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Abstract

Fingerprint recognition is a complex pattern recognition problem; designing algorithms
capable of extracting salient features and matching in a robust way is quite hard, especially
for poor quality fingerprint images. There is a popular misconception that automatic fin-
gerprint recognition is a fully solved problem since it was one of the first applications of
machine pattern recognition almost fifty years ago. On the contrary, fingerprint recogni-
tion is still a challenging and important pattern recognition problem.

Automatic Fingerprint Identification Systems (AFIS) provide widely used biometric
techniques for personal identification (e.g. authentication, forensic decision, etc.). Fin-
gerprints are useful for biometric purposes because of their well known properties of
distinctiveness and persistence over time. Existing AFIS face two critical problems. First
is the preprocessing phase is known to consume almost 90 ∼ 95% of the total time of
fingerprint identification. That is the reason why a considerable amount of research has
been focused on this area. Second is the fingerprint distortion which changes geomet-
ric relationship among minutiae. This change makes minutiae matching quite difficult,
meanwhile, decreases accurate of AFIS so as not to satisfy some strict applications (e.g.
Bank Security System, etc.).

In this thesis, we have addressed the above two issues, and developed several novel
algorithms for them using computational geometric techniques.

A crucial idea of the research behind reducing preprocessing time is a linear time
Euclidean distance transform (EDT). The same feature of Euclidean distance transform
can be used for binarization, denoising, minutiae extraction and matching, almost through
whole AFIS.

A matrix of Euclidean distance transform values is generated in binarization step.
Through inheriting and using this same EDT matrix, denoising and minutiae extraction
steps can efficiently obtain our expected results by several novel approaches. And this
strategy in real application can save a lot of time. Experiments show our method decreases
20 ∼ 30% of computing time than other fast methods in the preprocessing stage.

To cope with fingerprint distortion, we in-depth investigated property of finger tips,
and then propose an combined RBF distortion model to correct a non-rigid transformation
of distortion according to several control points. Our method is dependent only on a
few parameters determined by experiences and avoids definition of the size and shape
of conventional tolerance box. These benefits guarantee our method more automatic
and robust. Matching results prove combined RBF model has a high capability, which
improves the accuracy about 70% than a rigid transformation, to cope with fingerprint
distortion, even can catch up with some manual distortion model.
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Chapter 1

Introduction

Biometric recognition refers to the use of distinctive physiological and behavioral charac-
teristics of human being (e.g. fingerprint, face, palm, iris, gait, signature) for automati-
cally recognizing a people. Fingerprints have the properties of distinctiveness or individu-
ality, and the fingerprints of a particular person remain almost the same (persistence) over
time. These properties make fingerprints suitable for biometric uses. Automatic finger-
print identification systems (AFIS) provide widely used biometric techniques for personal
identification. AFIS are usually based on minutiae matching. Minutiae, or Galton’s char-
acteristics [34] are local discontinuities in terms of terminations and bifurcations of the
ridge flow patterns that constitute a fingerprint. These two types of minutiae have been
considered by Federal Bureau of Investigation for identification purposes. AFIS based on
minutiae matching involves different stages (see Figure 1.1 for an illustration):

1. Fingerprint image acquisition [18, 81, 50];

2. Preprocessing of the fingerprint image (binarization, denoising and ridge
extraction);

3. Feature extraction (e.g. minutiae) from the image;

4. Matching of fingerprint images for identification.

More than a century ago, the Home Ministry Office, UK, already used the fingerprints
to determine the identity of criminals. From then on, hundreds of scientific methods were
developed for visual matching of fingerprint and applied the art of fingerprint recognition
for nailing down the perpetrators [76, 56]. Therefore, there is a popular misconception
that automatic fingerprint recognition is a fully solved problem since it was one of the
first applications of machine pattern recognition almost fifty years ago. On the contrary,
fingerprint recognition is still a challenging and important pattern recognition problem.
There are several intractable problems besetting fingerprint recognition. For instances,
fingerprint recognition is a kind of online application, hence AFIS are demanded to give
out a correct answer as fast as possible. Whereas most proposed methods only concentrate
on a certain step of AFIS, therefore, a whole AFIS have to apply various techniques in
each step. No more helpful information, which can accelerate system, is inherited from
previous step except the step results. It causes identification procedure, especially the
preprocessing, takes a long time. The preprocessing phase is known to consume almost
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Figure 1.1: A flowchart showing different phases of fingerprint analysis.

