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Abstract— We analyze the outage probability of frequency
domain minimum mean squared error turbo equalization over
frequency-selective Rayleigh fading channels with exponential
delay power profile. A correlation chart analysis is used to
evaluate the convergence property of the iterative system. Based
on the convergence characteristic of the equalizer and decoder,
we derive a closed form approximation to the outage probability
of the turbo equalizer. Specifically, an upper bounding technique
and a central limit theorem are used to show that the outage
probability is well approximated by a sum of complementary
Gaussian error functions. Numerical results of outage probability
simulations of the turbo equalizer in channels with different delay
power profiles are presented to demonstrate the accuracy of the
proposed method.

I. INTRODUCTION

Turbo equalization [1]-[4] is one of the most promising tech-
niques, without requiring excessive computational complexity,
for coded transmissions over frequency-selective fading chan-
nels. The complexity advantage of turbo equalization is due to
the separation of channel equalization and decoding into two
basic soft-input soft-output (SfiSfo) processing components,
while such high performance can be achieved by exchanging
soft information between the SfiSfo components in an iterative
manner. Turbo equalization was originally proposed in [1],
utilizing a maximum a posteriori probability (MAP) algorithm
for iterative processing in frequency-selective fading channels.
However, because of its exponentially increasing complexity,
the MAP-based equalizer is only practical for simple modula-
tion formats, like binary phase shift keying (BPSK), and for
channels with few multipath components. In [2], the optimal
MAP algorithm has been replaced by a low-cost alternative
based on the soft canceling (SC) and minimum mean-squared
error (MMSE) principle. The SC-MMSE filtering approach in
[2], originally proposed for the detection of random coded
code-division multiple-access (CDMA) signals, has been ap-
plied to channel equalization in [3]. In [4], a turbo equalizer
for single carrier transmission over broadband channels is pro-
posed that performs the MMSE filtering in frequency domain
(FD). Due to using the computationally efficient fast Fourier
transform, the SC FD-MMSE equalizer in [4] has much lower
complexity than its time-domain counterpart presented in [3].

In this paper, we analyze the performance of SC FD-
MMSE turbo equalization in frequency-selective Rayleigh
fading channels with exponential delay power profile. Specifi-
cally, we focus on the outage probability, which is defined by
the probability of unsuccessful convergence of the equalizer,
given random channel realizations.

We first provide a correlation chart analysis [5], similar to
the well known extrinsic information transfer (EXIT) chart
analysis [6], to evaluate the convergence property of the
turbo system. In fact, as shown in [7], the correlation chart
method provides us with an analytical expression describing
the convergence property of the equalizer. We then use the
correlation functions of the equalizer and decoder to derive
a closed-form approximation on the outage probability. In
particular, using a union bounding technique and a central
limit theorem, we show that the outage probability is well
approximated by a sum of complementary Gaussian error
functions.

II. SYSTEM MODEL AND TURBO EQUALIZATION

Consider a single carrier cyclic prefix assisted block-
transmission wireless communication system. The transmis-
sion scheme is based on bit interleaved coded modulation
(BICM), where the information bit sequence is encoded by
a rate-rc binary encoder, randomly bit-interleaved, BPSK
modulated, and grouped into N (n = 1, .., N ) blocks

b(n) ≡ [b0(n), ..., bq(n), ..., bQ−1(n)
]T

(1)

that are transmitted over the frequency-selective fading chan-
nel.

The channel h ≡ [
h(0), ..., h(L − 1)

]T
is composed of

L taps and assumed to be constant during the transmission
of one frame (comprised of N blocks), but varying randomly
and independently frame-by-frame. Thus, we consider a slowly
time-varying fading channel. We also assume that the L
channel gains are perfectly known at the receiver.

Employing a cyclic prefix of length P = L − 1 to each
transmit block, the received signals can be expressed as

r(n) = Hb(n) + v(n), n = 1, .., N, (2)
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where H = circQ

{
h
}

is the circulant channel matrix of
size Q × Q, and v(n) ∼ CN (0, σ2I) is the additive white
Gaussian noise (AWGN). Note that H may be decomposed
into a diagonal matrix Ξ by the Fourier matrix,

H = FHΞF, (3)

where F denotes the Fourier matrix of size Q, whose (l, j)-
th element is given by Q− 1

