We instantiated the algo­
rithm presented in §5 within our Java points-to analyzer Japot (implemented in
Java), with using Soot2.3.0 [18] for preprocessing from Java programs to Jimple
codes, and the Weighted PDS Library as the oracle for computing the fixed point
of the equation system. We evaluate Japot on the Ashes benchmark suite [17]
and the DaCapo benchmark suite [2] (the "#App." column in Table 1). These
applications are de facto benchmarks when evaluating Java points-to analysis.
We analyze DaCapo benchmark with JDK 1.5, and Ashes benchmarks for which
JDK 1.3 suffices. All experiments were performed on a Mac OS X v.l0.5.2 with
a Xeon 2x2.66 GHz Dual-Core processor, and 4GB RAM. Only one processor is
used in the following experiments. A 2GB RAM is set for Java virtual machine
when running Japot.

To measure the performance of points-to analysis, we take call graph gener­
ation in terms of reachable methods as client analysis. Table 1 shows the pre­
liminary experimental results. The number of reachable methods is given in the
"# Methods" column with taking Java libraries into account. The sub-column
" CHA" is the result by conducting CHA of Spark in soot-2.3.0. The sub-column
"Japot" gives results computed by our context-sensitive analysis, and the "#
Statements" column gives the number of Jimple statements that Japot analyzed.

App. #WPA(s) # SSWA(s) # Acc. # Methods # Stmts
win(104

) win(5000) win(3000) CHA Japot (Japot)
soot-c 1751 605 607 676 2.9 5460 5079 83,936
sablecc-j 2785 1030 1087 1274 2.6 13,055 9004 143,140
antlr x 1401 1506 1832 00 10,728 9133 156,913
bloat 41434 11704 12323 0 3.4 12,928 11,090 194,063
chart - - - - - 30,831 - -
jython x 9581 10305 0 00 14,603 12,033 202,326
pmd x 1611 1696 1584 00 12,485 10,406 180,170
hsqldb 2910 - 1037 1119 1239 2.8 9983 8394 142,629
xalan 2926 1064 1085 1255 2.7 9977 8392 141,415
luindex 3880 1329 1292 1511 3.0 10,596 8961 152,592
lusearch 4057 1369 1441 1678 2.8 11,190 9580 163,958
eclipse x 1955 2042 2555 00 12,703 10,404 179,179

..
Table 1. Scalmg Japot by SymbolIc SlIdmg Wmdow based AlgorIthm. 0: tIme out at
4 hours. x: memory overflow on WPDS. _ : memory overflow on JVM.

The "# WPA" column gives the time in seconds of the original whole program
analysis, i.e., solving contracted AGPs by computing the limit of Kleen chains.

4 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
5 http://www.cs.wisc.edu/wpis/wpds++/index.php

The "# SSWA" column gives the time of the symbolic sliding window based
analysis. To measure the analysis given an adjustable memory budget, we set a
bound k on the number of methods that can be taken in each sliding window.
The sub-column "win(104)", "win(5000)" and "win(3000)" gives the analysis time
for k E {10000, 5000, 3000}, respectively. As shown in the "# Acc." column, over
all the experiments we performed, SSWA provided us an average 3X speedup over
WPA (when k = 5000). Interestingly, it works almost the same when k = 10000
and k = 5000, which means that we can safely reduce the memory without
affecting the performance a lot. Moreover, the analysis works well for most of
applications when the memory budget is extremely shrunk (when k = 3000).

8 Related and Future Work

There has been a host of work on points-to analysis. A long standing difficulty in
the realm is that, context-sensitivity is crucial to the analysis precision, whereas
prohibitive to scalability. To our knowledge, practical points-to analysis do not
handle recursive procedure calls in a context-sensitive way. On the one hand, they
took cloning-based approach that has an inherit limit on analyzing recursions. On
the other hand, it will become a bottleneck to precisely handle recursions. After
all, scalability remains a problem even after approximating recursive procedures.

The first scalable cloning-based context-sensitive Java points-to analysis is
presented in [19], where programs and analysis problems are encoded as logic
rules in Datalog. The BDD (Binary Decision Diagram) based implementation, as
well as approximations by collapsing loops in the call graph, enable the analysis
to scale. Manu et al proposed refinement-based techniques that explores CFL­
reachability to effectively detect unrealizable dataflow over pointer assignments
[15,16]. The demand- and client-driven manner serves as the key to their scal­
ability. Loops in the call graph is again collapsed for decidability. As discussed
in [6], there are often rich and large loops within the call graph, and the loss of
precision is incurred after approximating recursions.

Our attempt is to design a scalable stacking-based points-to analysis for Java
that precisely handles recursive procedures. We place no restrictions on recur­
sions, by managing the program calling contexts with the unbounded pushdown
stack. The work is an enhancement of our previous work [8] that tried the local
analysis methods to reduce the time costs in a heuristic manner, and relied on
the whole program analysis for soundness. In this work, we presented a system­
atic approach of scaling the stacking-based analysis as a modular analysis, with
reducing both time and memory costs yet retaining precision. There are a host
of work on modular analysis. We refer to [3] for an elegant review.