90 ∼ 95% of the total time of fingerprint identification [9]. That is the reason why a
considerable amount of research has been focused on this area. Furthermore, fingerprints
may be physiological in nature but the usage of the input device (e.g., how a user presents
a finger to the fingerprint scanner) depends on human behavior. Thus, the scanned
prints are a combination of physiological and behavioral characteristics. This causes the
phenomena that in most cases the location of the same feature points (minutiae) will
not be exact in the same in different versions of the same fingerprint, namely distortion.
Distortion leads to a great difficulties in establishing a match among multiple fingerprints
acquired from a single finger.

Other than a theoretical problem, fingerprint identification is an application research.
With increasing demand of higher accuracy of AFIS, more automatic and robust systems
are required. Most conventional techniques, however, were developed are heuristic with a
lot of parameters for particular situations. These make systems complicated and time con-
suming. Digital fingerprint image analysis is basically a geometric problem. Techniques
borrowed from computational geometry can provide good solutions to these problems.
This thesis reviews the major scientific techniques made over the past two decades for
above two intractable problems in previous paragraph, and proposes our novel algorithms
with a few parameters to cope with them using computational geometric techniques.

After an introductory chapter, the thesis chapters are organized logically into nine
chapters: Preliminaries of fingerprint recognition (Chapter 2). A linear time Euclidean
distance transform algorithm (Chapter 3). Chapter 4, 5 and 6 describe three major
steps of preprocessing. All of them use Euclidean distance transform as common basic
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technique to reduce preprocessing time. In detail, a novel binarization algorithm (Chapter
4); eliminating impulsive noise and useless components (Chapter 5); minutiae extraction
(Chapter 6). Distortion correction (Chapter 7) and fingerprint matching (Chapter 8).
Conclusions and future works (Chapter 9).

Chapter 2 roughly reviewed constituents of fingerprint recognition system, elementary
conceptions and definitions of fingerprint representation and fingerprint matching. This
will provide the reviewers some basic and primary understanding of our work in this
thesis.

Within image analysis the distance transform has many applications. The distance
transform measures the distance of each object point from the nearest boundary. Chapter
3 introduces a linear time Euclidean distance transform algorithm used in our AFIS to
reduce preprocessing time. This efficient algorithm works by performing a 1D distance
transform on each row of the image, and then combines the results in each column. The
resulting values are used to draw an envelope of parabolas, which can occur in the lower
envelope at most once, to compute the Euclidean distance transform in linear time.

Chapter 4 introduces our novel fingerprint binarization algorithm. Fingerprint images
are characterized by alternating spatial distribution of gray-level intensity values of ridges
and ravines/valleys of almost equal width. Most of fingerprint matching techniques require
extraction of minutiae that are the terminations and bifurcations of the ridge lines in a
fingerprint image. Crucial to this step is either detecting ridges from the gray-level image
or binarizing the image and then extracting the minutiae. In this work, we exploit the
property of almost equal widths of ridges and valleys for binarization. Computing the
width of arbitrary shapes is a non-trivial task. So, we estimate width using Euclidean
distance transform and provide a near-linear time algorithm for binarization. Unlike
many other previous methods, our work depends minimally on any arbitrary selection
of parameters. Another significant advantage of our algorithm is that binarization and
fingerprint area segmentation can be done simultaneously.

Chapter 5 discusses two kinds of noise of fingerprint images and introduce how we solve
this problems. Owing to skin conditions or incorrect finger pressure, original fingerprint
images always contain noise. Especially, some of them contain useless components, which
are often mistaken for the terminations that are an essential minutia of a fingerprint.
Mathematical Morphology (MM) is a powerful tool in image processing. In this chapter,
we propose a linear time algorithm to eliminate impulsive noise and useless components,
which employs generalized and ordinary morphological operators based on Euclidean dis-
tance transform. There are two contributions. The first is the simple and efficient MM
method to eliminate impulsive noise, which can be restricted to a minimum number of
pixels. We know the performance of MM is heavily dependent on structuring elements
(SEs), but finding an optimal SE is a difficult and nontrivial task. So the second contribu-
tion is providing an automatic approach without any experiential parameter for choosing
appropriate SEs to eliminate useless components. The information of distance transform
values can be obtained directly from the binarization phase. The results show that using
this method on fingerprint images with impulsive noise and useless components is faster
than existing denoising methods and achieves better quality than earlier methods.