2 e−i 2π
Q lj , 0 ≤ l, j ≤ Q − 1,

and Ξ = diag{τ} is the FD channel matrix with τ being a
vector comprising the FD channel coefficients, i.e., τ = FH h̃
with h̃ = [hT ,01×(Q−L−1)]T . At the receiver side, iterative
processing for joint equalization and decoding is performed.
The receiver consists of a SC FD-MMSE equalizer and a
single-user a posteriori probability decoder. Within the iter-
ative processing, extrinsic log likelihood ratios (LLRs) of the
coded bits are exchanged between the equalizer and decoder,
following the turbo principle [2]. Inputs to the equalizer are
the received signals r(n) and the a priori LLR sequences

ζ(n) ≡ [ζ0(n), ..., ζq(n), ..., ζQ−1(n)
]T

for all n, (4)

where ζq(n) ≡ log
(

Prob
(
bq(n) = +1

)
/Prob

(
bq(n) = −1

))
.

The equalizer first generates an estimate of the received signal
r(n) and then subtracts it from r(n), yielding the residual:

r̃(n) = r(n) − Hb̄(n) (5)

where b̄(n) = [b̄0(n), ..., b̄Q−1(n)]T is a vector comprising
the expected values of the elements in b(n), i.e.,

b̄(n) = tanh
(ζ(n)

2

)
. (6)

After the residual r̃(n) is calculated, linear adaptive FD
filtering is performed to extract the desired signal components
b(n) as [3] [4]

z(n) = (1 + γϕ)−1
(
γb̄(n) + FHΨFr̃(n)

)
, (7)

where z(n) = [z0(n), ..., zq(n), ..., zQ−1(n)]T , ϕ =
1

QN

∑N
n=1 b̄T (n)b̄(n) is the mean energy of the symbol

estimates in b̄(n), Ψ = ΞH
[
(1 − ϕ)ΞΞH + σ2I

]−1
is the

frequency domain filter, and γ = (1/Q)Trace{ΨΞ}. The
equalizer then computes the extrinsic LLR for each transmitted
bit bq(n) as

λq(n) ≡ log

(
Prob

(
zq(n)|bq(n) = +1

)
Prob

(
zq(n)|bq(n) = −1

)
)

. (8)

Following [3], we may approximate zq(n) by an equivalent
AWGN channel having bq(n) as its input, so that

Prob
(
zq(n)|bq(n) = b

) ∼ N (μbb, σ
2
b ), b ∈ {±1}, (9)

where μb = γ/(1 + γϕ), and σ2
b = μb(1 − μb).

Note that during the first iteration of turbo equalization,
ζq(n) is zero for all n, q, and later on ζq(n) is provided via
the interleaver in the form of extrinsic LLRs of the decoder.

A. Channel Model and Correlation Properties

We consider Rayleigh block-fading channels, where the
channel coefficients h(l), l = 0, ..., L − 1 are assumed to
be independent and identically distributed (i.i.d) circulary-
symmetric complex Gaussian random variables. Furthermore,
we presume that the delay autocorrelation function of the
channel h is described by an exponential delay power profile
with normalized root mean square (rms) delay τd,

p(l) = υ exp
(
− l

τd

)
, for l = 0, ..., L − 1, (10)

where υ = L/
∑

l p(l) is a normalization constant.
Let us write the q1th and q2th FD channel coefficients as

τq1 = τc,q1 + iτs,q1 ,

τq2 = τc,q2 + iτs,q2 . (11)

In (11), the random variables τc,q1 , τs,q1 , τc,q2 and τs,q2

are identically zero-mean Gaussian distributed with variance
η/2, where η = L

Q . Assume that, as L and Q increase, the
normalized frequency separation Δf ≡ τd/Q remains fixed.
Following [8], we then may write the cross-correlations of the
random variables in (11) for L,Q → ∞ as

E[τc,q1τs,q1 ] = E[τc,q2τs,q2 ] = 0

E[τc,q1τc,q2 ] = E[τs,q1τs,q2 ] =
η/2

1 + (2πΔfΔq)2

E[τc,q1τs,q2 ] = −E[τc,q2τs,q1 ] = − ηπΔfΔq

1 + (2πΔfΔq)2
, (12)

where Δq = |q1−q2|. From (12), we observe that (τc,q1 , τs,q1)
and (τc,q2 , τs,q2) form a circular pair [9]. Therefore, the
exponential distributed FD channel gains κq = τ2

c,q + τ2
s,q

with mean η and variance η2 for all q = 0, .., Q− 1, have the
correlation coefficient [9]

δΔq =
1

1 + (2πΔfΔq)2
. (13)

III. CONVERGENCE CHARACTERISTIC OF THE TURBO

EQUALIZER

In this section, the correlation chart analysis [5] is used
to study the convergence characteristic of the SC FD-MMSE
turbo equalizer.

