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Abstract

Linear tense logics are widely accepted for structural temporal representation, where
the basic Kt has two modal operators G and H, each of which represents the future and
the past, respectively. Closely related to modal logics, it has been studied for a long time.
We need to analyses the uses of the tense and aspect of the language in order to prepare it
for the computer. This is aside from the theoretical value of studying the logical structure
of time use in language. Thus far, many linguists and computer scientists have proposed
the temporal relations in occurrences. Each occurrence of an event happens once and for
all, and the events may have causal relations or other kinds of information flow in them.
Especially, linear tense logics are well known as logics deal with time as a set of points. On
the other hand, there is another approach to temporal reasoning which takes as primitive
temporal intervals rather than points. These logics are well known as temporal logics
which have binary relations for the relations between temporal intervals. At first, in this
study, we show the logic of occurrence which has the temporal heredities for a temporal
structure. We represent them by the binary relations because of a temporal heredity is
associated with temporal interval logics. Thus, temporal intervals are given by a set of
events, and the relationship in temporal intervals are defined also by those in events, i.e.,
a set of events articulates the time axis. We summarize temporal relations in occurrences,
give the syntax and the semantics of the language for the occurrence logic, incorporating
the concept of temporal heredity into it. And we explain the logic programming system
based on the formal language.

The temporal interval relations arranged by Allen have long been the standard of
natural language semantics, though it still lacks the modal-logical foundation. So, in our
occurrence logic, the temporal relations between temporal intervals are utilized as the
binary operators. Van Benthem proposed 0?7 and Og,,, in regard to the accessibility
to overlapping intervals and subintervals, respectively; however, the logical feature of
the modality has not well studied. So, in this study, we define the modal operators
for the above temporal relations, propose a many-dimensional propositional temporal
logic K7q including the conventional tense logic, together with such interval accessibility.
Krp is a combined logic of conventional tense logics and temporal logics by fusion. For
example, introducing a precedence relations < and > in two occurrences, we use a temporal
operator G and H. Furthermore, introducing an inclusion relations C and O in two
occurrences, we define O" and O, and use them. We summarize accessibility relations
for =, <,C, and D between possible worlds, give the syntax and the semantics of the
language for Kpn, and we show our logic can represent the temporal heredities by the
newly-formed temporal operators. Moreover, we introduce a sequent system for Ko and
show a proof-search procedure. Additionally, we show the subformula property holds
in our system, and thus would be able to show the decidability. Next, we show that
our logic provide a formal apparatus for a precise aspectual classification. We show
some formulae by our logic express some aspect classes by Vendler such as event, state,
achievement, and so on. Furthermore, we can hypothesize the starting/ending points
by assuming a certain superinterval by “p = <&T0O; ¢, 7 where $T is an abbreviation



of = 0" = and denotes some possible world which includes the assumed starting/ending
points. In the similar way, we assume a minimal interval. Especially, we can regard “¢p =
O (H—AO" oAG—p)” as a representation of the culmination where <, is an abbreviation
of =0, —. Generally speaking, we cannot measure the exact size of the temporal location
of an occurrence. However, by our logic, we can hypothesize the starting/ending points by
assuming the certain possible worlds for a state and a event. We show such an aspectual
classification and some temporal features by our logic. Furthermore, we propose K by
adding some axioms for Krn. Because of Kpq is given by the simplest fusion, which is
axiomatized by the union of axioms of a tense logic and a temporal logic, G, H and O™, 0O,
are not independence temporally, we need to introduce some axioms including these modal
operators simultaneously, and show the power of temporal expression of K.

i



Acknowledgments

The author wishes to express his sincere gratitude to his principal advisor Profes-
sor Satoshi Tojo of Japan Advenced Institute of Science and Techology for his constant
encouragement and kind guidance during this work.

The author also wishes to express his thanks to Mr. Ken Kaneiwa of National Institute
of Informatics for his suggestions and continuous encouragements.

The author is grateful to all who have affected or suggested his areas of research. The
author devotes his sincere thanks and appreciation to all of them, and his colleagues.

il



Contents

Abstract
Acknowledgments

1 Introduction

1.1 Backgrounds . . . . . . . . ..
1.2 Outline of this Thesis . . . . . . . . . . ... .
2 Preliminaries
2.1 Modal Axiomatic Systems . . . . . . ... ...
2.1.1 Modal Logics . . . . . . . . . . . ..
2.1.2 Tense Logics . . . . . . . . . .
2.1.3 Epistemic Logics . . . . . . . ...
2.2 Possible World Semantics . . . . . . . ... oo
2.2.1 Kripke Semantics for Normal Modal Logics . . . . . .. . ... ...
2.2.2  Kripke Semantics for Tense Logics. . . . . . . .. ... .. .. ...
2.2.3 Kripke Semantics for Epistemic Logics . . . . .. ... ... . ...
2.3 Temporal Interval Logic . . . . . . . ... ... ... . o
2.4 Gentzen Style Sequent Systems for Modal Logics . . . . ... .. ... ..
25 Fusion . . . . ..
3 Multi-agent System with Tense Logic
3.1 Imtroduction . . . . . . . ...
3.2 Logic of Agent’s Epistemic State with Communication Channel . . . . . .
3.2.1 Preliminaries . . . . . . . ...
3.2.2  Revision of inform™ . . . . . ..o
3.2.3  Syntax . . ...
3.2.4 Semantics of CBorr, « « v v v v v e
3.3 Reasoning System with inform* . . . . .. ... o000
3.3.1 Example of Communication and Reasoning . . . . . . .. ... ...
3.3.2  Rules of the Reasoning System . . . . ... .. ... ... .....
3.3.3 Syntax-sensitive Rules . . . . ... .. .. ... o000
3.3.4 Decidability . . . . . ...
3.4 A Model Checker for CBeorr, . . . . . . o o o o o
3.5 Discussion . . .. ..o

iv



4 Occurrence Logic

4.1 Introduction

4.2 Temporal Relations and Heredities . . . . .. ... ... ... .......
4.2.1 Open/closed-end . . ... ... ... ...
4.2.2 Upward/ downward Heredity . . ... ... ... ... .......
4.2.3 Rightward/ leftward Heredity . . . . ... ... ... ... .....

4.3 Logic of Occurrence and Heredity . . . . . . . . ... ... ... ... ...
4.3.1  Syntax . . ...
4.3.2 Semantics of Occurrence . . . . . . . . . ... ...

4.4 Logic Programming System . . . . . . .. .. .. ... ..
4.4.1 Objectsand Sorts . . . . . . . . ... Lo
4.4.2 Token Rules . . . . . . . . . . . .. ...
4.4.3 Examples . . . . . ...

4.5 Concluding Remarks . . . . . . .. ... oo

5 Temporal logic to represent linguistic features

5.1 Introduction

5.2 K7o o o o e
5.2.1  Syntax . . ...
5.2.2  Kripke Semantics . . . . . ... L L L
5.3 Aspectual Classification . . . . .. . ... .. .. ... .. .. ... ...,
5.3.1 Additional axioms for a structural relation . . . . .. ... ... ..
5.4 Decidability . . . . . . ..
5.4.1 Sequent System for Koo . . . . . . . ... o
5.4.2 Proof-search Procedure . . . . . . . . ... ... ... .. .. ...
5.5 Concluding Remarks . . . . . . .. ... o
6 Conclusion
A
A.1 Proofof Theorem 4 . . . . . . . . . . . . . . . . . .
A.1.1 A Relation between =-partial Valuations and Sub Formulae
A.1.2 A Model for the Z-partial Valuations . . . . . .. .. ... .. ...
A.1.3 Proof. . . . . .
References
Publications

39
39
40
40
40
41
42
42
44
45
46
47
49
50

51
51
51
52
53
54
58
99
99
61
63

64

65
65
65
65
68

69

74



Chapter 1

Introduction

1.1 Backgrounds

In this study, we proposed the temporal logic to represent linguistic features which com-
bined linear tense logic and interval logic. In the field of artificial intelligence, temporal
logics are widely utilized. Temporal logic is a logic of propositions whose truth and falsity
may depend on time. Closely related to modal logics, it has been studied for a long time
[30, 48, 53]. We need to analyses the uses of the tense and aspect of the language in order
to prepare it for the computer. This is aside from the theoretical value of studying the
logical structure of time use in language. Thus far, many linguists and computer scientists
have proposed the temporal relations in occurrences|2, 21, 30].

Temporal logic, as we want to describe it, is a branch of modal logic which has been
studied for a long time. Modal logic deals with two propositional operators O and <
interpreted as “necessarily” and “possibly”. This is based on the idea that the truth
of an assertion is a relative notion depending on possible worlds. A formal semantics
was presented in this way by Kripke[35]. Prior[48] was the first to suggest a “temporal”
interpretation of O and & : “always” and “sometimes”. In the sequel to this, many
different systems of temporal logic were studied and an overview of these developments
can be found in Rescher and Urquhart [51]. It should be noticed that in these contexts
temporal logic as we want to do it is usually called tense logic whereas the term “temporal
logic” is used differently. As one of the representation of a temporal modality, linear tense
logic is well known which has two modal operators G and H, where G and H represent
the future and the past, respectively. Lately, for a study of the multi-agent system, tense
logic is utilized to represent an update of the agent’s belief states[37, 64]. And also it is
utilized for an aspectual studies[21].

On the other hand, temporal interval logics are studied to represent the relations
between temporal intervals, by assuming the intervals of the occurrences[30, 59]. The
motivation for this is partly philosophical : human being first come to experience time
via extended events, and the point-based picture of non-extended temporal units seems
a rather late abstraction arising out of this primary ontology. Moreover, a move toward
intervals has also been advocated in linguistics, as providing intuitively and technically
more appropriate “indices of valuation” for assertions in natural language[30]. Generally,
temporal interval logic has some binary operators which represent the spatial-temporal
relations. That is, the temporal interval logic involves a set of the continuous intervals,
unlike in the case of the representation by the tense logic which regards time axis as a set



of time points.

In this study, we suppose the modal operators as substitute for these binary relations
between temporal intervals, that is, temporal relations between intervals are reduced to
the accessibility of possible worlds in our logic. And we clarify the logical feature of the
modality.

1.2 Outline of this Thesis

Initially, we show a multi-agent system which is combined an epistemic logic and a tense
logic. Epistemic logic, or logic of knowledge, have been studied in philosophy with the aim
of analyzing formal properties of reasoning about knowledge and belief since the 1950s.
Over the last 20 years, however, epistemic logic has found applications in various other
disciplines. Here are some of them:

e in artificial intelligence, epistemic logic is applied in order to find out what an agent
has to know to show intelligent behavior[19];

e in computer science, it is employed to analyze of multi-agent systems; (see [19] and
references therein).

Temporal epistemic logic which is combined the tense logic and the epistemic logic de-
scribes the partial knowledge that different agents have as dependent on past, present,
and future states of the world. And that describes protocols for communication between
stations and temporal conditions for turning stations on and off. So, for a study of the
multi-agent system, tense logic is utilized to represent an update of the agent’s belief
states. By considering the temporal epistemic logic, we show the power of an expression
of the multi-agent system and tense logic.

Secondly, we show the logic of occurrence which has the temporal heredities for a
temporal structure. We represent them by the binary relations because of a temporal
heredity is associated with temporal interval logics. Thus, temporal intervals are given
by a set of events, and the relationship in temporal intervals are defined also by those in
events, as in [30], i.e., a set of events articulates the time axis. we summarize temporal
relations in occurrences, give the syntax and the semantics of the language for the occur-
rence logic, incorporating the concept of temporal heredity into it. And we explain the
logic programming system based on the formal language.

Lastly, we show our main object; temporal logic to represent linguistic features (Kpn).
Krg is a combined logic of a conventional tense logic and temporal logic which represent
the temporal modality by the modal operators. That is, we represent the temporal heredi-
ties by the newly-formed temporal operators. We propose a formalization of the temporal
modality reflected with tense logic and temporal logic, and define the syntax and Kripke
semantics for our K. For a construction of tense logic and temporal logic, we use a
way of fusion. Moreover, we introduce a sequent system for Ko and show a proof-search
procedure and the decidability of K7o. And, we show that our logic provide a formal ap-
paratus for a precise aspectual classification. We show some formulae by our logic express
some aspect classes by Vendler such as event, state, achievement, and so on. Generally
speaking, we cannot measure the exact size of the temporal location of an occurrence.
However, by our logic, we can hypothesize the starting/ending points by assuming the
certain possible worlds for a state and a event. We show such an aspectual classification



and some temporal features by our logic. Furthermore, we propose K, by adding some
axioms for K7pn. Because of K7p is given by the simplest fusion, which is axiomatized by
the union of axioms of a tense logic and a temporal logic, G, H and 0", 0, are not inde-
pendence temporally, we need to introduce some axioms including these modal operators
simultaneously, and show the power of temporal expression of K.

Tense Logic Temporal Logic Sequent Systems
Lo Section 2.1 . Section 2.4
Preliminaries Section 2.2 Section 2.3 Section 2.5
Applications Chapter 3 Chapter 4
Tense Interval Chapter 5
Logic by fusion




Chapter 2

Preliminaries

2.1 Modal Axiomatic Systems

2.1.1 Modal Logics

Tense logic and temporal logic, as we want to describe them, are a branch of modal logic
which has been studied for a long time. Modal logic deals with two propositional operators
O and < interpreted as “necessarily” and “possibly”. This is based on the idea that the
truth of an assertion is a relative notion depending on possible worlds.

The language L of propositional modal logic consists of the following vocabulary.

propositional variables: p, q, r,---

logical connectives: -V, A, =
modal operators: O
We use ¢, 1, x, - -+ for formulae which are constructed inductively from propositional

variables, logical connectives and modal operators in the usual way. Especially, Oy is a
formula if ¢ is a formula. Modal operators < is an abbreviation of ~O-. A set of formulae
which contains the axioms of classical propositional logic, the modal axiom

(K) O(p = ¢) — (Op — Oy),
and is closed under Modus ponens, Substitution, and the rule of
Necessitation if p € L, then Op € L

is called a modal logic. Every other modal logic L' can be obtained by extending this
system with a set ¥ of extra axioms. In this case we write

L'=Keo?X.

If ¥ can be chosen finite, then we call L’ finitely axiomatizable. Here, we show that
the historical names for some well-known axiom schemes are

(D) Op = e, (T)Op — ¢,  (4) Op — OOy,
(B) o = 00,  (5) Op = OO0,

Using this notation, we can define the Lewis system S4 and S5 as follows:

5



(S4) K @ Op — O0p & Op — ¢,
(S5) K@ Op — OO,

The O of S5 can also be read as “I know”. By accepting one or more of the axioms of
S5 as properties of knowledge we can obtain new modal systems, like KT and K4:

(KT) K& Op — .
(K4) K @ Op — O0p.

The minimal deontic logic KD reflecting this principle is defined as
(KD) K& Qp — <p.

Fifteen mutually distinct logics come out 32 (=2°) ways of choice of these axioms by
the following properties.

D is provable in KT 5 is provable in K4B
4 is provable in K5B 4 and B are provable in K'T'5
T is provable in K4DB

Thus, we show that modal logics can be constructed from their axiom schemes as
follow.

Ki=K®{4} KDi=Ke&{D,4}  KB=K®a®{B}
Ks=Ka&{5} KD5=K®{D,5}  KTB=K®a/{T,B}
K45 =K ® {4,5} KD45=K & {D,4,5} KDB=K ® {D, B}
KD=K®{D} Si=Kea/{T,4} KB4 =K & {B,4}
KT =Ko {T} S5=K®a/{T,5}

Proposition 1 The following equivalences hold.

If either {T,5} {T,4,5},{D,4,B} or {D,5,B} is the subset of @, then K&Q=5S5,
KBj=K&{5,B}=K&{/,5,B},

KT=Ka&{T,D},

KT/=K®{T,D,}},

KTB=Ka{T,D,B}.

Cris Lo~

By our definition, modal logics are sets of formulae, and therefore set inclusion defines
a partial order in the set of all modal logics. For logics introduced above, the following
inclusion relationship holds. Other typical axiom schemes are as follows:

(ax1l) <y — Op

(ax2) <Oy« Op

(ax3) OOy — Ogp

(ax4) ©OFOlp — OmOny

(ax5) O(pADp =) VOeADY = o)

where formulae 0" ¢ and O™ denote formulae O - - - Oy with m boxes and <& - - - O with
n diamonds.