Chapter 6 describes a new way of minutiae detection using Euclidean distance trans-
form values. Most of the minutiae detection algorithms find out the minutiae from the
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one-pixel thick ridge image obtained from thinning after binarization. Once our bina-
rization and denoising processes finish, we have a matrix with each ridge pixel having a
corresponding EDT value. Our goal is now to exploit this information to detect minutiae
straightaway from the thick ridges of the binary image without thinning. This will be
useful in saving time in real life application. The location of the same minutiae in most of
the cases will not be exact in different versions of the same fingerprint owing to distortion
and as such it makes sense to find out a small region in which the minutiae lies; in other
words, this region is a set of connected pixels. So, our purpose is to find these minutiae
regions for further matching. The minutiae treated will be bifurcation and termination.

Chapter 7 explains a distortion model for correcting deformation of fingerprint images.
The techniques of matching based on minutiae still suffers from problems associated with
the handling of poor quality prints. One problem besetting fingerprint matching is distor-
tion. Distortion changes both geometric position and orientation, and leads to difficulties
in establishing a match among multiple impressions acquired from the same finger tip.
In this paper, we first determine an appropriate basis function and locality parameters
for a normal RBF model through theoretical analysis of RBF and mass experiments.
This normal RBF model is designed to deal with distortion for each possible matched-
pair of fingerprints. According to the particularity of fingerprint distortion, we further
propose an improved combined RBF model, which separately builds rigid and nonrigid
transformations, for attacking the distortion problem. Combined RBF model provides
more accurate mapping function between a possible matched-pair. Experiments on real
data demonstrate the efficacy of our method in improving the correction of fingerprint
distortion.

Chapter 8 finishes our AFIS with a deterministic fingerprint matching algorithm based
on a novel minutia polygon. Conventional fingerprint minutiae matching algorithms use
tolerance box (e.g. circle, square or rectangle). Although, these methods employ some
geometry information of minutiae (e.g. type, coordinate and orientation). However, other
particular information of minutiae (especially for bifurcation) were lost, such as the shape
of bifurcation. Moreover, these tolerance boxes usually are determined experientially,
hence matching result heavily depends on the pre-defined size and shape of tolerance box.
Aim at this issue, we design a simple polygon that include all previous information for
bifurcation (and termination) minutia, and a corresponding efficient matching algorithm.
One significant advantage of minutia polygon is that it is adaptive and does not depend
on the size in an appropriate range. In other words, minutia polygon can be enlarged or
shrunk by a reasonable scale for matching without losing accuracy.

Finally, in Chapter 9, we summarize the work reported in this thesis, and point out a
few research problems would be solved in the future.
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Chapter 2

Preliminaries

More than a century has passed since Alphonse Bertillon first conceived and then indus-
triously practiced the idea of using body measurements for solving crimes [70]. Just as his
idea was gaining popularity, it faded into relative obscurity by a far more significant and
practical discovery of the distinctiveness of the human fingerprints. In 1893, the Home
Ministry Office, UK, accepted that no two individuals have the same fingerprints. Soon
after this discovery, many major law enforcement departments embraced the idea of first
“booking” the fingerprints for determining the identity of criminals, so that their records
are readily available and later using leftover fingerprints smudges, they could determine
the identity of criminals. These agencies sponsored a rigorous study of fingerprint, devel-
oped scientific methods and training experts for visual matching of fingerprints.

Despite the ingenious methods improvised to increase the efficiency of the manual
approach to fingerprint indexing and search, the ever growing demands on manual fin-
gerprint recognition quickly became overwhelming. The manual method of fingerprint
indexing resulted in a highly skewed distribution of fingerprints into bins (types): most
fingerprints fell into a few bins and this did not improve search efficiency. Manual visual
matchings were time-consuming and increasing workload due to a higher demand on fin-
gerprint recognition service, all prompted the law enforcement agencies to initiate research
into acquiring fingerprints through electronic media and automate fingerprint recognition
based on the digital representation of fingerprint. These efforts led to development of
Automatic Fingerprint Identification Systems (AFIS) [91, 49] over the past few decades.