We didn't compare with existing cloning points-to analyzers, because at
present, context-sensitivity with respect to object-oriented' features, such as
context-sensitive heap abstraction and context-sensitive call graph, are not sup­
ported in Japot. To provide those features demands Conditional WPDS [7].
However, techniques proposed in this work is applicable to the lifted analysis
since analysis problems on Conditional WPDS is reduced to that on WPDS.

Akash et al [5] proposed a technique to improve the running time for (weighted)
pushdown model checking. In their approach, dataflow equations of intra-graphs
are grouped as regular expressions, and the update on those expressions are
incrementally propagated through shared interfaces interprocedurally. The ef­
ficiency gain makes use of Tarjan's algorithm for efficiently computing regular
expressions. Their work is a complementary to ours, and can be plugged-in as a
back-end for Weighted PDS Library. Our analysis can be also regarded as incre­
mental for only affected program parts are taken as the next sliding window.

In this paper we limit our focus to the effects of unknown program control
flow on designing a precise modular stacking-based analysis. As future work,
smarter iteration strategies can be introduced when choosing sliding windows,
and proper procedure summaries could be generated to avoid revisiting some
program parts in the iterates for a better efficiency. We anticipate that generating
context-sensitive summaries for stacking-based analysis demands Conditional
WPDSs. Besides, since analysis that assume a program control flow are specific
cases of CAGPs, we plan to apply techniques in this paper to taint-like analysis
for detecting web vulnerabilities [9]. Last but not least, modularity opens the
possibility of parallization. We hope to further scale up Japot by parallization.

References

1. K. R. Apt. The essence of constraint propagation. Theor. Comput. Sci., 221:179-
210, June 1999.

2. S. M. Blackburn, R. Garner, C. Hoffman, and et.al. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA '06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 169-190, New York, NY, USA, Oct. 2006.

3. P. Cousot and R. Cousot. Modular static program analysis. In Proceedings of the
11th International Conference on Compiler Construction, CC '02, pages 159-178,
London, UK, 2002. Springer-Verlag.

4. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proceedings of the 9th European Conference
on Object-Oriented Programming, ECOOP '95, pages 77-101, London, UK, UK,
1995. Springer-Verlag.

5. A. Lal and T. W. Reps. Improving pushdown system model checking. In CA V'06:
Proceedings of the 18th International Conference on Computer Aided Verification,
pages 343-357, 2006.

6. O. Lhotak and L. Hendren. Context-sensitive points-to analysis: is it worth it? In
CC'06: Proceedings of the 15th International Conference on Compiler Construc­
tion, volume 3923 of LNCS, pages 47-64, Vienna, Mar. 2006. Springer.

7. X. Li and M. Ogawa. Conditional weighted pushdown systems and applications.
In Proceedings of the 2010 ACM SIGPLAN workshop on Partial evaluation and
program manipulation, PEPM '10, pages 141-150, New York, NY, USA, 2010.
ACM.

8. X. Li and M. Ogawa. Stacking-based context-sensitive points-to analysis for java.
In Proceedings of the 5th international Haifa verification conference on Hardware
and software: verifi.cation and testing, HVC'09, pages 133-149, Berlin, Heidelberg,
2011. Springer-Verlag.

9. X. Li, D. Shannon, 1. Ghosh, M. Ogawa, S. P. Raj an, and S. Khurshid. Context­
sensitive relevancy analysis for efficient symbolic execution. In Proceedings of the
6th Asian Symposium on Programming Languages and Systems, APLAS '08, pages
36-52, Berlin, Heidelberg, 2008. Springer-Verlag.

10. G. Ramalingam. Bounded Incremental Computation. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1996.

11. T. Reps. Undecidability of context-sensitive data-independence analysis. ACM
Trans. Program. Lang. Syst., 22:162-186, January 2000.

12. T. Reps, S. S chwo on , S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206-263, 2005.

13. G. Rozenberg and A. Salomaa, editors. Handbook of formal languages, vol. 1: word,
language, grammar. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

14. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, 2002.
15. M. Sridharan and R. Bodik. Refinement-based context-sensitive points-to analysis

for Java. volume 4i, pages 387-400, New York, NY, USA, 2006. ACM.
16. M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven points-to analysis

for Java. SIGPLAN Not., 40(10):59-76, 2005.
17. R. Vallee-Rai. Ashes suite collection. http://www.sable.mcgill.ca/ashes.
18. R. Vallee-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundare­

san. Optimizing Java bytecode using the Soot framework: is tt feasible? In Com­
piler Construction, 9th International Conference (CC 2000), pages 18-34, 2000.

19. J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In PLDI'04: ACM SIGPLAN Conference on Pro­
gramming Language Design and Implementation, pages 131-144, 2004.

20. G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise procedure
summaries. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT sympo­
sium on Principles of programming languages, POPL '08, pages 221-234, New
York, NY, USA, 2008. ACM.

	img-711090046
	IS-RR-2011-002.pdf