Let ϕe ≡ E[bq(n)aq(n)] be the correlation between the
true binary transmit signal bq(n) and the MMSE estimate
aq(n) ≡ E[bq(n) |λq(n) ] = tanh

(
(1/2)λq(n)

)
of bq(n) given

λq(n). Following [6], we model (1/2)bq(n)λq(n) as i.i.d.
Gaussian random variables. We assume that the symmetry
condition [6] for all LLR messages is satisfied, so that p(x) =
p(−x) exp(x), where p(x) is the probability density function
(PDF) of an LLR message. By enforcing this condition on the
random variables (1/2)bq(n)λq(n), we obtain

E
[1
2
bq(n)λq(n)

]
= Var

[1
2
bq(n)λq(n)

]
=

2μb

1 − μb
. (14)

Similarly, let ϕd ≡ E[bq(n)cq(n)] be the correlation between
bq(n) and cq(n) = tanh

(
(1/2)ζq(n)

)
. Then using (7), we can

89



express the effective signal-to-noise ratio (SNR) Ψ at the
equalizer output as

Ψ(ϕd) =
2μb

1 − μb

=
2γ

1 − γ(1 − ϕd)

=
2

1 − ϕd

[
Q

(
Q−1∑
q=0

1
1 + ρκq

)−1

− 1

]
, (15)

where ρ ≡ (1 − ϕd)/σ2. Under the Gaussian assumption, the
correlation ϕe is then given by

ϕe =
1√
2π

∫ ∞

−∞
tanh

(
z
√

Ψ(ϕd) + Ψ(ϕd)
)
e

−z2
2 dz, (16)

≡ φ(Ψ(ϕd)), (17)

≡ fe(ϕd), (18)

where we have defined φ(x) =
1√
2π

∫∞
−∞ tanh

(
z
√

x + x)
)
e

−z2
2 dz. The function fe(.)

in (18) is referred to as the correlation characteristic of the
equalizer in what follows. Similarly, the correlation ϕd can
be expressed as

ϕd = fd(ϕe), (19)

where fd(.) is denoted as the correlation characteristic of the
decoder. We obtain fd by a Monte Carlo method, as described
in [5].

With the definitions in (18) and (19), the convergence
behavior of the turbo equalizer can now be analyzed by
evaluating the correlation sequence

{
ϕ

(l)
e , ϕ

(l)
d

}
, l = 0, ..., T ,

over T iterations between the equalizer and decoder, generated
by

ϕ(l)
e = fe(ϕ

(l)
d ) with ϕ

(0)
d = 0, (20)

ϕ
(l+1)
d = fd(ϕ(l)

e ). (21)

The functions fe(.) and fd(.) are bounded and monotoni-
cally increasing in ϕd and ϕe, respectively. Thus, the se-
quence {ϕ(l)

e , ϕ
(l)
d } convergences asymptotically to fixed val-

ues {ϕ̃e, ϕ̃d} with ϕ̃e = liml→∞ ϕ
(l)
e and ϕ̃d = liml→∞ ϕ

(l)
d ,

for T → ∞. The function fe(.) is shown for an example
snapshot in Fig. 1. Also shown is the inverse function of
fd(.), denoted as fI,d(.), and the decoding trajectory that
visualizes the correlation exchange between the equalizer and
decoder. The function fI,d(.) has been calculated for a rate-
1/2 memory-three convolutional code.

Convergence of turbo equalization is achieved when ϕ
(l)
d

attains the maximum value ϕ̃d = 1. Obviously, this is possible
for T being sufficiently large, if the following constraint holds:

fe(ϕd) > fI,d(ϕd), ∀ϕd ∈ [0, 1). (22)
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Fig. 1. Equalizer and decoder correlation characteristics for a random channel
realization (L = 32, τd = 5) at Eb/N0 = 3 dB.