Henry Fauld first scientifically suggested the individuality of fingerprints based on an
empirical observation. At the same time, Herschel asserted that he had practiced finger-
print recognition for about 20 years [65]. These findings established the foundation of
modern fingerprint recognition. In the late nineteenth century, Francis Galton conducted
an extensive study on fingerprints [34]. Till now, hundreds of scientific methods were
developed for visual matching of fingerprint and applied the art of fingerprint recognition
for nailing down the perpetrators [76, 56]. Their efforts were so successful that today al-
most every law enforcement agency worldwide uses an AFIS. These systems have greatly
improved the operational productivity of law enforcement agencies. However, this makes
a popular misconception in the pattern recognition and image processing academic com-
munity that automatic fingerprint recognition is a fully solved problem since it was one
of the first applications of machine pattern recognition almost fifty years ago. On the
contrary, fingerprint recognition is still a challenging and important pattern recognition
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problem.

2.1 Fingerprint Recognition System

A fingerprint recognition system is essentially a pattern recognition system that recognizes
a person by determining the authenticity of a fingerprint characteristic possessed by that
person (see Figure 2.1). An important issue in designing a practical fingerprint recognition
system is to determine how an individual is recognized. Depending on the application
context, a fingerprint recognition system may be called either a verification system or an
identification system (see Figure 2.2 and 2.3):

Figure 2.1: A fingerprint recognition system.

• A verification system authenticates a person’s identity by comparing the captured
fingerprint characteristic with his/her own fingerprint template pre-stored in the
system [47]. It conducts one-to-one comparison to determine whether the identity
claimed by the individual is true. A verification system either rejects or accepts the
submitted claim of identity, in other words, it answers the question: Am I whom I
claim I am ?

• An identification system recognizes an individual by searching the entire template
database for a match. It conducts one-to-many comparison to establish the identity
of the the individual [48]. In an identification system, the system establishes a
subject’s identity (or fails if the subject is not enrolled in the system database)
without the subject having to claim an identity. It answers the question: Who am
I ?

Depending on the application domain, a fingerprint recognition system could operate
either as an on-line system or an off-line system. An on-line system requires the recogni-
tion to be performed quickly and immediate response is imposed (e.g., an ATM of bank
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Figure 2.2: A fingerprint verification system.
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Figure 2.3: A fingerprint identification system.

login application). On the other hand, an off-line system usually delay is allowed (e.g.,
an person background check application). Typically, on-line systems are fully automatic
and require that the fingerprint characteristic be captured using a live-scan sensor, the
enrollment process be unattended, there be no (manual) quality control, and the matching
and decision be fully automatic. Off-line systems, however, are typically semi-automatic,
where the fingerprint acquisition could be through an off-line scanner (e.g., scanning a
fingerprint image from a latent or inked fingerprint card), the enrollment may be su-
pervised, a manual quality check may be performed to ensure good quality acquisition,
and the matcher may return a list of candidates which are then manually examined by a
forensic expert to arrive at a final (human) decision.

An application could operate either in a positive or negative recognition mode:

• In a positive recognition application, the system establishes whether the person is
who he (implicitly or explicitly) claims to be. The purpose of a positive recognition
is to prevent multiple people from using the same identity. For example, if only
Liang is authorized to enter a certain secure area, then the system will grant access
only to Liang. If the system fails to match the enrolled template of Liang with the
input, a rejection results; otherwise, an acceptance results;

• In a negative recognition application, the system establishes whether the person is
who he (implicitly or explicitly) denies being. The purpose of negative recognition
is to prevent a single person from using multiple identities. For example, if Liang
has already received welfare benefits and now he claims that he is Zhang and would
like to receive the welfare benefits of Zhang (this is called “double dipping”), the
system will establish that Zhang is not who she claims to be. If the system fails
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to match the input biometric of Zhang with a database of people who have already
received benefits, an acceptance results; otherwise, a rejection results.

Note that positive recognition application can operate both in verification or identi-
fication mode, but negative recognition applications cannot work in verification mode:
in fact, the system has to search the entire archive to prove that the given input is not
already present.

In this thesis, all of techniques to be discussed are applied on a on-line fingerprint
identification system.

2.2 Fingerprint Representation

A good fingerprint representation should have the following two properties: saliency and
suitability. Saliency means that a representation should contain distinctive information
about the fingerprint. Suitability means that the representation can be easily extracted,
stored in a compact fashion, and be useful for matching. Saliency and suitability prop-
erties are not generally correlated. A salient representation is not necessarily a suitable
representation.