2.1.2 Tense Logics

Tense logic has two operators “G” and “H”, which means “at all future time” and “at all
past time”, respectively. They are really nothing more than the existential ‘quantifiers’,
enable us to write axioms which can distinguish between different properties of the flow
of time. Here, we take particular note of a conventional tense logic. Let the language L
consists of the following vocabulary.

propositional variables: p, q, r,---
logical connectives: -V, A, =
modal operators: G, H

Modal operators F' and P are abbreviations of =G'—= and —H —, respectively. That is,
modal operators are interpreted in the following.

Gy at all future time, ¢

Hyp at all past time,

GFyp p is always going to be true at some later time
PHyp once upon a time, ¢ had always been the case

Fo N F ¢ will be the case and so will ¥

F(p N) ¢ and ¢ will be the case simultaneously

=Gy if © then ¢ will always be the case from now on
G(e =) ¢ will always ‘guarantee’ ¢

G(p = Fv) ¢ will always ‘enable’ ¢ to become true afterwards

The weakest propositional temporal logic is the logic K; of Arthur Prior[48]. It is
presented as a Hilbert system with the following axiom schemas.

(i)  Axiom for classical logic takes all tautologies as axiom
(i) GleAyY) e GeNGY
(ili) H(eAvY) < HeANHy

(iv) ¢ =GPy
(v) ¢=HFyp
Rules:
from ¢ and ¢ = v infer ¢ (Modus Ponens)
if  is provable, then so are Gy, Hyp (Temporalization)

This system is well-known from other areas of Intensional Logic. In fact, it is rather
standard bimodal calculus, be it with one peculiarity. In its most general guise, there
would be two alternative relations Rg and Ry for the two operators. but the effect of
the two conversion axiom to tie the two directions in time together, by making these two
relations set-theoretic converses of each other. Here is an illustration of a theorem in this
proof-theoretic format, that will serve as a running example.

Example 1 (Conjunctive distribution) The following distribution principle is univer-
sally valid on tense models:

GlpAY) & (Gp A GY).



From left to right, this expresses ‘monotonicity’ of the universal future and tense, from
right to left, its ‘conjunctivity’. Here is an outline of an axiomatic derivation:

1. (pAY) =0 propositional tautology
2. GlpNY) =) Temporalization

3. GlpNY)=¢) e (GlpNY)= Gy) Distribution

4. (GlpNY) = Gyp) Modus Ponens

Additionally, we show an other axiomatic presentation of temporal logic as follows[24].

Reflexivity Gp=p

Transitivity Gp = GGy

Linearity GleNGo =)V G AGY = )
density Fy= FFypand Pp= PPy

Dedekind complete (L(Gyp = PGy) A Gy) = Ho,
(L(Hp = FHp) NHyp) = Gp where LX = X A\GX AN HX.

Irreflexive and Fo= F(pAG-p)

well ordered Py = P(p AN H-p)

Irreflexive and GF(-1)

infinite chain HP(—1)

Time is finite Fo= F(pANG-p),Pp= P\ H-yp)
No end points FTApT

Thus far, tense logic, which was originally developed as a logical framework in which
to describe tense in natural language, is now recognized as an essential tool for reasoning
about programs.

As the applications that require concurrent and distributed solutions have become
more refined, so the corresponding logical tools have been extended. In representing the
behavior of concurrent systems, the ability to refer to a range of possible execution paths
is seen as important. Thus, there is a need for methods incorporating branching time
tense logics [16, 17, 18]. Here, the underlying model of time is of a choice of possibilities
branching into the future. Such branching time tense logics have been developed and
allied to the specification of concurrent and distributed system.

It has been observed that most correctness properties of concurrent programs can
be expressed in a branching time logic called Computational Tree Logic (CTL). Much
of the research into the verification of concurrent and distributed systems has centered
around the model checking technique utilizing CTL. Here the satisfiability of a CTL
formula is checked with respect to a model derived from a finite state program [16]. Due
to the success of this approach, together with a lack of direct applications of proof in
branching time tense logics, relatively little research has been carried out on efficient
decision procedures for such logics. The work that has been produced has mainly been
concerned with basic tableau and automata methods for these logics [17]. However, in
recent, years several application of branching time tense logics requiring improved proof
methods have been developed, most notably the specification and verification of multi-
agent systems [50]. This has led to the requirement for more refined, and potentially more
efficient, proof methods.



Let the language Lory, consists of the following vocabulary.

propositional variables: p, q, r, --

logical connectives: -V, A, =

new constant : start meaning ‘at the beginning of time’.
tense operators: G, F,X,UW

path operators: A FE

Where X, U, and W denote ‘at the next moment in time’, ‘until’, and ‘unless’, respec-
tively. And A and F denote ‘on all future paths’ and ‘on some future path’, respectively.

The set of well — formed formulae of CTL, WFFqryr, is defined as follows.

1. All propositional variables and start are in WFFgpy,.

2. If ¢ and ) are in WFF o7y, then so are ¢ Ay, =, o V b, ¢ = .

3. If ¢ and ¢ are in WFF¢cpp, then Gy, Fo, Ep, oUv, oW1 are all path formulae.
4. If P is a path formulae then AP and EP are both in WFF¢rr,.

For example, modal operators are interpreted in the following.

AXp: On all future paths from current time (start), ¢ is true at the next
moment.

AF g : On all future paths from current time (start), ¢ is true at some
later time.

EGy : There is a some future path from current time (start) such that ¢ is
true at all later time.

EGFy : There is a some future path from current time (start) such that ¢ is

always going to be true at some later time.

AF(p At) :  On all future paths from current time (start), ¢ and ¢ will be the
case simultaneously.

AG(p =)  On all future paths from current time (start), ¢ will always
‘guarantee’ 1

EG(p = F1) There is a some future path from current time (start) such that ¢
will always ‘enable’ ¢ to become true afterwards

Thus, all of WFF oy, with tense operator are formed by a pair of tense operators and
branching time path operators, i.e. each CTL formula has a structure where any tense
operator can only be followed by a path operator or a classical operator, while any path
operator can only be followed by a tense operator. As a result CTL is weaker than linear
tense logic in its expressive capabilities within a path, but is more expressive in that it
can quantify over paths themselves. Here, we show the axioms for CTL as follows. The
following set of axioms and rules of deduction represents a complete deductive system in
relation to the semantic of the logic CTL [18].

[Axiom for CTL]



(Ax1.)  All axioms of propositional calculus
(Ax2.) EFy = E(trueUyp)

(AX3.) AGQO = —lEF—w

(Ax4.)  AF¢ = A(trueUyp)

(Ax5.) EGp=-AF-y

(Ax6.) EX(pVy)=(EXpV EX1))

(AX7.) AXQO = —lEX—w

(Ax8.)  E(pUv) = (¥ V (¢ N EXE(pUv)))
(Ax9.)  A(pUy) = (v V (¢ A AX A(eUr)))
(Ax10.) AXtrue N EXtrue

(Ax11.) AG(¢ = () A EXY)) = (£ = ~A(eUY))
(Ax12.) AG( = (Y ANEXE)) = (£ = -AFY)
(AXI3)  AG(E = (i A AXE) = (€ = ~E(gU))
(Ax14.) AG(& = (—y ANAXE)) = (£ = ~EFY)
(Ax15.) AG(¢p = ¢) = (EXp = EXY)

[Rules of inference for CTL]

(R1.) from ¢ and ¢ = 1 infer ¢ (Modus Ponens)
(R2.) ¢ infers AGyp (Generalization)

2.1.3 Epistemic Logics

Epistemic logics (logics of knowledge and those of belief) have been set to work in philos-
ophy. We mention about the combined system with epistemic logics and computational
tree logics in chapter 3. The aim of employment of their logics was to analyze formal
properties of reasoning about knowledge and belief. The possible world semantics for
epistemic logics originated in Hintikka[28]. Recently, for epistemic logics, their semantics
using techniques developed by Kripke, that is called Kripke semantics, is often adopted.
Epistemic logics are usually formulated as normal modal logics. It is natural since every
agent is wanted to have minimum inferential ability.

Formalization of multi-agent systems using logical framework has served as an im-
portant bridge between communities of distributed artificial intelligence. As to former,
BDI model has been studied as modal logics with three modalities for belief, desire,
and intention [49, 66]. These logics have been studied especially as models of recog-
nizing outside world for an agent embedded in a situation, and have been applied in
situation(or channel) theory in information science [6]. If we try to build a computer
systems for multi-agent systems, the most important issue would be how we formalize the
change of state, how we synchronize the actions of agents on linear or branching time,
and how we assure soundness and consistency of their systems. In such a situation, it
will be necessary to consider logics that are obtained by combining two kinds of modal
logics; epistemic logics which are logics of knowledge and belief and temporal logics which
handle changes of time. In this section, we show the epistemic logic of belief.

A finite set of agent identifiers is denoted by Agent. In this paper, we only utilize a
set, of the agent’s belief states, so the language of our epistemic logic consists of proposi-
tional variables, logical connectives and modal operators in the usual way. Formulae with
epistemic operators are read as follow:

10



B,y agent « believes ¢

The minimal logic of belief K is the least normal logics containing moreover following
axioms:

The axioms

(1) Bale = ) = (Bayp = Bat),
(2) BaSO = _'Ba_'@a

(3) Bayp = BaBay,

(4) —|Bag0 = Ba—lBa(p,

means then that

(1) agent « believes all the logical consequences of its beliefs (logical omniscience),
(2) agent « does not believe that ¢ is not true (consistency),

(3) agent « believes what it believes (positive introspection), and

(4) agent « believes what it does not believe (negative introspection).

Recall now that (1) is an axiom of every normal modal logic, (2) an axiom of D, (3)
an axiom of 4, and (4) an axiom of 5, so (1)-(4) are axioms of K D45.

2.2 Possible World Semantics

2.2.1 Kripke Semantics for Normal Modal Logics

In this Section, we introduce Kripke semantics, and present semantical properties for
modal logics. The provability interpretation of the necessity operator O and its relation
to intuitionism gave a strong impetus to mathematical studies in modal logic, which
resulted, in establishing connections with algebra and topology, and finally led to the
discovery of relational representations of modal algebras. Denoting the alternativeness
(or accessibility) relation by R, we write zRy to say that y is an alternative ( or possible)
world of x.

Let W be a non-empty set, and Ro(C W x W) be a binary relation on W. Then
a Kripke frame F is a pair (W, Rp). Here W is called the set of possible worlds, and
Rp is called accessibility relations. A valuation in a frame F = (W, Rg) is a mapping
V associating with each propositional variable p a set V(p) of worlds in W, which is
understood as the set of those worlds where p holds true. A Kripke model for L is a pair
M= (F,V).

For a given Kripke model (F, V), a binary relation I between u € W and formulae is
defined inductively on the length of formulae as follows.

ulkp iff peV(p)
ulkeAY iff wlk @ and ulk-

ulFeVvy iff ulkgorulky
ul- =19 iff wulF ¢ implies ul-

ulk = iff ulfp

11



wl-Og off Vv e W, uRgv implies v IF ¢

A formula ¢ is true in model M=(W, Rqn,IF), denoted by M = ¢, if u Ik ¢ for every
ueW.

Suppose that F = (W, R) is a frame, then the binary relation R satisfies one of
following conditions if and only if the axiom schemes corresponding the condition is valid

in F.

(D) :  Vudv(uRv) (serial)

(T):  Vu(uRu) (reflexive)

(4) : VuYoYw(uRv A vRw — uRw) (transitive)

(B):  VuVu(uRv — vRu) (symmetric)

(5) : VuYoYw(uRv A uRw — vRw) (Euclidean)

(ax1l) : VuVv(uRv AuRw — v = w) (partially functional)
(ax2) : VuVv(u = v) (functional)

(ax3) :  VuVv(uRv — Jw(uRw A wRv)) (weakly dense)

(ax4) 1 VuVoVw(uRFv A uR™w — Ft(vR't AwR™))  (Church-Rosser)
(ax5) 1 VuVoVw(uRv AuRw — vRw Vv =wV wRv) (weakly connected)

For a logic L, every frame with the conditions corresponding to the axioms is called
L — frame. For example, every S4-frame is reflexive and transitive. Then the following
proposition 2 can be shown

Proposition 2
1. The least normal modal logic K 1s determined by the class of all Kripke frame; i.e. for
any frame F,.F = iff o€ K

2. Let L be any of logics introduced in previous section. Then the logic L is determined
by the class of all L-frames; i.e. for any L-frame F, F E ¢ iff ¢ € L.

Proposition 2 is often shown by constructing their canonical models[26]. if ¢ € L then
there exists a model M, for example the canonical model of L, such that M F~ ¢ by the
above completeness theorem. But it would be quite useful if we could get a finite model
in which a given unprovable formula is false. because a consequence of the finite model
property is the decidability. A concrete finite procedure which decides to be provable or
not for any formula in a system is called a decision procedure. If there exists a decision
procedure, the system is said to be decidable. By the Harrop’s theorem, that is “if a
finitely axiomatizable logic has the finite model property, then it is decidable.” A logic L
has the finite model property if the following condition is satisfied.

if o & L, then there is a finite L-model M such that M F .

2.2.2 Kripke Semantics for Tense Logics

In a similar way, we can characterize the axioms of the tense logic by Kripke semantics,
introduce Kripke semantics for tense logics. A Kripke model for tense logic is a tuple
(W, Ry, IF), where W is a non-empty set, and Ry is a binary relation on W, and IF is
defined inductively as follows.

12



ulbp iff peV(p)

ulFeAY iff wlk @ and ulk-
ulFeVYy aff wlkgorulky

ulk =1 iff wulF g implies ul-
ulk—p iff ulfop

ul- Gy iff Yv e W, uRrv implies v IF ¢
uwl-He ff Yve W, vRpuimplies v lF ¢

A formula ¢ is true in model M=(W, Ry, IF), denoted by M [= ¢, if u Ik ¢ for every
u € W. Now, the following hold.

(1) M EGe= GGy iff Vu,v,w(uRrv AvRrw — uRpw)
2)MEHp=HHyp iff Yu,v,w(wRrv AvRru— wRyu)
B) ME o= GPyp iff Yu,v(uRrv— vRyu)
A MEep=HFy iff Yu,v(vRru— uRpv)

An accessibility relation R for the future tense is a converse relation of an accessibility
relation Ry for the past tense, so it is enough to take either of R; and Ry. Hence, by
taking Rr, a model for tense logics can be defined.

Additionally, we can also characterize a computational tree logic by the Kripke model.
The CTL has the following features.

1. Each state can have an infinite number of successors, but should have at least one.

2. Each state belongs to some path (a sequence of states with finite past and infinite
future).

3. No merging of paths is allowed — a path, once started from another one, has no
more common states with any other path.

Now, we introduce Kripke semantics for CTL. The triple (S;, R, L) is called a Kripke model
for CTL, where S; is a nonempty-set of states, R(C S; x S;) is a binary relation on S; such
that for all 7 there exists a j such that (s;, s;) € R, and L is a mapping such that L(¢) C S,
for each propositional variable ¢, where t € S, is a state. For an infinite sequence of states,
to,t1, ... is called a path on w starting with ¢y such that toR,t;,t; Ryts,.... Then a binary
relation ‘=" which evaluates well-formed CTL formulae at a particular state ¢, in a par-
ticular model M is defined as follows:

(M,t) = o — p€eL)

(M) EoANYy = tEpandtEy

(M) EoVYy = tEpotEY

(M,t) Eo—1Y <= tE=pimpliest =1

(M, 1) =~ — nottlEyp

Mty EEXe <= FoeP(t),oll[F¢

(M, 1) | AlpUy] <= Vo e P(t).3i > 0,0li] = A N0 <j <iolj] =)
(M, 1) | E[pU¢] <= JoeP(t).3i> 0,0l Ev AN <j<iolj]ky)
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Where P(t) is a set of paths starting with ¢ and o[i] is a i"* element of o.