IV. OUTAGE PROBABILITY ANALYSIS

The turbo equalizer is in outage if for the specific channel
realization ϕ̃d < 1. Hence, an outage event O occurs when
fe(ϕd) ≤ fI,d(ϕd) for at least one value of ϕd ∈ [0, 1). Thus,
we can define the outage probability of the turbo equalizer as

Prob(O) ≡ Prob
(
fe(ϕd) ≤ fI,d(ϕd), ∃ϕd ∈ [0, 1)

)
. (23)

A direct evaluation of the constraint fe(ϕd) ≤ fI,d(ϕd) in
(23) on the continuous interval ϕd ∈ [0, 1) is computationally
intractable. Therefore, we proceed by imposing the constraint
on a discrete set of D values {ϕd,k}, k = 1, ..,D. Then, using
the union bound [13], we find an approximate upper bound on
(23) as

Prob(O) ≤
D∑

k=1

Prob
(
fe(ϕd,k) ≤ fI,d(ϕd,k)

)
. (24)

Using (17) and (15), we can write (24) as

Prob(O) ≤
D∑

k=1

Prob
(
φ(Ψ(ϕd,k)) ≤ fI,d(ϕd,k)

)

=
D∑

k=1

Prob

(
1
Q

Q−1∑
q=0

1
1 + ρkκq

> Ak

)
, (25)

where

ρk = (1 − ϕd,k)/σ2, (26)

Ak =
2

(1 − ϕd,k)φI(fI,d(ϕd,k)) + 2
(27)

with φI(.) being the inverse function of φ(.). For convenience,
we define

Sk ≡ 1
Q

Q−1∑
q=0

1
1 + ρkκq

=
1
Q

Q−1∑
q=0

ck(κq) =
1
Q

Q−1∑
q=0

sk

(
τc,q, τs,q

)
, (28)
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where ck(κq) = sk

(
τc,q, τs,q

) ≡ 1
1+ρkκq

. Exact calculation
of the distribution of Sk in (28) is not easy, since as shown
in Section II-A, the FD channel coefficients κq are correlated
with order 1/(Δq)2. We use a theorem from Arcones [10] to
show that Sk is asymptotically Gaussian distributed. Note that
this theorem has also been adapted in [11] to calculate the
capacity of OFDM systems.

We state Arcones’ theorem below. A proof of it can be found
in [10].

Theorem 1: Let {Xj}, Xj ≡ [
X

(1)
j , ...,X

(d)
j

]T
, 0 ≤ j <

∞ be a stationary zero-mean sequence of Gaussian random
vectors in R

d with covariance function

r(i,l)(k) = E
[
X(i)

m X
(l)
m+k

]
(29)

for k ∈ Z, 0 ≤ m < ∞ and m + k ≥ 0. Let f : R
d → R

be a real-valued function with Hermite rank ν(f) such that
1 ≤ ν(f) < ∞. Suppose that

∞∑
k=−∞

∣∣∣r(i,l)(k)
∣∣∣ν(f)

< ∞ (30)

for 1 ≤ i, l ≤ d. Then, as Q tends to infinite

1√
Q

Q−1∑
j=0

(
f(Xj) − E[f(Xj)]

) d→ N
(
0, σ2

{Xj}
)
, (31)

where
d→ denotes convergence in distribution, and

σ2
{Xj} = E

[(
f(X0) − E[f(X0)]

)2]
+ 2

∞∑
j=0

E
[(

f(X0) − E[f(X0)]
)(

f(Xk) − E[f(Xk)]
)]

.

(32)

We apply Theorem 1 to the sequence of Gaussian FD channel
coefficients {Xq}, 0 ≤ q ≤ Q−1 with Xq = [τc,q, τs,q]T , d =
2. In [11], it was shown that for a zero-mean d = 2 stationary
Gaussian sequence with the correlation properties described in
(12), the condition in (30) is satisfied if the Hermite rank of
the function f(.) is at least two. Let f(Xq) = sk(τc,q, τs,q). In
Appendix A, we show that sk(.) has Hermite rank ν(sk) ≥ 2.
Requirement (30) is then satisfied, so that

1√
Q

Q−1∑
q=0

(
sk

(
τc,q, τs,q

)− E
[
sk

(
τc,q, τs,q

)])
d→ N

(
0, σ2

{sk}
)
. (33)

Therefore, for large finite Q, the distribution of Sk in (28)
may be approximated by a Gaussian random variable having
mean μSk

= E
[
ck(κq)

]
and variance

σ2
Sk

= Var
[
Sk

]
=

1
Q

Var
[
ck(κq)

]
+

2
Q2

Q−1∑
j=1

(Q − j)Cov
[
ck(κ0), ck(κj)

]
.

(34)

The quantities E
[
ck(κq)

]
and Var

[
ck(κq)

]
can be calculated

as

E
[
ck(κq)

]
=
∫ ∞

0

1
1 + ρkκq

p(κq)dκq,

Var
[
ck(κq)

]
=
∫ ∞

0

(
1

1 + ρkκq
− E

[
ck(κq)

])2

p(κq)dκq,

where p(κq) is the PDF of κq. Since κq is exponential
distributed, p(κq) = 1/η exp(−κq/η). Therefore, E

[
ck(κq)

]
and Var

[
ck(κq)

]
may be written as

E
[
ck(κq)

]
=

η

ρk
e

η
ρk E1

( η

ρk

)
, (35)

Var
[
ck(κq)

]
=

η

ρk

[
1 − η

ρk
e

η
ρk E1

(
η
ρk

)(
1 + e

η
ρk E1( η

ρk
)
)]

,

(36)

where E1(x) =
∫∞

x
e−t/tdt denotes the exponential integral

function. A derivation of Cov
[
ck(κ0), ck(κj)

]
in (34) is given

in Appendix B. Using (34) and (35), we may express (24) as

Prob(O) ≤
D∑

k=1

1√
2πσSk

∫ ∞

Ak

exp
[−(x − μSk

)2
2σ2

Sk

]
dx

=
1
2

D∑
k=1

erfc
(Ak − μSk√

2σSk

)
, (37)

where erfc(x) = 2√
π

∫∞
x

e−t2dt is the complementary Gaus-
sian error function.

V. NUMERICAL RESULTS

In this section, we provide results of simulations for the
outage performance of the SC FD-MMSE turbo equalizer and
the union bounding technique from Section IV. We consider
a single carrier CP-assisted block-transmission system with
each block having Q = 128 BPSK symbols. The binary
encoder at the transmitter is a serially concatenated con-
volutional code (SCCC), consisting either of a rate-1/2 or
rate-3/4 outer encoder and a recursive rate-1 inner encoder.
The systematic rate-1/2, memory-4 code is defined by the
generator (gr, g0) = (23, 35), where gr denotes the feedback
polynomial. The higher rate-3/4 code is obtained by punctur-
ing, as specified in [14]. The recursive rate-1 inner encoder
has generator polynomials (gr, g0) = (3, 2). We evaluate the
outage performance for Rayleigh block-fading channels with
L = 32 path components and exponential delay power profiles
with τd = 5 and τd = 8. The length of a frame is fixed to
NQ = 8192 BPSK symbols, and thus the channel is assumed
to be constant over N = 64 transmitted blocks. The CP
length is set to P = 31. The turbo equalizer performs 10
iterations between the equalizer and the SCCC decoder, and 20
iterations between the inner and outer channel decoder. For the
calculation of the union bound in (37), the constraint in (24)
is computed on a grid of D = 5 points, such that ϕd,1 = 0.01,
ϕd,2 = 0.3, ϕd,3 = 0.6, ϕd,4 = 0.9, and ϕd,5 = 0.99.

The outage performances of the SC FD-MMSE turbo
equalizer and the union bound in (37) for transmissions over
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Fig. 2. Outage probability and union bound of the SC FD-MMSE turbo
equalizer utilizing SCCCs with rates r = 1/2 and 3/4 for L = 32-tap
Rayleigh fading channel having an exponential delay power profile with
normalized rms delay (a) τd = 5 and (b) τd = 8.

τd = 5 and τd = 8 channels are shown in Fig. 2 (a)
and 2 (b), respectively. The outage probabilities (Pout) have
been computed by averaging over 50000 random channel
realizations. We observe that the performance improves with
increasing values of rms delay τd due to increasing channel
diversity. Also, observe that we obtain a reasonable analytical
approximation of the outage probability using the proposed
union bounding technique for all configurations, where the
performance gap between simulation and bound is smaller than
Eb/N0 = 0.8 dB for Pout = 10−2.