Definition 1 [Satisfiability] A well-formed CTL formula ¢ is satisfiable if and only if
it is satisfied in some possible model, i.e. AM.(M,t) E ¢.

Definition 2 [Validity] A well-formed CTL formula ¢ is satisfiable if and only if it is
satisfied in every possible model, i.e. VM.(M,t) = .

2.2.3 Kripke Semantics for Epistemic Logics

Similar to other Kripke semantics, we can characterize the axioms of the epistemic logic
by Kripke semantics.

Let Agent be a set with n elements. A Kripke model for logics of belief is defined as a
n + 2 tuple (W, {Rp_|a € Agent},IF), where W is a non-empty set, and Rp, (C W x W)
are binary relations on W for o € Agent. Then, I is defined inductively as follows.

ulbp iff peVp)

ulkeAY iff wlk @ and ulk-

ulFeVvy iff ulkgorulky

ulk =1 iff wulF g implies ul-
ulk = iff ulfp

ulk Bap iff Yv e W, uRp,vimplies v ¢

Since the number of agents does not play an essential role in the following discussions,
we consider only the case where there is a single agent in the rest of the present section.
And a formula ¢ is true in model M=(W, Rg,,,IF), denoted by M = ¢, if u Ik ¢ for every
ueW.

Proposition 3 (Correspondence theory) Let M = (W, Rp_,IF) be a model for epis-
temic logic of belief. Then the following holds.

(1) M |E By = —Ba—¢  iff YuJv(uBav)
(2) M |E Byp = BoBoy iff Yu,v,w(uBav A vByw — uBaw)
(3) M = =B,y = Ba—Bap iff Vu,v,w(uBsv A uBaw — vB,w)

2.3 Temporal Interval Logic

In Section2.1 and Section2.2, we considered tense logics interpreted in Kripke models the
points of which are linearly ordered and represent moments of time. In this section we
show another approach to temporal reasoning which takes as primitive temporal intervals
rather than points. Although the picture of durationaless mathematical points has been
the prevalent images of time, there have been continuing attempts at developing an al-
ternative intuition, viewing time as consisting of extended “periods” or “intervals” as its
primary stuff. The motivation for this is partly philosophical : human being first come to
experience time via extended events, and the point-based picture of non-extended tempo-
ral units seems a rather late abstraction arising out of this primary ontology. Moreover, a
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move toward intervals has also been advocated in linguistics, as providing intuitively and
technically more appropriate “indices of valuation” for assertions in natural language[30].
For example, the following instant situation can be evaluated at single moments (points)
of time:

(1) It is one o’clock now,
(2) Anna found her purse.

But there are also assertions that can be evaluated only at some interval (period) of
time, for example:

(3) T am student,
(4) Beth was sleeping.

The earlier progressive tense is more naturally understood as describing properties of
intervals, rather than points in time. Interval-based temporal logics have been studied
throughly in linguistical semantics, and such linguistic properties need not have any obvi-
ous reduction to distribution of corresponding “instantaneous properties” at points in time
[30]. Finally, the computational literature has seen various proposals for interval-based
temporal logics [59].

Therefore, we now want to introduce interval frames whose objects are extended tem-
poral intervals, connected by suitable relations. As to the latter, a number of options
arises, involving both temporal order and temporal occlusion, such as:

1 < j 1 wholly precedes j
1 C 7 tis included in j

1 ()7 i overlap with j

The familiar picture that go with this intuition show intervals as linear stretches, or
sometimes also as extended spatial regions:
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i j ! J
precedence C) @

inclusion @

overlap J

Against this background, one can introduce more complex relations, such as one in-
terval being the exact “sum” of two others, or corresponding interval operations, such as
“union” of overlapping intervals. At present, there seems to be no uniformly accepted
choice of primitive relations or operations in the field. One systematic perspective is that
of representing at least all possible relative positions between bounded linear intervals.
Allen[2] observed that relative positions of any two interval i and j can be described by
precisely one of the following thirteen basic intervals relations: before(i, j), meets(i, ),
overlaps(i, j), during(i,j), starts(i,j), finishes(i,j), their inverses, and equal(i,j). In
the interval logic by Allen, the language whose alphabet contains these thirteen binary
predicate symbols, a sufficient supply of interval variables i, j, etc., and the Booleans.
Formulae of the interval logic are just Boolean combinations of the above listed atomic
ones. In order to provide a semantics for formulae of interval logic, suppose that the flow
of time is represented as a strict linear order F = (W, <) like a dense order such as (R, <).
An assignment is a function a mapping the interval variables into temporal intervals, i.e.
a temporal interval a(7) is a non-empty subset of W such that

Vo,y € a(i)Vz € W(x < z <y — z € a(i)).
For example, if v < v then the set
[u,v] ={w e W|u <w < v}

is a temporal interval. Now, the truth-relations F =% ¢ for atomic formulae can be de-
fined as follows:
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before(i, j)
meets(i,])
overlaps(i,j)
during (i, j)
starts(i,j)
finishes(i,7)
equal(i, )
before(j, 1)
meets(j, i)
overlaps(j, i)
during(j, 1)
starts(j, i)
finishes(j, 1)

j
j
_j
j
j
j
j
By
j
_j
i
j
j

Figure 2.1: The atomic formulae of temporal interval logic by Allen

F E* equals(i, j) iff
F E* before(i, j) iff

F E* meets(i, j) iff
F E* overlaps(i, j) iff
F E° starts(i, j) iff
F E* during(i,j)  iff

F E* finishes(i,7) iff

a(i) = a(j),
Ve,y(x € a(i) ANy €a(j) =z <yAFzlx < z<yAzx ¢ ali)
A2 & a(j)),
Ve,y(x € a(i) Ny €a(j) >z <yAVz(x < 2 <y — z € ali)
vz € a(j)),
a(i)Na(j) Z0A Iz, ylz <yAz€aj) ANz &a(i) ANy € ali)
Ny & a(j)),
a(i) € a(j) Aali) # a(j) AVz,y(z <y Az € a(j) Ay € a(i)
— 1z € a(i)),
dr,y,z(z<y<zAz€a(j) Nz &a(i) ANy € ali) Az € a(j)
Nz & a(i)),
a(i) € a(j) AN a(t) # a(j) AVz,y(z <y Ay € alj) Az € afi)
—y € a(i)).

The truth conditions for the Booleans are the same as in classical logic. We say that
@ is satisfied in F if F E* ¢ holds for some assignment a in F.

2.4 Gentzen Style Sequent Systems for Modal Logics

In this section, we introduce Gentzen style sequent systems for some modal logics and
give a survey of their proof-theoretical properties. This Gentzen’s sequent calculus is
particularly interesting because it has had great impact on proof theory as well as on
the development of calculi which are adequate for automated theorem proving. In a
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sequent calculus the objects derived during a derivation, i.e. the members of a derivation,
are so-called sequents. They play the role that formulae play in Frege-Hilbert calculi
and that judgments play in natural deduction calculi. Gentzen style sequent systems for
modal logics are obtained from Gentzen’s sequent system LK for classical propositional
logic by adding some ruled for modal operator O. Greek letters, I',) A, I1,¥, O and A
denote finite sets of formulae. The sequence OI' denotes Oy, Oys, ..., Op,, when T is
1, P2, ey P Sub(l), Ty, and A* denote |J{Sub(y)| € T}, A{elp € T'}, and VV{p|p €
A}, respectively, where Sub(v)) denotes a set of all subformulae of ¢. Any expression
of the form I' — A is called a sequent, where — denotes a derivation relation. The
left hand side I' of an above sequent is called the succedent and the right hand side A
theantecedent. An inference rule is of the form

Sh Sy S5
either — or ,
S S
where S7, S», S3, and S are sequents. In the inference, Si, S;, and S; are called the
upper sequents, and S the lower sequent. The sequent system LK consists of the following

initial sequent and inference rules.

[Initial sequents]
the sequents of the form ¢ — ¢

[Inference rules]
Structural rules:

e I e R N v = s
a0 ThAy 09 o 9
F—=>A¢ oll X%
TnoAy )
Logical rules:
o fzpF :—A>A (=) g fi :—A>A (=) —>FA—,>S0A,£> :wA’ o
T iz,i’@ =V f F—iA,A@’ 6 5 =V = Fgo_;i, rwf: = (v )
Fgo—:l?/)’,?, wa A—j ; (=) FSO;FA—,ZOA:,:Z) (=)
R e e
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Inference rules (w —) and (— w) are called weakning rules, (¢ —) and (— c¢)
contraction rules, and (e —) and (— e) ezchange rules. Weakening, contraction and
exchange rules are called weak inferences. The formula ¢ in cut rules is called the
cut furmula of the rule.

In a sequent system G, proofs of G and end sequents are defined inductively as follows:

1. Each initial sequent is a proof of G, and the end sequent of the proof is itself,
2. Let P, and P, are proofs of G with the end sequent S; and S5, respectively. If

S Sy S,
either Fl or 22 5 3,
is one of the inferences in the system of G, then
P, P, P.
either §1 or 2 5 3,

is a proof of G, and the end sequent is S. A sequent S is provable in G if there exists
a proof of G whose end sequent is S.

If a sequent S is provable in a system G, then it is often denoted by G = S. For a
formula ¢, if the sequent — ¢ is provable in a sequent system, then it is often said the
formula ¢ is provable in the system.

The major reason that the sequent calculus is of great interest for proof theory as well
as for automated theorem proving is the fact that it is complete also without the cut rule
(cut elimination theorem). We then speak of the cut — free sequent calculus. The rules of
the cut-free sequent calculus have the subformula property, i.e. every formula occurring
in a premise of a rule instance is a subformula of a formula occurring in the conclusion of
this rule instance. In proof theory this property is used to prove the consistency of sequent
calculi. Cut-elimination theorem for a given sequent system G says that any sequent S
which is provable in G has a proof of S containing no applications of cut rule. Such a
proof is called a cut-free proof. When cut-elimination theorem holds for G, sometimes we
say that G has the cut-elimination property. Then the following holds.

Thorem 1 [Cut-elimination theorem for LK] The system LK has the cut-elimination
property. In fact, every proof in LK can be transformed, without changing the end-sequent,
into cut-free one.

As a corollary of Theorem 1, the following can be shown by checking all inference rules
except cut rules.

Corollary 1 [Subformula property] For any provable sequent in LK, proof of it can be
consist only of subformulae of formulae in the sequent.

One of most important consequences of the cut-elimination theorem is the decidability.
In general, the decision procedure by using cut-elimination theorem goes as follows:

1. First, we show cut-elimination theorem.
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2. Then, we derive subformula property. In many cases, subformula property follows
from cut-elimination theorem. This is shown by checking that in each inference rule
except cut rule every formula in an upper sequent of the rule is a subformula of
some formulae in the lower sequent.

3. We show the fitness of proof-search procedure. That is, for a given sequent I' — A,
we show that the number of “candidates” of proof of I' — A is finite. If we succeed
to show this, we make an exhaustive search of these candidates and check whether
some of them are “correct proofs” of I' — A or not. This gives us a decision
procedure. To show the finiteness of proof-search procedure, a standard strategy is
as follows;

(a) restriction to reduced sequents:
We show that it is enough to consider sequents of a special form. For example,
in LK we need to consider only sequents such that each formula occurs at most
three times in the antecedent and the succedent.

(b) restriction to proofs without repetitions:
Apparently, if a proof contains the same sequent in a different place of one
of its branches, this proof is redundant, and hence such a repetition can be
eliminated.

If we succeed to show both (1) and (2), we can also the finiteness of proof-search
procedure.

In the following, we will consider sequent systems for modal logics with some of axioms
T, D, 4, 5, and B. Their sequent system are obtained from LK by adding the following
rules for the modal operator 0.

-0 o, ' = A ar,I' - e

- = 1 L 2 —_—- -

or — 0de (SE1) Op,I' = A (Sh2) or — 0e (SE3)
' - 0A,0 ar,I' — 0A, 0

Or — 0A, 00 (SE4) Or — 0A, 00 (SES)

' — 0O, e ar,I' — OA,dQ, ¢

SF S T06 (SR6) T OAQ. Oy (SR7)

In rules (SR6) and (SR7), OII C Sub(I' U {¢}) and OQ C Sub(OT' U A U {p}),
respectively. Also we assume that © consists of a single formula. When we relax this
condition on © and assume that © consists of at most one formula, we will add the
superscript D to these rules, like (SR1)”. This relaxation is necessary when a modal
logic under consideration includes the axiom D. Also, when a rule (SRi) is assumed for
a particular modal operator O, we write it as (SRi)p, if necessary. In the following,
the Gentzen style sequent system for a modal logic L is denoted by G(L). Here we will
introduce sequent systems for some of well-known modal logics.
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G(K) : (SR1) G(KT) : (SR1),(SR2) G(KB) : (SR6)

G(K4) : (SR3) G(S4) : (SR2),(SR3) G(KTB) : (SR2), (SRS)

G(K5) : (SR4) G(KD4) : (SR3)” G(KDB) : (SR6)”

G(K45) : (SR5) G(KD5) : (SR4)P G(KB4) : (SRT)

G(KD) : (SR1)? G(KD45) : (SR5)P G(S5) : (SR2),(SR5)
2.5 Fusion

Most of studies of modal logics until recent years are concerned with monomodal logics,
i.e. modal logics with a single modal operators. We have already had many of strong and
general results on monomodal logics. On the other hands, it is quite natural and necessary
to introduce modal logics with many modal operators when we want to use modal logics
as frameworks for describing problems in philosophy, linguistics and computer science.
Such modal logics, called many-dimensional modal logics (or combined modal logics),
have been one of most important topics of modal logics.

So far we have been considering modal formalisms intended for reasoning about time,
knowledge, beliefs, space independently each other. There is an many applications from
the fact that in reality all these entities exists in closed interaction such as knowledge,
beliefs and spatial regions can change over time, agents in a multi-agent system may have
their own knowledge bases, and so on. In this section, we show fusion which are able to
capture such interactions.

The formation of fusions, or independent joins, is the simplest and perhaps most
frequently used way of combining logics. Now, let Ly and L, be two modal logics. If L, is
axiomatized by a set of axioms Az, and L, is axiomatized by Ax,, then the fusion L + Lo
U of L, and L, is axiomatized by the union Az, U Az,.

And, fusion have a natural semantical interpretation as well, at least for logics which
are Kripke complete. Suppose two classes C; and Cy of m-frames and n-frames, respec-
tively, are closed under disjoint union. The fusion C; 4+ Cy of C; and Cs is the class of all
m + n-frames of the form

(W, Ry, Ry, ..., Ry, R, R, ..., R")

such that (W, Ry, Ry, ..., R;,) € C; and (W, R}, R, ..., R} € Cy. Thus, C; + Cs consists of
arbitrary combinations of frames from C; and C, sharing the same set of worlds.

And we discuss a proof-theoretical properties of Gentzen type sequent systems for
fusion of well-known monomodal logics. From the point of view of constructing theorem
provers and implementing them, proof-theoretical approach to fusions will be also desir-
able. In the following, we will consider fusions of modal logics with some of axioms 7', D,
4, 5, or B by Gentzen type sequent systems. Their sequent systems can be obtained from
the sequent system LK for classical propositional logic simply by adding both of the rules
for components of the fusion. For example, the system G(S4) consists of rules of LK,

o, = A ar, ' - e
—_— n —_—
Op T A ¢ or — 0o

and the system G(S5) consists of rules of LK,

IThe fusion can be also denoted as L1 ® L.
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o, = A ar, I - 0A,0
B —— an .
Op,I' = A ’ ar — OA, 06

Other sequent systems for fusions can be also constructed in the similar way. We can
easily show the following proposition 4.

Proposition 4  Let Ly and Ly be of the form K & @Q where QQ C {T, D,4,5, B}. Then

The rest of this section presents the proof-theoretical property for fusion. Then the
following holds.

Thorem 2 (cut elimination theorem for fusion) Let Ly + Ly be any of K, K4, K/5,
KT, S}, KD, KD4, and KD45. Then the sequent system G(Li + Lg) for each fusion of
their logics has the cut elimination property.

This theorem can be proved by Gentzen’s method for any logics of them, and similarly
to the case with the each logic since each modality is independent of another one. It is
difficult to prove a cut-elimination property when a logic contains the axiom 5, however,
it for K45 and KD45 is proved in [54]. The sequent system G(S5) defined above lacks
the cut elimination property, but in [52], a cut-free Gentzen type sequent system for the
modal logic S5 is introduced by means of eliminating the visible cut one by one. As to
the logics K5 and KD5, cut-free systems are known yet.

An important consequence of cut elimination theorem for a sequent system G is the
subformula property. That is, is a sequent I' — A is provable in G then it is has a proof
which consists only of sequents containing subformulae of formulae in TUA. In fact, most
of outcomes of cut elimination theorem, including decidability, can be derived from the
subformula property. In standard sequent systems, only cut rule violates the subformula
property, i.e. the cut formula in a given application of cut rule may not appear in the
lower sequent. In other words, if we can restrict any application of cut rule to the following
way,

F—=>A¢ pll X%
OII— ALY ’

where p € Sub(TUITUA UY),

then we can obtain the subformula property. We call such cut rule, acceptable cut.
Takano succeeded to show that including KB, KTB, KDB, KB4, S5, every provable
sequent has a proof in which every rule is acceptable [55, 56]. In [56], he show the cut
restriction property for K5 and KD5 by using extension of the acceptable cut rule. It is
called that the sequent system G has the cut restriction property, if every proof in G(L)
can be transformed, without changing the end sequent, into the proof in which every
cut rule applied in it is acceptable. Note that every system with the cut elimination
property has the cut restriction property. By means of some method of derivation of the
cut restriction property for KB, KTB, KDB, KB4, S5, K5, and KD5 which was shown by
Takano, the following cut restriction theorem can be shown.

Thorem 3 (cut-restriction theorem for fusion) Let Ly and Ly be of the form K + Q
where Q C {T,D,4,5, B}. Then the sequent system G(Ly + Lg) for each fusion of these
logics has the cut restriction property, i.e. has the subformula property.
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This theorem can be shown through Kripke semantics; i.e. for logics L; and L, which
are of the form K + @ where Q C {7, D, 4,5, B}, the restricted system for L; + Ly is
determined by L; + Lo-frame, and similarly to the case with the each logic since each
modality is independent of another one.
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Chapter 3

Multi-agent System with Tense Logic

3.1 Introduction

In this chapter, we show an application for the tense logic. Lately, for a study of the
multi-agent system, tense logic is utilized to represent an update of the agent’s belief
states. An agent is an autonomous computer system that perceives information from
surrounding environments and takes relevant actions. Such an agent has been formalized
in terms of logic as a rational agent [43, 49, 50, 66, 68], especially in temporal epistemic
logic [37, 40, 64, 67]. BDI (belief-desire-intention) logic is a result of such effort, though
it mainly treats an epistemic state of an isolated single agent; thus, it is rather clumsy to
handle interaction of epistemic states in multiple agents.

One of the most important issues in multi-agent system is interaction, or communi-
cation, that may directly affect their epistemic states [11, 29]. Thus far, several models
which include the notion of communication have rather naively rendered that agents are
always communicable, i.e., that channels between them are omnipresent. However, in
practical cases, communication is not free. We should consider that reliable channels
exist only between certain agents at certain time.

The purpose of this chapter is to show a multi-agent system with tense logic and
introduce a logic to treat epistemic states of multiple agents where channels are unevenly
distributed. We show that in this logic we can decide whether an agent would come to
know a formula of certain information after iterated communications through channels,
updating her epistemic state.

In this chapter, at first, we formalize communication between agents, based on inform
in ACL (Agent Communication Language) defined by FIPA (Foundations of Intelligent
Physical Agents) [20, 38]. In this definition, its pre-condition and post-condition only
concern an agent’s epistemic states. Then, we revise the idea so as to declare a channel
explicitly between agents in the pre-condition.

Secondly, we introduce a temporal epistemic logic system C' Bery, for reasoning agent’s
epistemic states, based on CTL (Computational Tree Logic) [25]. The logic has the
branching time, so that each agent may have different epistemic state in future. Although
CBerr, may be regarded as a variant of BDI logic, we handle only beliefs of multiple
agents. The reasoning system evaluates the truth value of formulae in logical model
basically in Kripke semantics. However, the system also evaluates the future possibility for
the epistemic state. For such a future belief, C' Borr, may add a state that corresponds to a
time in a possible world, which is spliced on some branch, as a result of a communication.
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Thus, the following inference would be feasible.

Agent o has a belief ¢ at time ¢, Agent 3 does not have a belief about ¢, and
these two agents can communicate each other. When we assume the presence
of a channel between « and /8 (since « can inform [ of ¢), the sentence “3
can hold belief ¢ at the next time of ¢’ is true at time t.

Thirdly, we implement the above reasoning system on a computer in Prolog, and
show that the system would decide the veridicality of such belief update in finite time,
presenting examples.

In the following section, we propose a formalization of communication for our logic
CBerr, and define the syntax and Kripke semantics. In Section 3.3, we show the inference
system and its decidability. In Section 3.4, we show a prover for our logic and some
examples by our computer system. In the final section, we discuss some branching points
of our theory and summarize our contribution of this chapter.

3.2 Logic of Agent’s Epistemic State with Commu-
nication Channel

3.2.1 Preliminaries

In this section, we introduce a temporal epistemic logic with communication channel
CBcry, based on computational tree logic (CTL) [16, 17, 18]. Generally, when we consider
multi-agent models, it is appropriate to include the branching time.

The language of CTL consists of propositional temporal operator EX, AU and EU.
All are formed by a pair of symbols. The first symbols (A or F) are quantifiers and the
second pair X and U mean ‘next’ and ‘until’, respectively. We define the abbreviated
notations as follows:

AXp
EGyp

—“EX-p EFyp
—|AF—|g0 AG(p

E(trueUy) AFp = A(trueUyp)
—|EF—|QO

Where the second pair G and F' mean “some future state” and “all future states.”

We introduce Kripke semantics for CTL. The triple (S, R, L) is called a Kripke model
for CTL, where S; is a nonempty-set of states, R(C S; x S;) is a binary relation on S,
and L is a mapping such that L(t) C S, for each propositional variable ¢, where t € S is
a state. For an infinite sequence of states, g, t1, ... is called a path on w starting with t,
such that toR,t1, 11 Ryts, .... Then a binary relation ‘=’ is defined as follows:

tE= > @€ L(t)

tEeAY — tEpandtEvy

tEeVYy = tEgportE

tEp—1Y <= tEpimpliest E

tE - <= nottEyp

tE=EXp < doe P(t),o[llF¢

t = AlpUy] <= VYo e P(t).3i>0,0[i]l Ev AN <j<io[j] E )
t = ElpUy¢] <= FJo e P(t).3i>0,0[i]l EvAN<j<io[j] Ee)
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Where P(t) is a set of paths starting with ¢ and o[i] is a i"* element of o.

3.2.2 Revision of inform*

At first, we formalize the communication between agents. The inform of ACL/ FIPA
is well known as an existing formalization of communication between agents [20, 43]. A
definition of this inform is given as follows:

Definition 3 [inform]

(a, inform(3,))
feasibility pre-condition: By A =By (Bifzp V Uifzp)
rational effect: Bgp

where Bifsp and Uifgp are abbreviation of ‘Bgy V Bg—p’ and ‘Uzp V Uz, respectivly.
a formula Bgyp is read as “Agent (3 believes ¢,” and a formula Uy is read as “Agent [ is
uncertain about ¢, but thinks that ¢ is more likely than —¢.”

We add the concept of a communication pathway, or channel [6], and a time progress
in the above definition, revising its pre-condition and post-condition.

In this study, we exclude the epistemic operator U because there is no sound formal-
ization of the U, though the later extensibility is preserved as we will discuss in Section
3.5. At this stage, we use only an epistemic operator B,. Then we define our extended
inform inform* as follows:

Definition 4 [inform*]

(c, inform* (B,¢))
feasibility pre-condition: By A =By(Bifsp) A Cup
rational effect: X (Bgp)

Here, X is a temporal operator meaning “next state.” C,g is a member of propositional
variables, let us read C,3 to mean “there is a communication channel from Agent o to
Agent 3.7 That is, C,p is not equivalent to Cg,. On the research of multi-agent finite
state machines (MAFSM) [8], a network (a communication protocol) of FIPA is defined
as a propositional atom' . In contrast, on the research of the social commitment of multi-
agent system, ALBATROSS (Agent language Base on the Treatment of Social Semantics)
[12, 13] is proposed, which includes the modal operator C\,3 as commitment that is defined
in advance. In this paper, we define the Kripke model with communication based on CTL.
If we define a communication protocol as a modal operator, it is necessary to define its
conditions for all the states of all the possible worlds. Avoiding such messy complications
of modalities, we define a communication channel as a proposition and inform* as an
action. That is, we deal with a communication protocol as a knowledge included in agent’s
epistemic states. We will discuss other options in Section 3.5. We give the example of the
telephone game of a communication in a row as follows:

YAs in [8], Do(put-msg(inform(a,3,¢))) is a propositional atom of the language of a which is true
only if « is in a state in which it has just performed the action “put-msg(inform(a,3,¢)),” where

(inform(a, B, p))=(a, inform(5,p)).
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Example 2 [telephone game]
(v, inform™ (cu,,p))
feasibility pre-condition: /\ Ba,,_, ¢ N B, (Bifa, ©) A Ca,._ o
2<m<n
rational effect: /\ X" (B, ¢)

2<m<n
where n > 2 and X™ stands for repeating X m times.

3.2.3 Syntax

We introduce a temporal epistemic logic system CBerp for reasoning agent’s epistemic
states with communications. In this logic, an agent’s epistemic state is modified by one
time step per a communication. Therefore, the temporal operator is restricted only to
the next operator X.

Definition 5 (Signature) The language Lop consists of the following vocabulary.

P a set of propositional variables
C a set of communication channels
Agent a set of agents

In addition, the following symbols are used.

-,V logical connectives
EX propositional temporal operator
B, propositional epistemic operator where o € Agent

Parentheses and punctuation are added if necessary.
We use ¢, 1, x, - - - for propositional variables and «, 3, - - - for agents.

Definition 6 (Formula) Formulae, denoted by p,1), ..., are constructed in the usual way
from propositional variables, logical connectives and operators. In particular, EX ¢ and
B,y are formulae when ¢ is a formula. And we treat C the same as P.

And we define the abbreviated notations as follows:

AP = a(mp V)
=Y = e VY

o = (0= Y)A W =)
- AXop = -EX-p

3.2.4 Semantics of CB¢ry,

Similar to other Kripke semantics, we give a Kripke model to CBgrr,. A model M is
such a tuple that M = (W, St,,, R,,, B,, V'), where W is a set of possible worlds, St,, is
a set of states for each w € W, R, is a se of temporal relations for each w € W, and
B, is a set of the accessbility relations; if (w,t,w') € B, and t € St, then t € St,.
And V is a valuation such that V(w,t) = L(w,t) U CL(w, t), where L is a valuation
for propositional variable such that L(w,t) C P for each w € W,t € St,, and CL is a
valuation for communication channels such that CL(w,t) C C for all w € W,t € St,,. A
binary relation ‘=’ is defined inductively as follows:
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Figure 3.2: Example of a Kripke model

(M,w,t) = ¢ = peV(wi)

(M,w,t) = - <= not (M,w,t) =y

(M,w,t)):go\/@/) — (M,w,t)):goor(M,w,t)):@/)

(M,w,t) E Byyp <= Yu'{(w,t,w')e B, — (M,w' t) = p}
(M,w,t) E EXp <= 3t'such that (¢,t') € R, and (M,w',t) E ¢

Here, we show an example of Kripke model.
Example 3 Let M = (W, Sty, Ry, Bo, V) be given as follows:

(1) W = {wp, wy, ws, ws}

(2) Ywe W, St, = {t}

(3) YweW, R,=10

(4) Ba = {(wo, to, w1), (w2, to, w1 ), (ws, to, w1) }

(5) Bg = {(wo, to, wa), (wo, to, ws), (w1, o, wa), (wy, o, ws) }

(6) L= {(wh to, 90)7 (wl,tO, 1/))7 (w27t07 90)7 (’UJ3, to, ¢)}

(7) ¢ = {(w07t07 Caﬁ)7 (wh to, Ca )7 (w27t07 Cq )7 (w37 to, Oaﬁ)}

Then, we show this model in Fig.3.2. Here, (M, wy,ty) |E Ba(p A1) and (M, wy, ty) =
=Bg(p V) are true.

3.3 Reasoning System with inform*

We propose a reasoning system for C'Bory,. This reasoning system evaluates truth values
of logical formulae in Kripke semantics. Since the communication is included in the
reasoning process, the result would differ from that of usual evaluation in the model.
That is, we need to add a new state in each world, that is a progress of one unit time, as
a result of a communication. In the new state, newly validated formulae are included as
well as existent ones.
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communication for ¢ communication for

Figure 3.3: Example of communication from « to 3

3.3.1 Example of Communication and Reasoning

In this section, we show an example of a communication in which the epistemic states of
agents change by the communication. For example, in Fig.3.2, because (M, wy, ty) = B,
© N By (Bifsp) A Cop and (M, wy, ty) = Bath A 7By (Bifs)) ACyg, it is possible to com-
municate ¢ from « to  and also be . So, we can evaluate whether (M, wy, ty) = EXBgyp
and (M, wy, tg) = EXBstp. We show the result of reasoning for ¢ and ¢ in Fig.3.3.

3.3.2 Rules of the Reasoning System

We define some rules of model as actions. Each rule functions as a user command on the
reasoning system on a computer.

Rule 1 (inform*)

<inf07’m*(w, t, a, ﬂa 90)>
feasibility pre-condition: By A 2By (Bifsp) A\ Cap, current time =t
rational effect: AXBgyp, current time = t'

where w € W, t € St,, o, € Agent and ¢ € P. For Rule 1, the system executes the
following procedure:

Vw € W, add new state ¢ and new relation R,, such that tR,t.
Yw € W, delete all state g, 1, ... such that tR,ty, toRyt1, ....
Vw e W, L(v,t") := L(v, t)

Vw' € W such that (w,t,w') € Bg, add a valuation to L(w',t').
current time := ¢’

By the rule inform*, some agent sends information to other agent.

30



Rule 2 (Add a communication channel)
(add_cc(t, a, 3))
feasibility pre-condition: —Cyg, current time =1
rational effect: AXCpp, current time =t'

For Rule 2, the system executes the procedure as follows:

1-3: i.q. Rulel
4:  Yw e W, add a valuation to CL(w,t') for Cyg.
D: i.q. Rulel

The rule add_cc adds a new communication channel.

Rule 3 (Delete a communication channel)
(del cc(t, v, 5))

feasibility pre-condition: Cug, current time =1
rational effect: AX—Cyg, current time = t'

For Rule 3, the system executes the procedure as follows:

1-3: i.q. Rulel
4: Yw € W, delete a valuation to C'L(w,t') for Cyg.
D: i.q. Rulel

The rule del_cc deletes some current communication channel.

We can use the above rules for given Lcp, Kripke model, and current time(state).
Here, we show an example for these rules.