VI. CONCLUSION

We have considered the performance of FD SC-MMSE
turbo equalization over frequency-selective Rayleigh fading
channels with exponential delay power profile. A correlation
analysis has been provided to evaluate the convergence prop-
erty of the turbo equalization system. Using the correlation
functions of the equalizer and decoder, we have derived

a closed form expression to the outage probability of the
turbo equalizer. Numerical results show that the technique
presented in this paper yields a reasonable approximation of
the outage performance of the FD SC-MMSE turbo equalizer
in frequency-selective Rayleigh fading channels.
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APPENDIX A

Let X be a Gaussian vector with zero-mean and unit-
variance. Further, let f : R

d → R be a measurable function
with E[f(X)2] < ∞. The Hermite rank ν(f) of f with respect
to X is defined as [10]

ν(f) ≡ inf
{

τ : ∃ polynomial P of degree τ with

E
[(

f(X) − E[f(X)]
)
P (X)

] �= 0
}

. (38)

In the following, we show that the Hermite rank of
sk

(
τc,q, τs,q

)
is at least 2. We basically follow the same

derivation as in [11], where the Hermite rank of the sub-
channel capacity as a function of the channel gains for an
OFDM system has been calculated.

First, we show that ν(sk) �= 0. Consider a zero-order
polynomial P (X) = A0 with X = (X1,X2). Then, the
condition in (38) becomes

E
[(

sk(X) − E[sk(X)]
)
P (X)

]
= A0E

[
sk(X)

]− A0E
[
sk(X)

]
= 0, (39)
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for all A0 ∈ R, and thus ν(sk) �= 0. Next, consider a first-
order polynomial P (X) = A0X1 + A1X2 + A3. Then, we
have

E
[(

sk(X) − E[sk(X)]
)
P (X)

]
= A0E

[
X1sk(X)

]
+ A1E

[
X2sk(X)

]
, (40)

where we have used the property E[X1] = E[X2] = 0.
The random variables X1 and X2 are identically Gaussian
distributed. Thus, we get

E
[
X1sk(X)

]
= E

[
X2sk(X)

]
=
∫ ∞

−∞

∫ ∞

−∞
x1sk(x1, x2)p(x1, x2)dx1dx2,

(41)

where p(x1, x2) is the joint probability function of the two
correlated Gaussian random variables X1 and X2. Observe
that p(x1, x2) and sk(x1, x2) are even in (X1,X2). Thus, the
integral in (41) is zero and it follows that E

[
X1sk(X)

]
=

E
[
X2sk(X)

]
= 0, and therefore, ν(sk) �= 1. We conclude

that ν(sk) is at least 2.

APPENDIX B

The covariance Cov
[
ck(κ0), ck(κj)

]
between ck(κ0) and

ck(κj) for 1 ≤ j ≤ Q − 1 is given by

Cov
[
ck(κ0), ck(κj)

]
= E[ck(κ0), ck(κj)

]− μ2
Sk

, (42)

where

E[ck(κ0), ck(κj)
]

=
∫ ∞

0

∫ ∞

0

1
1 + ρkx

× 1
1 + ρky

fκ0,κj
(x, y)dxdy. (43)

In (43), fκ0,κj
(x, y) is the joint PDF of κ0 and κj , which

follows a bivariate exponential distribution [9] with the form:

fκ0,κj
(x, y) = α exp

[− β(x + y)
]
I0
(
θ
√

xy
)
, (44)

where

α =
1

η2(1 − δj)
, β = αη, θ = 2αη

√
δj

and I0(.) denotes the modified zero-order Bessel function of
the first kind. We may substitute (44) into (43) to obtain

E[ck(κ0), ck(κj)
]

= α

∫ ∞

0

∫ ∞

0

1
1 + ρkx

1
1 + ρky

exp
[− β(x + y)

]
× I0(θ

√
xy)dxdy (45)

= α

∞∑
n=0

(
θ2n

4n(n!)2
[ ∫ ∞

0

xn

1 + ρkx
exp(−βx)dx

]2)
. (46)

Note that (46) is obtained by using the series expansion of
I0(.) [12]. Using a substitution from [12], we may express the

integral expression in (46) as∫ ∞

0

xn

1 + ρkx
exp(−βx)dx

=
(−1)n

ρn+1
k

[
exp

(
β

ρk

)
E1

(
β

ρk

)
+

n∑
s=1

(s − 1)!
(
− ρk

β

)s
]
.

(47)

Substituting (47) into (46), we get

E[ck(κ0), ck(κj)
]

=
α

ρ2
k

∞∑
n=0

((
θ

2ρk

)2n

(n!)2

[
exp

(
β

ρk

)
E1

(
β

ρk

)

+
n∑

s=1

(s − 1)!
(
− ρk

β

)s
]2)

. (48)

Numerical calculations show that the series in (48) is rapidly
convergent. The series representation (48) may therefore be
used to efficiently calculate (42).
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