Example 4 Let Kripke model M = (W, Sty, Ry, Ba, V) and current time be given as
follows:

(1) W = {wp, wy,ws, ws}

(2) YweW, St, ={0,1}

(3) YweW, R,={(0,1)}

(4) B, = {(wOa 0, wl)a (w27 0, wl)a (w37 0, wl)}

(5) Bg = {(wy,0,ws), (wp, 0, ws), (wy,0,ws), (wy,0,ws)}

(6) L= {(wla 07 90)7 (w2707 (10)}

(7) C= {(wOv 0, Ca,é‘), (wla 0, Caﬁ), (va 0, Ca,é‘), (w?n 0, Ca,é‘),
(w07 L, Caﬁ), (wlv L, Ca,é‘), (w27 L, Caﬁ), (w?n L, Caﬁ)}

(8) current time = 0

We show this situation in the left-hand side of Fig.3.4. For (M,wy,0), inform*(
wo,0,,3,0) updates the situation to be shown in the right-hand side of Fig.3.4. That
is, both of o and 3 come to believe ¢ by a communication, because the formula ¢ and
communication channel C,g4 are included in the state 2 of the possible worlds w;, w, and
ws. In particular, the epistemic state of 3 is updated by inform*. For (M,wg,2) in the
right-hand side of Fig.3.4, by del_cc(1,a,3), The situation is updated as is shown in the
left-hand side of Fig.3.5. That is, in the state 3, the communication channel is deleted
between « and . For (M,ws,3) in the left-hand side of Fig.3.5, by add_cc(2,a,(), the
situation changes as is shown in the right-hand side of Fig.3.5. That is, in the state 4, a
communication channel is added between o and .
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Figure 3.5: Example of the rule del_cc and the rule add_cc

3.3.3 Syntax-sensitive Rules

Now, we give rules for the following formulae:

(a) EXBa(p V)
(b) EXDB.Bs(p)
(c) EXB.EX¢
(d

) EX(BaypV BBy)

For (a),(b),(c), and (d), we apply the following Rule 4, Rule 5, Rule 6, and Rule 7 to
the model, respectively.

For the above case (a), we need to classify multiple valuations at the same state,

that is, for tuple (p,1), we need to prepare the evaluations (true,true), (true,false), and
(false,true) at the same time for each possible world. However, these multiple states
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Figure 3.6: Example of the communication with logical disjunction

cannot coexist at the same time in each possible world. To deal with this case, we supply
new possible worlds by an increment of state. We define the following rule for this case.

Rule 4 (Communication with disjunction)

(1): Yw € W, add a new a state t' and R,, such that tR,t'

(2): Ywy, such that (wg,t, w,) € Ba, add wy and wyr, equalize states, temporal relation
and valuation in wy,, wy and wy:.

(8): Define (wo,t', wy) € By and (wg,t', wyr) € Ba, and for each wy, such that (wy,t,wy,) €
B, define (wy,t, wy,) € By and (wyr, t,w,,) € By,.

(4): Update a valuation such that (w,,t') E oA(wn,t') = ¥, (e, t) E oA (w, t') E 1,
and (wpr, ') = =@ A (W, 1) 1= 1.

This rule is applied when a message includes a logical disjunction. The system evaluates
the above formula (a) at state ¢ in a possible world wy and performs the above procedures.
For example, for a given model as in the left-hand side of Fig.3.6, a result of sending a
message ¢ V ¢ from « to [ is shown in the right-hand side of Fig.3.6. In this case, we
need to provide extra possible worlds w}, w5, ..., and so on.

Rule 5 (Transfer of accsessbility relation)
For EXB,Bs(p), A valuation is changed to satisfy that ¢ is consisted in the possible
worlds of Bg-accessible world from the possible worlds of B,-accessible world.

Rule 6 (Identification of structure)
In our reasoning system, for all possible worlds, we identify the tree structure of states
with a temporal relation. Therefore, EX B,p < B,EX p.

Rule 7 (Distributive principle of modality)

In accordance with the semantics given in Section 3.2.4,

(M,w,t) EEX(pV )& (M,w,t) E EXeV EX.
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Note that through Rule 4-7, all the formulae are reduced to the following form:

EX - EX Byp.
—_—

n times

Finally, we summarize the rule for those with the negative connective. As for EX B,—,
we just need to change the truth value of ¢ in each newly-added state. In case EX B,
we can prove if ¢ is true in every B,-accessible world after the communication.

3.3.4 Decidability

In case there is no communication in agents, the proof of the veridicality of a formula is
same as the usual process. As a formula is decomposed into a finite number of subformulae
and is reduced to a finite number of atomic propositions with logical connectives, all these
subformulae could be given truth values in finite steps.

In case a subformula includes a communication, that is, the subformula may be headed
by multiple £X’s in front of B,p. First, within the precondition of inform™ there is
no communication. Thus, as far as the number of FX is finite, the veridicality of the
precondition is judged in finite steps. Because the number of addition of new states in
each world is equal to or less than the number of £X’s, if the number of possible worlds
is finite then such addition of new states necessarily halts. Note that a new state is added
according to the progress of time, i.e., the occurrence of communication in each world, so
that there is no loop in each world.

3.4 A Model Checker for CBgryp

The emulator of Lep was implemented in Prolog (SWI-Prolog [63]) on Solaris 5.7, on
SUNT™ Sparc station Ultra 5-10. In this section, we show several results of a model
cheking.

A formula EX --- EXB,p is evaluated false at a current time ¢, but would be also
evaluated true at a current time ¢'(> ¢). Our system, for an above case, evaluates a truth
value and outputs a result in the future. Based on the disjunction in Section 3.3.4, our
system assesses inductively by using the following criteria.

Rule 8 (Model checking)
(M,w,t) = EX --- EXByy if each one of the channels Cy,a,,Casass 5 Canas 1S true
at t, By, is true, and =By, (Bifa, o)\ - -+ A2 By, (Bifatp) is true.

Here, we show an example by using this rule for telephone game.

Example 5 Let o, 3,7 € Agent, o and 8 has a communication channel Cog, and also 3
and . « has a belief p. Then, will v have a belief ¢ in the future?

To describe the above situation, we declare the following model:
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Figure 3.7: Example of a telephone game

(1) W = {wp, wy, ws, ws, wy}

(2) Vwe W, St, — {0}

(3) YweW, R, =10

(4) B, = {(’UJO, 0, wl)a (w27 0, wl)v (w37 0, wl)v (’U}4, 0, wl)}

(5) Bﬁ = {(Ul(), 0, U]Q) (’U)O, 0, Ulg), (’U)l, 0, U]Q), (’U)l, 0, Ulg), (’U}4, 0, ’U)Q),

)
(6) B, = {(wo,0, w:;;, (wo, 0, wy), (wy,0,ws), (wy,0,wy), (wy, 0, ws),

(7) L=A{
(8) C = {(wo,

(8) current time = 0

In this situation, we get an answer that (M,wp,0) = EXB,p and (M, w,0) =
EXEXB,p. And this model is updated as follows:

(2') Forallwe W, St, ={0,1,2}

(3') ForallweW, R, =1{(0,1),(1,2)}

(71) L= {(wh 0, 90)7 (w?n 0, 90)7 (wla L 90)7 (w27 L, 90)7 (w?n L 90)7 (wla 2, 90)7
(w27 2, 90)7 (’UJ3, 2, 90)7 (UJ4, 2, 90)}

We show this situation in Fig.3.7.

Next, we show an example of the exploration activity.

Example 6 Let o, 3,v € Agent, there are communication channels between every agents.
Now, « is a researcher on the earth, 3 and v are probes on the Mars. Then, a communica-
tion channel between o and (3 is disconnected. So, a researcher sends an order “self-repair”
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Figure 3.8: Example of a self-repair and a connection recovery

to v because v is connected with 3. To repair the connection, how many steps does it take?

To describe the above situation, we declare the following model:

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)

(8)

W = {w07w17w27w37w47w5}
Yw e W, St, = {0}
YVweW, R, =10
( 'UJ4,0,'UJ1), ('U}5,0,’UJ1)}
Bs = {(wy, 0, ws), (wo, 0 ws), (w ,0,w2 , (w1, 0,w3), (wy, 0, ws),
(ws

current time = 0

We show the result for the above question in Fig.3.8. In this Fig.3.8, ¢ is a “Mars
exploration” and 1 is a “self-repair”.

Next, we show an example of the computer network.

Example 7 Let o, 3,7,0 € Agent, each agent is linked with some other agents by the
computer network communications circuit. We show this network composition in Fig.3.9.
Then, agent o hopes to send a message ¢ to all the other agents, however a circuit from
a to (B is disconnected. To send to all the other agents, how many steps does it take?

We show the result for the above question in Fig.53.10. Since the disconnection of the
circuit from a to 3, in the possible world ws, ¢ is not included at the state 2. However,
¢ 1s included at the state 4 because it is sent from vy to B by C.3.
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Figure 3.9: Network communications circuit

Figure 3.10: Example of a computer network
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In this situation, v sends ¢ to # no matter if a sends it to 3. For a representation of the
communication between agents, we need to explicitly introduce other operators such as
D and I in BDI logics.

3.5 Discussion

We introduced CB ¢, and the reasoning system for it, based on temporal epistemic logic
CTL. Because there has been no sound formalization of the modality U in the definition
of inform in ACL/FIPA thus far, we did not include the modality in our logic in order to
avoid fruitless complication. However, we can simply add U to our inform™ later when it
is adequately introduced. With regard to the existence of a reliable channel, we defined
it as a proposition in the precondition of inform™. Actually, the channel could be defined
in such other ways as a modal operator, a higher-order meta-predicate, a background
condition of inference, and so on. However, the definition by proposition seemed simplest
as far as it did not affect belief operator, accessibility, and branching time of the logic; so
that we adopted the current scheme.

We have used the term update of epistemic state when we splice a new state to a
branching time path. Furthermore, in case of communication of ¢V, new possible worlds
are provided. This view is based on the practical reason, that is, that the epistemic state
could be changeable so as to satisfy the formula given as a query, accompanying a series
of communications. Actually, what the prover does is to detect such a satisfiable path
that is not explicitly mentioned at the time of query. Namely, one extreme view is that a
new Kripke frame is given for each time step. However, in the strict view of modal logic,
all the possible branching time can be regarded to be given a priori immediately when a
user declared a set of worlds, accessibility in them, and a set of communication channels.

We showed its decidability of the logic and implemented a model checker; if it is
directly provable or if it could be validated through the chains of communications, the
system returns the proof.

As we have mentioned above, there are several future subjects: (i) the inclusion of U
and (ii) communication channel with other definitions. In addition, (iii) the variety of
channels, the temporary channel with limited period, the iteration of a channel C, and
so on, may contribute to the further development of the theory of communication.
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Chapter 4

Occurrence Logic

4.1 Introduction

In this chapter, we mention about the temporal aspectual studies. In order to do this
analysis, we utilize aspectual information is called heredity for each occurrences by using
a concept of a temporal interval. So, as an application of the temporal logic, we propose
a logic of occurrence which is based on order-sorted logic.

A predicate of logic generically represents a static feature, viz. a property of their
arguments. Our objective in this paper is to present a logic of occurrence, as the opposing
concept to property. Each occurrence of an event happens once and for all, and the
events may have causal relations or other kinds of information flow [6] in them. In
order to present a logic of occurrence, we need to identify each occurrence of an event.
Because each occurrence is situated [4], we can give an identity marker to the situation
itself, called a token [5]. Especially in this paper, we pay attention to temporal locations of
situations, viz., we interpret the semantics of a token as a temporal location. For example,
introducing a precedence relation < in two tokens x and y, we can represent a temporal
order:

r:run = y:muscle_pain iff = <y.

That is, “(someone) runs” on a certain time x caused a muscle_pain in the later time y.
Furthermore, introducing an inclusion relation < in two tokens, we can represent temporal
heredity.

r:dream = y:asleep iff x <y,

that is, “(someone) dreams while sleeping.” In this paper, we do not deal with tense
operators; instead, we compare the above temporal relations in tokens.

In the following section, we summarize temporal relations in occurrences. In Section
4.3, we propose a language that includes a sort hierarchy, and we give the syntax and
the semantics of the language, incorporating the concept of temporal heredity into it. In
Section 4.4, we explain the logic programming system based on the formal language, and
show the inference examples by our computer system. In the final section, we discuss
some branching points of our theory and summarize our contribution.
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4.2 Temporal Relations and Heredities

In this section, we define relations between temporal locations, that is, upward, downward,
rightward, and leftward heredities in temporal extents.

4.2.1 Open/closed-end

We presuppose that there is a temporal interval which corresponds to each event. Thus,
temporal intervals are given by a set of events, and the relationship in temporal intervals
are defined also by those in events, as in [30], i.e., a set of events articulates the time axis.
Because this formalism is based on the interval semantics [59], time points are introduced
as a secondary concept; still we can assume a time point if (i) a starting time or a finishing
time are explicitly specified in the context, or (ii) there are precedence/inclusion relations
in two events. Hereafter, in case an interval begins or terminates at some fixed point, we
show it by placing a short vertical bar in the following figures.

4.2.2 Upward/ downward Heredity

Suppose that there are two temporal intervals, one including the other. Then, an affair
that occurs on a restricted temporal duration, that we call an event, has the following
upward heredity: “Anna found a purse between 4rm and 5en” implies “Anna found a
purse between 3:30pm and 5:30em.” On the contrary, an affair that occurs on a certain
time duration, that we call a state, has the following downward heredity: “Beth was
sleeping between 3:30pm and 5:30ev” implies “Beth was sleeping between 4em and 5ea.”
This reversion of implication has been discussed as temporal well-/ill-foundedness [15] or
as solid/liquid occurrences [53].

Thus far, many linguists and computer scientists have proposed the classification of
event types ([3, 31, 41, 58], and so on). However, the objective of this paper is not
to implement a precise classification of aspect system, but to realize a practical logic
system. For this purpose, we restrict our attention to the distinction of upward hereditary
occurrences (event) and downward hereditary ones (state). A class ‘event’ does not refer
to the inside of the occurrence [14], so that an event is viewed topologically as a point
on the time axis. If the point (segment) is within a certain temporal location [/, then it is
also included in such I’ that I’ O [ (the left-hand side of Figure 4.1). On the contrary, a
class ‘state’ gives the imperfective aspect on an occurrence and it is viewed as a certain
temporal duration. If the occurrence persists in a certain interval ', then it also persists
during such [ that [ C I’ (the right-hand side of Figure 4.1).

' ——F——
— S —

Figure 4.1: Upward/ downward heredity
Generally speaking, we cannot measure the exact size of the temporal location of an

occurrence. However, for an upward hereditary situation, if a statement is valid on some
temporal location, then the location could be narrower on the time axis. On the contrary,
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Figure 4.2: Inclusion relation
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Figure 4.3: Precedence relation

for a downward hereditary situation, the ezact location is wider on the current temporal
location.

We define a temporal relation ‘<’ between two tokens; when ey < e, the temporal
locations 7; of the token e; properly includes the temporal extent iy of the token es as in
Figure 4.2. That is, i5 C 1.

4.2.3 Rightward/ leftward Heredity

The second relation between temporal extents is the precedence relation; that simply
mentions that if a statement is valid on a certain temporal location, it would be also valid
in the preceding or succeeding temporal locations. We define a temporal relation ‘<’ as
in Figure 4.3, where the temporal interval i; of the token e; does not persist after the
start of the temporal interval 75 of the token e; when e; < e,, that is, the two intervals
have the separated precedence relation. Now, We denote by iy < 75 any two members of
the set of intervals for the relation.

The left-hand one in Figure 4.4 represents all those temporal extents that do not
precede 7. Similarly, the right-hand one in Figure 4.4 represents all those which do not
persist after 7. If a statement is valid in any time after its occurrence, it is called rightward
hereditary. Ditto for the leftward heredity.

Considering all those temporal relations above, we can describe a complicated temporal
situation as we show in Section 4.4.3. We propose a logic for these temporal relations, in
the following section.

Figure 4.4: Rightward/ leftward hereditary
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4.3 Logic of Occurrence and Heredity

In this section, we define the syntax and semantics of a logic of occurrence, by basing on
order-sorted logic [1, 32] where every object is classified into a sort. Because predicates
are used for occurrences, we need to have another way to represent static properties. This
is the reason we integrate the order-sort logic into our occurrence logic. Beierle [7] has
proposed a knowledge representation system in which a sort symbol can be expressed as
a unary predicate in causal forms. Since a sort and a unary predicate have the same
expressive power, we can regard a subsort declaration s; C s9 as the following generic
implication as s;(z) implies so(z).

4.3.1 Syntax
Definition 7 (Signature) The language OL; consists of the following vocabulary.

O. a set of object constants O, a set of object variables
T. a set of token constants T, a set of token variables
S a set of sort symbols P a set of predicate symbols

In addition, the following symbols are used.

token delimiter

sort substitution
subsumption relation in sorts
inclusion relation in tokens
precedence relation in tokens
=, V, A\, = logical connectives

Vy Ay >y < heredity markers

A AT

Parentheses and punctuation are added if necessary.

We use a, b, ¢, - - - for object constants, 21, 29, - - - for object variables, s1, sg, - - - for sorts,
€1, eq, - - - for token constants, and xq, xs, - - - for token variables.

Definition 8 (Subsumption) There are partial orders in sorts: for s; C sy, we say so
subsumes s1. ‘T’ is reflexive and transitive.

Next, we define the hierarchy in sorts.

Definition 9 (Sort hierarchy) For any two members s; and s; of the set of sorts S,
we can define s; M s; and s; U s;, each of which is called ‘meet” and ‘join’ of s; and s;;
especially, we call ‘top’ for T = LUS, and ‘bottom’ for L =TS, and thus, S forms a lattice.

We assume that each predicate has its own argument set.

Definition 10 (Argument set) For p € P, the function A,, retrieves the argument
set of the predicate, that consists of sorts. Apy(p) C S. A tuple (p, Ary(p)) is called a
predicate declaration.
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Definition 11 (Predicate expression) A predicate expression consists of a predicate
symbol with possibly multiple arqguments. Fach argument is a substituted sort.

p(01/51,02/52, -, 0n/Sn),

where p is a predicate symbol, 01,09, -, 0, are objects (either constants and variables),
and sy, S, +, S, are sorts, respectively.
We use Greek letters ¢, 1, - - - for predicate expressions.

Example 8 Let P; and R, be predicate declarations and sort subsumption relations,
respectively. Given:

0. = {a,b}, O, = {z},
S = {man,woman, human,animal, T, L}
Py

Rs = {man C human, woman = human, human C animal},

{{love, {human, human}), (walk, {animal}), (run, {animal})},

we can write an expression ‘love(a/man,b/woman),” describing that “a man a loves a
woman b.” Because man T human and human C animal, ‘walk(z/man)’ (“an anony-

mous man z walks”) is a well-formed expression with regard to its predicate declaration,
while ‘walk(z/fish)’ is not.

Besides the subsumption relation in sorts, we introduce two relations in tokens.

Definition 12 (Inclusion and Precedence) There are partial orders in tokens. For
e1 < ey, we say e, precedes ey, and for ey < ey, we say es includes e;. Both of ‘<’ and
‘<’ are transitive.

Example 9 Let R; be inclusion relations. Given:

O, = {john,mary,ball}, T, = {e1, ez}
S = {human,obj}, R, = {e1 ey}
Py = {(kick,{human,obj}), (sleep, {human})}

then, as in Section 4.2.2,

e1: kick(john/human,ball/obj) = eq: kick(john/human,ball/obj),

ey: sleep(mary/human) = ey: sleep(mary/human),
when we interpret ‘<1’ as the temporal inclusion.

Definition 13 (hereditary relations) For hereditary relations, we define the following
forms:

>

iff Ve (>e) [€: ¢
ff Ve (<e) [e: ]
iff Ve (= eor Jes,eq(es <ees<e,eq<e eq 4e ey <es)) €
iff Ve (< eor Jeg,eqes e ez <e,eq<eeq Ae ez <eq)) e

2

o o0
.S

S S-S
=

S
A
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The heredity markers: a,v, >, and < are read as up, down, right, and left, respectively;
meanings of which are given in the following subsection. We denote by 7,F the set {z |
x; € T,} of token variables with a heredity maker . The set of the all token variables is
denoted by 1,7 =T, U U*G{A,v7>7<} Tr.

Definition 14 (Interval and Atomic Formula) Suppose that e is a token and ¢ is a
predicate expression, then e: ¢ is an atomic formula. Also, the following forms: e*: ¢, €": ¢,
e”: ¢, and e<: ¢ are atomic formulae of the language OL,. For each of the above formulae,
e could be replaced for a token variable.

4.3.2 Semantics of Occurrence

Similar to other formal semantics, we give a universe U,, each member of which corre-
sponds to an individual by the function [ | to interpret OL;. As for tokens, if there
occurred an event then there must be a spatio-temporal location for the occurrence; thus,
we reduce the meaning of a token of an occurrence to a temporal extent. Avoiding the
general discussion as to what is the component of time [59], we only assume that there is
a set of extents of time and those temporal extents are partially ordered by precedence or
by inclusion.

We introduce a set of temporal extents U, in our semantics, so that each token is
interpreted as a member of U;. If there occurred an event, then it is anchored to the
corresponding temporal extent.

Definition 15 (Structure) A structure M (for OL,) is a tuple (U, {R,,},[ ]) such
that:

1. U = U,UU;: anon-empty set (i.e. the universe of M ) where U, is a set of individuals
and Uy is a set of temporal extents such that U, N U, = (),

2. {R,,}: a set of relations Ry, C U; @ [s1] ® -+ @ [s,] where p; € P and A,4(p;) =
{517 82,7, Sn}
3. [ ]: an interpretation function such that
(a) [c] € U, for ce€ O,
(b) [s] CU, forseS,
(c) [s1] C [s2] for s1 C s9 (€ Ry),
(d) [[e]] is an element of U, (i.e. [e] =i with i € U;) fore € E,

[e"
iii. [e”
. |
(¢) [<] ={(le].Ie'D | [e]l c [eT},  [=I=A{el.[€T) | [e] < [€T}
(f) [[p]l C [[51]] Q- [[Sn]] forp € P and Arg(p) = {517527 e '7Sn}

where ‘Q’ is the Cartesian product.
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Note that ‘<’ is a precedence relation in intervals (See Section 4.2.3). We introduce
two types of variable assignments in M in order to interpret object and token variables.
An object variable assignment (simply an object assignment) is a function «,: O, — U,.
A token variable assignment (simply a token assignment) is a function ay: T,” — U, such
that au(x) € Uy, au(2”) = {y € Uy | (y,u(x)) € [<]}, au(z¥) = {y € Uy | (au(2),y) €
[<I} au(e=) = {y € Uy | (y,0u(2)) € [<]} and au(2”) = {y € U | (au(2),y) € [<]},
where y(€ U;) represents an interval variable. Using these assignments, we extend the
interpretation function to include object and token variables as follows.

Definition 16 (Interpretation) Let M be a structure, o, be an object assignment and
ay be a token assignment. An interpretation T is a tuple (M, a,, o). The denotation

[ ]](a ) 18 defined by the following.
$l(aoar) = L€l with [c] € [s]

= ,(2) with a,(z) € [9]

Sltaan =

1. e
2. [z )
3. € apon = €] [ 0000y = 16T, [T 0 00) = 1715 [T 0 0y = 7]
40

[

gy = {(@)}, [0, 0, = {ula")},
6>]l = {au(@”)}, [l (a0 = fu(@®)}

Definition 17 (Satisﬁability) Let T = (M, a,, ;) be an interpretation and F be a
formula. The satisfiability T |= F is defined by:

1. T Eeploi/si, -+, 00/50) iff (rel) € [p] and, for i =[€],, .., (i,rel) € R, where
rel is the sequence [01/51] (. 00y [0n/50] (0, 00)

2. I |=emiploi/s1, -, 0n/sn) iff (rel) € [p] and, for alli € [e*],, ., (i,rel) € R,

where x s the heredity marker

TE-Aiff THEA,

IEAVBIff TEAorTIEB,

T (Yz/s)A iff for alld € [s], T' E A where T' = (M, a,[2 — d], o),
T E (Vo)A iff forally € Uy, T' = A where T' = (M, ayy cig[z — y]).

S S

The truth values for an atomic formulae e: ¢, e*: ¢, €¥: ¢, €”: ¢, and e<: ¢, are inferred
operationally from a given set of true clauses, called a program. We will explain this
inference rules in the following section.

4.4 Logic Programming System

We propose a logic inference system on occurrences, based on the standard Horn clause
calculus. During the past 30 years, logic programming has grown from a new discipline
to a mature field. Logic programming is a direct outgrowth of work that started in
automated theorem proving. In this case a [literal is an atomic formula of Section 4.3.1,
and a clause is a disjunction of multiple literals, where a positive literal may appear at
most once.
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4.4.1 Objects and Sorts

In the following rules, GG is a sequence of literals, and a unifier is shown with square
brackets ‘[ |” where ‘A/B’ represents that ‘B’ is replaced by ‘A.’

Rule 9 (Object Instantiation)

7- G e:p(z/s) e:pe/s) <G 7- G e:p(e/s) e:p(z/s) =G
7- (G',G)c/z] 7- (G',G)|c/z]

Rule 9 is used in a sequence of logical deduction when object variables are instantiated.

Example 10 The following example shows an instantiation.

7= e: fly(z/bird) e: fly(tweety /bird) <
D Y

where ‘00 is an empty clause. In the ordinary style of logic programming, the right-hand
side of the upper deck is the fact:

e: fly(tweety /bird).
and the left-hand side of the upper deck corresponds to a query:
e: fly(z/bird).

The answer should be:
e: fly(tweety/bird), yes.

Rule 10 (Sort specialization)

7- G’ e:p(e/ss) e:ple/s1) =G
?- (GI, G)[Sl/SQ]

(s1 C s9).

Rule 10 concerns the sort hierarchy. if s; C s9, then s; has more narrow scope than ss.
This means that the expression with s; has richer information than that with s,. Thus,
if the head part contains a more narrow sort than the one in the body part of another
rule, then the body part is replaced by the more narrow sort.

Example 11 The following example is a sort specialization, under man C human.

7= e: fly(a/human) e: fly(a/man) <=
(]

fact e: fly(a/human).
query  ?-e: fly(a/human).
answer e: fly(a/man), yes.
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4.4.2 Token Rules

Hereafter, we consider the specification of inferences on occurrence. Prior to that, we
write down several examples that adequately represent the meaning of temporal heredity.

(i) The simple unification:
fact e, € xe
query  ?7-¢’: ¢
answer yes.
where the heredity marker in e* and the relation ‘e’ x ¢’ must be synchronized as in

Table 4.1.
[ [eTele] | ¢ e |
[€] €le] | €>e
[€]€e’] | € <e
[€]lele] | € <e
[e€]€le’] | € =e

Table 4.1: ‘x’-synchronization

(ii) Because each heredity marker is reflexive,
fact e<: .
query 7= e: ¢.
answer yes.

(iii)) We adopt Close World Assumption; thus, what are not mentioned are implicitly
negated.
fact er: ¢, e < es.
query  ?7-e7:¢.
answer no,

because we cannot infer e;: ¢ unless all the necessary information were explicitly
written.

According to the above specification, we set up the general rule of token specialization.
Rule 11 (Token specialization)

-G e p<=G

(©) 2~ (G G)[e* e

(e x€)

where ’ synchronizes as in Table 4.1.

7-G'ye: ¢ e p<=G

(i7) 7 (GG

. =Glet o ep<=G
(1ii) -

where ‘m’ means that the further resolution is impossible.
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Example 12 Suppose e; < ey < e3.
7= ey: find(c/purse) e5: find(c/purse) <
d

fact eb: find(c/purse)
queryl 7= es: find(c/purse)
answerl es: find(c/purse), yes.
query2  ?- e;: find(c/purse).
answer2 no.

7= e3: sleep(a/agt) ey: sleep(a/agt) <
d
fact ey: sleep(a/agt, classroom/place)
queryl  7- e;:sleep(z/agt)
answerl e;: sleep(a/agt, classroom/place), yes.
query2  7- es: sleep(z/agt)
answer2 no.

Then, we consider the unification of token variables. In the similar way, we first give
examples.

(i) The simple unification:

fact e: . fact x: ¢.
query  ?- z:¢. query  ?- e: ¢.
answer T = e, yes. answer I = e, yes.

(ii) The token with a heredity marker in the head part is also simply replaced by a

token constant:
fact r<: .

query 7= e: ¢.
answer I = e, yes.

(iii) Close World Assumption:
fact e1: ¢, e < es.
query  ?- x<:¢.
answer no.
because we cannot infer es: ¢ unless all the necessary information are explicitly
written.

Rule 12 (Token instantiation)
(i) -G a9 ep<=G 7- G e ¢ rop<=G
7- (G, G)le/x] 7- (G, G)e/x]
7- G a1 ¢ o0 <= G
7= (G, G)[x1/xs]
(id) - Ge ¢ o <= G
7- (G, G)[e'/x]
where ’ synchronizes as in Table 4.1.
. =Get o rp<=G
(1ii) -

(€' x€)
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4.4.3 Examples

The emulator of OL; was implemented in JAVA (JDK 1.2) on Solaris 5.7, on SUNTM
Sparc station Ultra 5-10. In this section, we show several results of our inference system.
In the following examples, we omit the argument part, in brief.

Example 13 “After the water in the pot bubbled, boil the chicken. During which, frizzle
garlics until the scent comes out.”

First, we define until and while constraints as follows:

x i boil <= x: frizzle. ; while boiling, frizzle.
x<: frizzle <= x:scent. ; frizzle, until the scent comes out.

To describe the situation, we declare the following facts and relations:

e1: bubble < . ) scent
eo: boil < . bubble boil frizzle—r
es: frizzle < . — t

e4: scent < .
€3 < €9, €1 < €9

In this situation, we ask whether ‘boiling” occurs also in ey.

7= eq:boil  x:boil <= x1: frizzle
?- ey frizzle x5 frizzle <= xy: scent

?7- e4: scent e4: scent <
]

Thus, the boiling property is inherited downward to ey.

Example 14 “Water was heated up, and boiled. Then, in the process, some water must
have been evaporated.”

We define the following constraints:

x”:boil <= x: heat. ; boiling occurs as a result of heating.
x":evaporate <= x:boil. ; evaporating around the time of boiling.

In addition, we define the following facts and token relations.

1 h’?“t = evaporate

eq: boil < . heat boi ————— +
es: evaporate <= .
€x <ep, €2<e3

We try the following query, that is, “evaporating and heating somewhere?”

?- x1:heat,z1:evap x):evap <= xy: boil

?- x1: heat, x1: boil x3:boil <= x3: heat

?- x1: heat ey heat <
]
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In the first step, x; must be a member of x3; then in the following step, 1 must be also a
member of z;. The prover can find a candidate ez so far, because of the following proof.

7- xiievap ez evap < ey: boil

?7- eq: boil ey: boil < e;: heat
[l

Unfortunately, ‘?- e3: heat’ and ‘e;: heat <=’ are not resolved. However at this stage, we
can find that if e; and e3 has common time e; N ey, that is the solution of the initial
question.

Example 15 “The star was twinkling” implies “the star has twinkled,” whereas “Carol
was crossing the road” does not imply “Carol has crossed the road” (imperfective paradoz
[47, 10, 57]). Actually, the class ‘accomplishment’ [14, 31] is not downward hereditary.
These sentences are formalized as follows.

xV:twinkling <= x: twinkle.
xV:Crossing <= : cross.
x”twinkled <= z: twinkling.
x”:crossed 4= x: crossing.

Note that the perfect aspect is intrinsically rightward hereditary. Then, we ask “when
the star has twinkled?”

?7- r:twinkled x5 :twinkled <= xo: twinkling

?7- xo: twinkling e: twinkling <
[

Thus, = e, meaning that the star has twinkled, just at the temporal extent of twinkling.

\ twmklm)g/twmkled

As is shown in the above figure, twinkling and twinkled can share the common time.

4.5 Concluding Remarks

We summarize our contribution as follows. (i) We proposed a logic of occurrence, ex-
tending the universe of structure from conventional U to U, and U;, where U, is a set of
temporal extents. (ii) In addition, giving inclusion relations in these temporal extents,
we could distinguish upward-hereditary events from downward-hereditary states. Also,
we introduced precedence relations in temporal extents, so as to represent rightward and
leftward heredities in occurrences. (iii) Lastly, we showed a Horn clause calculus that
enabled us the inference on occurrences, and implemented a computer system.
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Chapter 5

Temporal logic to represent
linguistic features

In chapter 4, we presented a logic of occurrence. In the above logic and temporal logic,
the temporal relations between temporal intervals are utilized as the binary operators
or a predicate. In this chapter, we define the modal operators for the above temporal
relations, suppose a propositional temporal logic. And, by combining the results of the
above chapters, we present a many-dimensional modal logic named temporal logic to
represent linguistic features (Kpn) which is including a conventional tense logic, together
with such temporal interval logic. And We show that our logic provided a formal apparatus
for a precise aspectual classification. Moreover, we introduce a sequent system for our
logic and show its decidability.

5.1 Introduction

Linear tense logics are widely accepted for structural temporal representation, where the
basic Kt has two modal operators G and H, each of which represents the future and
the past, respectively. On the other hand, the temporal interval relations arranged by
Allen have long been the standard of natural language semantics, though it still lacks the
modal-logical foundation. Van Benthem [60] proposed O and Ogyy in regard to the
accessibility to overlapping intervals and subintervals, respectively; however, the logical
feature of the modality has not well studied. In this study, we propose a many-dimensional
logic including the conventional tense logic, together with such interval accessibility, and
show its decidability.

In the following section, we propose a formalization of the temporal relations and
define the syntax and Kripke semantics for our tense interval logic. In Section 5.3, we
show the study of aspectual classification by our logic. In Section 5.4, we introduce a
sequent system for our logic and show a proof-search procedure. In the final section, we
discuss some branching points of our theory and summarize our contribution.

5.2 Ko

The prime distinction of states of affairs, that is, event and state, is explained by the
following upward/downward heredity [53]. “Anna found her purse between 4ev and 5en”
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implies “Anna found it between 3:30rm and 5:30ev.” Thus, if an instantaneous event is
mentioned in an interval, then so is also in overlapping intervals; that is upward hered-
itary. On the contrary, “Beth was sleeping between 3:30em and 5:30ev” implies “Beth
was sleeping between 4em and 5Hem.” Therefore, if a durative state is valid all through the
interval, then so is also in its subintervals. This is said to be downward hereditary. We
define the inclusion relation ‘C’ between temporal extents, as well as the conventional
precedence relation ‘<’; and propose a many-dimensional logic with these two different
accessibilities, regarding a temporal extent as a possible world.

5.2.1 Syntax

Definition 18 (Signature) The language Ly consists of the following vocabulary.
propositional variables: p, q, 7, --
logical connectives: -, V, A, =
modal operators: G, H, O, O,

Parentheses and punctuation are added if necessary.

We use @, 1, , - - - for formulae which are constructed inductively from propositional
variables, logical connectives and modal operators in the usual way. Modal operators F,
P, &1 and < are abbreviations of -G—, ~H—-, = 0" = and — 0, -, respectively. Modal
operators are interpreted in the following.

Ge  at all future time, ¢
Hyp at all past time, ¢

O in all superintervals, ¢
0, ¢ in all subintervals, ¢

As is often the case with mathematical logic, we identify a given logic £ with the
set of all formulae which are provable in £. Following this identification, if a satisfies the
following (A1), (A2), (R1), and (R2) for a modal operator, the £ is called a normal modal
logic.

(A1) {p|p is a tautology} C L

(A2) Llp=19)= (Lo = Ly) e L

(R1) IfpeLand o= € L, then ¢ € L
(R2) Ifpe L, then Ly e L

It is natural to assume that tense and temporal logics are normal. Hereafter, we
abbreviate 0" and O, to O if they are commonly treated. Each of the minimal tense logic
Kr and Kp is defined to be the least normal modal logic containing each of the following
axioms, respectively.

Kr Kg
(Arl) Go = GGy (Apl) Op = OOp
(Ar2) Hyp= HHyp (Ap2) Op = ¢
(Ar3) ¢ =GPy
(Ard) @ = HFyp
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Figure 5.1: An Accessibility relations between possible worlds

Optionally, the seriality of the interval ordering would be reflected by
(AI:I?)) D(p = —||:|—|90_

For above axioms, observe that (A2) and (Ap2) are axiom scheme K and T, hence
(An3) is provable. In this study, Kn is axiomatized by the axioms (Anl), (An2), and
(Ap3). That is, we regard Kn as the modal logic S4. Our logic K + Kp is obtained by
fuston of K and Kn. Now, let Ly and Ly be two modal logics. If L is axiomatized by
a set of axioms Az; and L, is axiomatized by Azs, then the fusion L; + Ly ! of L; and
L is axiomatized by the union Az, U Az, [22]. Here, we define the heredities for a state
and an event by modal operators as follows:

Definition 19 A state and an event satisfy
p=H, 0 and ¢= Dy,
respectively for the upward/downward heredity.

Our logic bears a resemblance to the conventional interval logics. Each possible world
shows a feature of the temporal interval, however, unlike the conventional interval logic,
our logic represents the discrete 2 temporal relations by the accessibility of possible
worlds.

5.2.2 Kripke Semantics

We introduce Kripke semantics for Kprg. We show an example of accessibility relations of
~,=<,C,and O in Figure 5.1.

A Kripke model for our logic is a tuple (W, Ry, R,,IF), where W is a non-empty set,
and Ry and R, are binary relations on W, and I is defined inductively as follows.

(M) ulk oAy dff ulkypand ulky
(M2) ulk oV iff ulk@orulky
(M3) ulk p =1 iff wulk g implies ul- ¢

IThe fusion can be also denoted as L; @ Lo.
2If the time axis is the dense, we can represent it by adding the axioms ‘GGy = Gy’ and ‘HHp =
H’[53]. And, we regard our logic represents Dedekind complete time[23].
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Hulk=p iff ulfe

yulk Gy iff Vv € W, uRpv implies v IF ¢
Julk Hp iff Yv € W, vRypu implies v IF ¢
Julk O iff Yv e W, uR,v implies v I ¢
)

(M
(M
(M
(M
(M8) wlFO, ¢ iff Yvée W, vR.uimplies v IF ¢

5
6
7
8

A formula ¢ is true in model M=(W, Ry, R,,|F), denoted by M = ¢, if u I- ¢ for
every u € W. Now, the following hold.

(1) M EGe= GGy iff Vu,v,w(uRrv A vRrw — uRpw)
2y MEHp= HHy iff Yu,v,w(wRrv AvRru — wRru)
B) M E =GPy iff Vu,v(uRrv— vRru)

A MEe=HFyp iff Yu,v(vRru— uRpv)

(5) M = Op = =0O-¢ iff Yudv(uRev)

(6) M EQp = 00¢ iff Vu,v,w(uRev ANvRow — uRow)
(MM MEQOp=¢ if Yu(uRou)

If Ry and R, satisfy all of conditions from (1) to (7) for M, M is called a Ky + Kg-
model.

Now, we have the following proposition, constructing the canonical model[26] of our
logic.

Proposition 5 Let L be Ky + Kn. Yo, ¢ ¢ L iff there exists L—model M such that
M £ p.

The tense operators F' and P represent an relation between separated intervals, thus
we define the following definitions.

le,wg € VV, ’UJ1RF’U}2 =Vt e wIVt' € wy:t < '
le,wz € I/V, wlRpr =Vte th’ € ’U]Qit -t

5.3 Aspectual Classification

Generally, a relation between two temporal interval is represented by the binary operators.
Allen[2] observed that relative positions of any two intervals i and j can be described by the
following thirteen interval relations: before(i,j), meets(i,j), overlaps(i,j), during(i,j),
starts(i, j), finishes(i,j), their inverses, and equal(i,j). We can regard these interval
relations as a representation with tense operator F' and P by assuming the bunching
possible worlds as is shown in the figure 5.2. In the figure 5.2, let the current time point
is t with ¢ and 1, i.e. (p A ). And ¢ A =1 consists before a certain past time point,
- A ¢ consists after a certain future time point. So, an overlap relation is represented

by a formula
PH(o A=) A Ap) A FG(—p A 1))

Blackburn showed a substitution from all thirteen relation in the interval logic into the
point-based tense logic in [9].
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Figure 5.2: Substitution from interval logic into point-based tense logic

A AT A

Figure 5.3: Example of accessibility relations

In our logic, we note only accessibility relations between possible worlds. We show a
relation between possible worlds in Fig.5.3. In Fig.5.3, for an inclusion and overlapping
relations of the left hand side, we reduce to a certain possible world with some possible
worlds by O and O,. In Fig.5.3, a solid line and a dotted line stand for an accessibility
relation of >, < and C, D, respectively.

Here, we consider about the aspectual classification. A state and an event satisfy
p= U@ and ¢ =Ly,

respectively by the definition 19. For a state, we may hypothesize the starting/ending
points by assuming a certain superinterval. Then,

o= <10, p,

where O denotes some possible world which includes the assumed starting/ending points.
If we could clearly specify the starting point and the ending point, then we can claim

p = ON(H-pAO p) and o= (B, 0 AGp),
respectively. In the similar way, if we assume a minimal interval of an event,
p=C, U9,

where < denotes the subinterval including the instance of the event. As, ¢ = O (H—pA
O o AG—g) represents the achievement of the aspect class by Vendler[61], we can regard
this formula as a representation of the culmination. We show some relations as in the
figure 5.4.

On the contrary, Shoham [53] defined the upward/downward heredities in a funda-
mentally different way. In Shoham’s definition, upward/downward heredities is defined
as follows:
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Figure 5.4: Relations between possible worlds
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Figure 5.5: Concatenable, gestalt, and solid of shoham’s categorization

Definition 20 [Shoham’s downward-hereditary| A proposition-type x is downward-hereditary
if, whenever it holds over an interval, it holds over all of its subintervals, possibly excluding
the two end points.

Definition 21 [Shoham’s upward-hereditary] A proposition-type x is upward-hereditary
if, whenever it holds for all proper subintervals of some nonpoint interval (except possibly
at its end points), it also holds over the nonpoint interval itself.

Then, Shoham presented some categories for temporal relations as follows:

Definition 22 [liquid] A proposition-type is liquid if it is both upward-hereditary and
downward-hereditary.

Definition 23 [concatenable] A proposition-type is concatenable if whenever it holds over
two consecutive intervals it holds also over their union.

We show this concatenable relation as in the left-hand side of Figure 5.5.

Definition 24 [gestalt] A proposition-type is gestalt if it never holds over two intervals
one of which properly contains the other.

We show this gestalt relation as in the middle of Figure 5.5.

Definition 25 [solid] A proposition-type is solid if it never holds over two properly over-
lapping intervals.

We show this solid relation as in the right-hand side of Figure 5.5.
Now, we consider these shoham’s catogories for our logic. We already showed that

our logic can represent some possible worlds which includes the assumed starting/ending
points. For a certain superinterval of a state satisfies ¢ = 70 ¢, every O, -accessible
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v liquid
| ' concatenable ¥ \

Figure 5.6: Logical expression for Shoham’s categorization

worlds have a property of the liquid and the concatenable. Especcially, the possible world
indicated by 70, ¢ has a property of the solid. On the contrary, for a event, we can
claim that the possible world indicated by <, 0" has a property of the gestalt. We
show these features of our logic in the Figure 5.6. That is, our logic which is included O
operator contributes to an implication of the shoham’s category.

Moreover, we show a relevant study, aspectual calculus proposed by Galton[21]. In-
dependent intuition abound in the temporal system of natural languages. In the past
decade, interesting logical systems have appeared taking more cues from the latter field.
One noticeable example is the aspectual calculus of Galton[21]. The ontological picture
behind natural language is lush, unlike the Spartan spirit behind most logical formalisms.
We are living in a rich common sense world populated not just by individuals and events,
but also ‘processes’, ‘state’, and so on. In Galton’s formalism, states and events appear on
a par as basic temporal entities. In [21], Galton introduce the category of event-radicals.
An event-radical is a complete expression that is neither a proposition nor a proper name.
It ‘denotes’ an event. In the resulting two-level system, the earlier tense F', P become
operators from states to states, whereas the Progressive (PROG) as well as the Perfect
(PERF) change events into states. So he introduced three aspect operators are called
the perfect, progress and prospective operators denoted by the symbols Perf, Prog, and
Pros, respectively. But there are also operators changing state into events, such as INGR
(‘begin to’) or PO (‘spend a while’). By using these aspectual operators and a concept
of the event radical, he represent the class of state and progressive form of event, and
perfect form of event, with tense operators. And he present some interesting results;

ProsEE — H ProsFE,
PerfE — GPerfE,
ProsE — FPerfE,
Perf E — PProsFE,
ProgE — F Perf E, and so on.

Our main object does not show the syntactic distinction in natural language, however,
we might represent some of them, because of we can regard that the representation ‘o' 0,’
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Figure 5.7: A continuousness of occurrences

has the property of progressive form.

5.3.1 Additional axioms for a structural relation

Now, note the differences in conditions between following formulae. The relation < and
the relation > in section 5.2 denote that there is not an intersectional temporal interval
(or possible worlds) between two occurrences. That is, the interpretation of the following
formulae is differently.

(1) FOw
(2) O Fyp

The formula (1) means “at some future, ¢ is true in all superintervals,” (2) “in all
superintervals, ¢ is true at some future.” So, it remains to be seen whether the possible
worlds held up (1) include a current time (or possible world), however, the possible worlds
held up (2) include a current time (or possible world). Ditto F' to P. On the contrary,
neither the following formulae (3) nor (4) include a current time.

(3) FO ¢
(4) O, Fp

Thus, because of both Ry and R, represent temporal relation, it is necessary to prepare
the following axioms.

(Azl) OTFo= Fo (Az3) FO, o= Fo
(Az2) OT Py = Py (Azd) PO, = Py

Additionally, for operators 0" and O, it is necessary to prepare the following axioms.
(Az0O1) =010, (Az02) =030

We describe the axiomatic system for K;n with the axiom (Az01), the axiom (AzO2),
and the axioms from (Ax1) to (Az4) as K.

Furthermore, I show the necessary axioms to represent time. The current axiomatic
system K7 is not included a continuousness of occurrences. We show this in Figure 5.7.
So, we need to add the following axiom:
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(Az5) FFOTpAOT o= FOTgp

But, we can claim K, has nondiscrete set by contraries. That is, we can represent a
certain possible world which consists ¢, some possible worlds for a subinterval of this
consist ¢ and the other possible worlds do not. So, a reiteration of the occurrences is
expressed by K., and also Krq.

There is a difference in structure between K7o and K, however, a power of the
linguistic representation of K7, does not turn into a power of the linguistic representation
of Kpn. O" and O, can not express the linguistical dynamic/static feature of action, that
is the operators in our logic can not represent a difference between continuity of activity
and a consequence of action. We focus attention on a minimal normal modal logic Krn
and show its decidability in the following section.

5.4 Decidability

In this section, we introduce a sequent system for the Kpg. We show the subformula
property holds in our system, and thus are able to show the decidability. In the following,
uppercase Greek letters, I', A,II, 3,0 and A denote finite sets of formulae. And OI
denotes {Oplp € T'} for O € {O7,0,}. Sub(l'), Iy, and A* denote |J{Sub(¢)|yp €
'Y, A{ele € T}, and \/{plp € A}, respectively, where Sub(1)) denotes a set of all
subformulae of ¢. Any expression of the form I' — A is called a sequent, where —
denotes a derivation relation. An inference rule is of the form

Sy Sy S5

< o SR
where S7, S», S3, and S are sequents. In the inference, S;, S;, and S; are called the
upper sequents, and S the lower sequent.?

5.4.1 Sequent System for K p

The sequent system G(Kr+ Kq) is obtained from the sequent system LK for the classical
propositional logic by adding the following four rules.

Y= A
Op, > — A
oy, v
(@2) X =0
Oy — 0e

GY,Y — HA, HO,
GY — HA,0,Gy

HY,Y = GA, GO, »
HY — GA,0, Hy

Rule (T'1) and (7'2) are introduced by Nishimura in [44]. Since Kp is the modal logic
S4, we introduced Rule (O1) and (02).

3If a sequent S is provable in a system G, then it is often denoted by G - S.

(T2)
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Proposition 6
In=A"cKr+Kys & GEr+Kg)t-T —A.

The sequent system G(Kr + Kgq), however, lacks the cut-elimination property, so
that subformula property does not hold. For example, a sequent ¢ — G—H-p is not
provable without the cut rule * . Takano[55] introduced the restricted cut rule (AC') and
Maruyama et. al.[39] introduced the following restricted rules (7'1)" and (7'2)" for (T'1)
and (7T2), respectively. They showed that those with the subformula property become
provable in the revised sequent system. So, for G(K7 + Kgq), by applying the restricted
rules, we introduce G~ (K1 + Kp) as follows.

Y=o Ao o, Il - 0O

Y, 11— A0
where ¢ € Sub(XUAUIIUB)

(AC)

G, Y — HA,HO,

GY — HA,0,Gyp
where HO C Sub(X UA U {p})

(1)

HY,Y = GA,GO,

HY - GAN,O,Hp
where GO C Sub(X U A U {¢})

(T2)

In (AC), (T1) and (T2)', we can easily see that every formula occurring in the upper
sequents consists of subformulae of formulae in the lower sequent. Maruyama et al.
showed the completeness theorem of the restricted system in [39], and thus we can prove
the completeness theorem of our system in the same way. That is, we have the following
theorem.

Thorem 4  If a sequent T' — A is not provable in G~ (K + Kg), then there is a finite
Kr + Ka-model M such that M =T, = A*.

Here, we summarize the above results as follows:

L,=A*¢ L & Mg T, = AF
{Prop.6 Prop.5
GL)YT = A 0
J[55] Theorem4
G (LT = A = FM; T, = A*

where £, M, and F'M; denote K1 + Kn, a model of £, and a finite model of L, respec-
tively. That is, the restricted systems G~ (L) is equivalent to G(L).

Corollary 2 If ¢ ¢ Kr + Kq, then there exists a finite K + Ko-model M such that
M £ p.

4For the initial sequent ‘@ — ¢’, we apply the rule —-left to it, get the sequent ‘=, ¢ —.” And for the
initial sequent ‘H—p — H—’, we apply rule —-right and rule T'1 to it, get the sequent ‘— —p, G-H-yp.
For these two sequents, by applying the cut rule, we get a proof figure of the sequent ‘p — G—~H—p.’
That is, a sequent ‘0 — G—H-p’ is provable, however, the sequent is not provable without applying the
cut rule.
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The decidability of Kr + Kg follows Harrop’s theorem[26].

Thorem 5 [Harrop] If a finitely axiomatizable logic has the finite model property, then it
is decidable.

In this thesis, we took particular note of a sequent system for K7o, however, for K,
it is only necessary to add the following rules.

E_>Dl®7§0
(R) 55685
Y—=>00,p
2 .
(R) DLE_>67DLW
GX, Y — A\, 0
(£3) GY — GA,0,0°
HY Y — A6
(R4) ) —> ?

HY — HA,O,0°

Where (R1), (R2), (R3) and (R4) are reflected in the axioms (Az01), (Az02), (Ax1)
and (Az3), and (Az2) and (Ax4), respectively. To show the decidability of K7, then we
must restrict the rule (R1) and (R2).

By [34], the fusions of modal logics with finite model property have the finite model
property. Besides that, for complete modal logics Ly and Ly not containing 1, the fusion
L, + L, is decidable if both components L; and L, are decidable. The decision procedure
by Harrop’s theorem is extremely inefficient, and not feasible practically > . But, if a
logic has the finite model property, there exists a model which invalidates unprovable
formulae. Therefore, we can expect that such formulae are found in the model efficiently.
The decision procedure by using the restricted sequent system is more efficient procedure.
We show a proof-search procedure for K + K in the following section.

5.4.2 Proof-search Procedure

A decision procedure for K1 + K is a concrete finite procedure which decides whether a
given formula is provable or not in a logic K7+ Kg. For I' = A, when the same formula
appears only once in each of I' and A, we call it 7-reduce. If I' = A is not 1-reduce, then
we obtain a 1-reduce sequent by using contraction and exchange rules. So, it is enough to
search a proof for 1-reduce sequents. Here, a reduced sequent which consists of formulae
in Sub(l' U A) is called a suitable sequent. Then, it is enough to search a proof which
consists only of suitable sequents. Every proof can be transformed into the proof without
any repetition of sequents. Here we call ‘partially constructed proofs’, inference figure.
In the inference figure, each rule must be applied in a correct way, but the uppermost

5 Aside from this, by using a concept of a partial valuation, which means limiting the size of the tree
for Kripke model, we can prove a decidability of the modal logic S4.
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sequents are not necessarily the initial sequents. For each ¢, let G; be the set of all the
inference figures in which inference rules are applied at most : — 1 times. Paying attention
to these things, we can obtain the following procedure.

1. G, is the singleton set consists only of I' = A. The figure of such a set is an inference
figure.

2. Suppose that G; is already defined.
2.1 Giy1 = G;.

2.2 VF € G;, If 3T such that F* = Z¥ and F" ¢ {F"}, then G;.1 := G;,1 UF' such
that 7' — F = 1".

3. If G;11 = G;, then output “I' = A is not provable,” and terminates.

4. If 4F such that F € G;,1 — G; and F"* = IS, then output “I' = A is provable” and
terminates. Otherwise, go to step 2.

Where F*, F¥, Z, and IS denotes the uppermost sequent of F, the lower sequents
of F, the inference rules, and the initial sequents, respectively. The above procedure
demands the backtracking for the loop-checking by 2.2. So, a sequent system proves a
bottom-up manner. Since the set of all the non-repetition inference figures which consist
only of acceptable sequents is finite, and so there must exist a natural number j such that
Gij+1 = G;. Therefore, the above procedure eventually terminates.

Example 16 We will consider the following formula.
~(H(Go A @) MG A —p))
Suppose that if Py is — —(O"(Gp A o) A (G=p A=), then Py € G.

O Go A ) NG A—p —

If Py is B

, then Py € Gs.

O (G A ), G=p, ~p —
Py
GoNp,Gop,—p —
Py

If Py is , then Ps € Gg.

If Py is , then P; € G;0

Thus, we have the following proof.

=y
~pp— (7 =)
T exchange)
Gonpp— 7

Gohp.Gop 95 (weakning)

) ) Dl
5 Gy 1 9). G )
O G Ap) AN(Gop Aop) =

= 2(O"(Go A ) A(G=p A=)

(=)

The double line in the above represents that applications of A =-rule and contraction-
rule are omitted.
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Example 17 Next, we will consider the following formula.
H-GOp V@

Suppose that if Py is H-GOp V ¢ then P, € Gy.

— H-GO
If Py is D <p,<p’ then P, € Gy.
3
— Oy, H=-GO Op —
If Py is 1 P(p L SO, then Py € Gs.
A

If P51 and Ps5 are — Op, H-GOyp and Op — @, respectively,

— GOy, ~GOp )

Ps. Ps.
then b € G-
GOy — GOy
Ts v
Ps4 Ps. cg
If P is — GOp,~G0Oyp, then P; r

Thus, we have the following proof.

GOy — GOy

— GDgp, ﬁGD(p ©—

— Op, H-GOp Tp — ¢
— H-GOyp, p
—>H—|GDQO\/(,0

5.5 Concluding Remarks

We proposed the Kpg which combined linear tense logic and interval logic. In our logic,
temporal relations between intervals are reduced to the accessibility of possible worlds,
given inclusion relations. We showed that our logic provided a formal apparatus for a
precise aspectual classification. Lastly, we introduced a sequent system for Ko and
showed its decidability. As a future subject, we show a decidability of K/, and consider
an expanded system of K such as K/ .
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Chapter 6

Conclusion

In this study, we proposed the temporal logic to represent linguistic features (K7g) which
combined linear tense logic and interval logic. First, we took particular note of a con-
ventional tense logic and temporal logic, we showed an application of the tense logic as
a multi-agent system with tense logic. Especially, we note the agent’s communication,
by using a concept of communication channel, we defined an update of the agent’s belief
states. We introduced CB 7, and the reasoning system for it, based on temporal epis-
temic logic CTL. Because there has been no sound formalization of the modality U in the
definition of inform in ACL/FIPA thus far, we did not include the modality in our logic
in order to avoid fruitless complication. And we showed its decidability of the logic and
implemented a model checker; if it is directly provable or if it could be validated through
the chains of communications, the system returns the proof.

Secondly, we mentioned about the temporal aspectual studies as an application of
temporal logics. In order to do this analysis, we utilize aspectual information is called
heredity for each occurrences by using a concept of a temporal interval, proposed a logic
of occurrence. We proposed a logic of occurrence, extending the universe of structure
from conventional U to U, and U, where U, is a set of temporal extents. In addition, giv-
ing inclusion relations in these temporal extents, we could distinguish upward-hereditary
events from downward-hereditary states. Also, we introduced precedence relations in
temporal extents, so as to represent rightward and leftward heredities in occurrences.
And, we showed a Horn clause calculus that enabled us the inference on occurrences, and
implemented a computer system.

Lastly, based on the results of above researches, we proposed the K5 which combined
linear tense logic and interval logic. In the Kpn, temporal relations between intervals are
reduced to the accessibility of possible worlds, given inclusion relations. We showed that
our logic provided a formal apparatus for a precise aspectual classification. Moreover, we
introduced a sequent system for our logic and showed its decidability. Additionally we
show some axioms with multiple modal operators, and inference rules for these axioms of
LK, as an axiomatic system of K. As a future subject, we show a decidability of K.
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Appendix A

A.1 Proof of Theorem 4

In this section, we show a proof of theorem 4 by the following steps; (1) first, we show a
definition of the =-partial valuations and observe a relation between a set of sub formulae
and the Z-partial valuations, (2) for a set of the =Z-partial valuations, we define a model
which implements finitely property, and (3) we show a proof of theorem 4 by the property
of a model for the =-partial valuations and a result of (2).

A.1.1 A Relation between =-partial Valuations and Sub Formu-
lae

Definition 26 (=-partial valuations) Let L and = be a set of formulae which is closed
under subformulae. A sequent ¥ — A is a E-partial valuation in a system G~ (L) if the
following conditions are satisfied; (i) G~ (L) i/ ¥ — A; (i) U A = Sub(X U A); (i)
Sub(XUA) C =.

That is, ¥ — A is a =Z-partial valuation if and only if ¥ U A is a subset of = which is
closed under subformulae such that ¥ — A is not provable in G~ (£). =-partial valuations
are denoted by w,v,w,---, and a(u) and s(u) denote the antecedent of u and succedent
of u, respectively; i.e. a(¥ — A) = ¥ and s(¥ — A) = A. Thus both a and s can be
regarded as functions from the set of sequents to the collection of sets of formulae. The
following proposition 7 says a key fact on partial valuations.

Proposition 7 Suppose that a sequent ¥ — A is not provable in G~ (L) and Xi is any
set of formulae which includes Sub(XUA). Then there exists a =-partial valuation u such
that ¥ C a(u) C Sub(XUA) and A C s(u) C Sub(XUA).

The above proposition is provable by the inductive method for a formulae included in
Sub(X U A)[39]0

A.1.2 A Model for the =-partial Valuations

We suppose that ¥ — A is not provable in G~(L£). We define the model (W, Ry, Rn, )
for the tense interval logic as follows:
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W = {u|u is a Sub(X U A)-partial valuation},

uRrv iff VYo, Gp € a(u) implies Gy € a(v) and ¢ € a(v), and
Vo, Hp € a(v) implies Hyp € a(u) and ¢ € a(u),

uRqv iff Yo, Op € a(u) implies Oy € a(v)andyp € a(v)), and
Oy € a(v)impliesOyp € a(u),

ulkp iff p € a(u), where p is a propositional variable.

Now, ¥ — A is not provable, so there exists a Sub(X U A)-partial valuation u such
that ¥ C a(u) and A C s(u). That is, W is not empty set. Since Sub(X U A) is a finite
set, W is also a finite set. In fact, if the number of formulae in Sub(X U A) is k, then the
number of elements of W is at most 2.

Proposition 8 The model defined above is a K1 + Kn-model.

PROOF. We will give a proof here only (5) in section 5.2.2 i.e. Vu3v(uRov). Take an
arbitrary u € W. Now define ¥ and A as follows:

Y= {0y € a(u)}

A=A{¢|B¢ € s(u)}

Then the sequent 0%, % — OA is unprovable in G~ (K + Kp). Otherwise, by following
proof figure, a(u) — s(u) becomes provable, which is a contradiction.

0%,% 5 OA
0y — OA

a(u) — s(u)

Let IT = Sub(OX U OA). Then IT C Sub(a(u) U (u)) C Sub(T' U A). Hence there
exists a Sub(I'UA)-partial valuation v such that OXUY C a(v) C IT and OA C s(v) C1I
by proposition 7.

Then, we will show that uRqv. If O¢ € a(u), then ¢ € ¥ and Oy € OX. hence
Y € a(v) and Oy € a(v). If Oy € a(v), then Oy € II, and Hence O € Sub(a(u)Us(u)) =
a(u) U s(u). If Oy € s(u), then Ot € OA, so Oy € s(v). This contradicts Oy € a(v).
Therefore Oy € a(u).

Proposition 9 VYu € W, the following hold.
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(1) e €a(

(2) pAYpEs(u)— p€Es
(3)  »Vi€a(u)

(4) eV Es(u

(5) p=vea
(6) o=>vesu)—pca
(7)) —p€alu) — ¢ € s(u)0
(8) —pe€s(u)— pea(u)d
(9) Op € a(u) — Yv € W, uRgv implies ¢ € a(v),
(10) Oy € s(u) — Fv € W,uRnv and ¢ € s(v)0
(11) Gy € a(u) — Yv € W, uRypv implies ¢ € a(v),
(12) Gy € s(u) — Fv € W,uRpv and ¢ € s(v),
(13) Hy € a(u) — Yv € W, vRypu implies ¢ € a(v),
(12) Hy € s(u) — v € W,vRpu and ¢ € s(v).

u) and P € s(u),

PROOF. (1) suppose that ¢ & a(u) or ¢ & a(u). Since pAy € a(u) C Sub(a(u)Us(u)),
¢ € Sub(a(u) Us(u)) and ¢ € Sub(a(u) U s(u)), so ¢ € a(u) U s(u) and ¢ € a(u) U s(u).
If ¥ & a(u), then ¢ € s(u), so the following proof figure gives us a contradiction since u
is a Sub(I' U A)-partial valuation.

Y
pAY =
a(u) — s(u)

(A=)

Thus ¢ € a(u). Similarly, we can derive a contradiction if ¢ € a(u). Thus ¢ € a(u).

(10) Suppose that Op € s(u). Define ¥ and A as follows:

Y= A{y|0¢ € a(u)}

A= {¢[0¢ € s(u)}

Then the sequent 0%, % — OA, ¢ is unprovable in G~ (K7 + Kg). For, otherwise we
can derive a contradiction by using the following proof figure.

ax,x —> OA, ¢
0¥ — OA, Oy
a(u) — s(u)
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Let IT = Sub(OXUOAU{p}). Then IT C Sub(a(u)Us(u)) C Sub(I'UA). Hence there
exists a Sub(I" U A)-partial valuation v such that OX UY C a(v) C II and OA U {p} C
s(v) C II by proposition 7. It is clear that ¢ € s(v).

Now, we show that uRnv. If Ot € a(u), then ¢ € ¥ and hence Ot € OX. Thus
Y € a(v) and O € a(v). If Oy € a(v), then Oy € II. So Oy € Sub(a(u) U s(u)) =
a(u) Us(u). If Oy € s(u), then Oy € OA, and hence Ot € s(v). This contradicts
Ot € a(v). Therefore O € a(u).

Recall that IF is defined by the condition u |- p iff p € a(u) for a propositional
variable p. We can show the following proposition 10 by this result and proposition 9.
The following proposition 10 can be proved by simultaneous induction on the length of .

Proposition 10 Suppose u € W and x € Sub(X U A).
(1) p € s(u) — ulf p for every propotisional variable p
(2) x€alu) — ulkyx
(3) x€s(u) —ulfx

PROOF. For (1), if p € s(u), then p ¢ a(u), and hence u I p. (2) and (3) can be
proved by simultaneous induction on the length of y, using proposition 9.

A.1.3 Proof

By the definition 26, If ' — A is not provable in G~(L), then there exists Sub(I' U A)-
partial valuation u such that I' C a(u) C Sub(I' U A) and A C s(u) C Sub(I' U A).
Vo € T, ¢ € a(u) is satisfied, thus by the proposition 10, u IF ¢. That is, u IF T',. On
the contrary, Vo € A, ¢ € s(u), thus u Iff ¢ and u [ A*. Therefore, u If T, — A*, for a
system G~ (L), this completes the proof of Theorem 4.
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