Image-based representations, constituted by raw pixel intensity information, are preva-
lent among the recognition systems using optical matching and correlation-based match-
ing. However, the utility of the systems using such representation schemes may be limited
due to several factors such as brightness variations, image quality variations, scars, and
large global distortions present in the fingerprint image. Furthermore, an image-based rep-
resentation requires a considerable amount of storage. On the other hand, an image-based
representation preserves the maximum amount of information, makes fewer assumptions
about the application domain, and therefore has the potential to be robust to wider vari-
eties of fingerprint images. For instance, it is extremely difficult to extract robust features
from a (degenerate) finger devoid of any ridge structure.

The fingerprint pattern, when analyzed at different scales, exhibits different types of
features.

• At the global level, the ridge line flow delineates a pattern similar to one of those
shown in Figure 2.4. Singular points, called loop and delta (denoted as squares and
triangles, respectively in Figure 2.4), are a sort of control points around which the
ridge lines are “wrapped”[57]. Singular points and coarse ridge line shape are very
important for fingerprint classification and indexing, but their distinctiveness is not
sufficient for accurate matching. External fingerprint shape, orientation image, and
frequency image also belong to the set of features that can be detected at the global
level.

• At the local level, a total of 150 different local ridge characteristics, called minute
details, have been identified [65]. These local ridge characteristics are not evenly
distributed. Most of them depend heavily on the impression conditions and quality
of fingerprints and are rarely observed in fingerprints. The two most prominent ridge
characteristics, called minutiae (see Figure 2.5), are: ridge ending (termination) and
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Figure 2.4: Fingerprint patterns as they appear at a coarse level: a) left loop; b) right
loop; c) whorl; d) arch; and e) tented arch; squares denote loop-type singular points, and
triangles delta-type singular points.

ridge bifurcation. A ridge ending is defined as the ridge point where a ridge ends
abruptly. A ridge bifurcation is defined as the ridge point where a ridge forks or
diverges into branch ridges. Minutiae in fingerprints are generally stable and robust
to fingerprint impression conditions. Although a minutiae-based representation is
characterized by a high saliency, a reliable automatic minutiae extraction cannot
be problematic in normal-quality fingerprints (hence the suitability of this kind of
representation is adequate).

Figure 2.5: Fingerprint minutiae types.
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2.3 Fingerprint Matching

Reliably matching fingerprint images is an extremely difficult problem, mainly due to
the large variability in different impressions of the same finger (i.e., large intra-class vari-
ations). The main factors responsible for the intra-class variations are: displacement,
rotation, partial overlap, non-linear distortion, variable pressure, changing skin condition,
noise, and feature extraction errors. Therefore, fingerprints from the same finger may
sometimes look quite different whereas fingerprints from different fingers may appear
quite similar (see Figure 2.6).

Figure 2.6: Difficulty in fingerprint matching. Fingerprint images in a) and b) look
different to an untrained eye but they are impressions of the same finger. Fingerprint
images in c) and d) look similar to an untrained eye but they are from different fingers.

Human fingerprint examiners, in order to claim that two fingerprints are from the
same finger, evaluate several factors: i) global pattern configuration agreement, which
means that two fingerprints must be of the same type, ii) qualitative concordance, which
requires that the corresponding minute details must be identical, iii) quantitative factor,
which specifies that at least a certain number (a minimum of 12 according to the forensic
guidelines in the United States) of corresponding minute details must be found, and iv)
corresponding minute details, which must be identically inter-related.

Most approaches of automatic fingerprint matching is minutiae-based matching: minu-
tiae are extracted from the two fingerprints and stored as sets of points in the two-
dimensional plane. Minutiae matching essentially consists of finding the alignment be-
tween the template and the input minutiae sets that results in the maximum number of
minutiae pairings.

The response of a matcher in a fingerprint recognition system is typically a matching
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score s (without loss of generality, ranging in the interval [0,1]) that quantifies the similar-
ity between the input and the database template representations. The closer the score is
to 1, the more certain is the system that the two fingerprints come from the same finger;
the closer the score is to 0, the smaller is the system confidence that the two fingerprints
do not come from the same finger. The system decision is regulated by a threshold t: pairs
of fingerprints generating scores higher than or equal to t are inferred as matching pairs
(i.e., belonging to the same finger); pairs of fingerprints generating scores lower than t are
inferred as non-matching pairs (i.e., belonging to different fingers).

A typical fingerprint verification system commits two types of errors: mistaking mea-
surements from two different fingers to be from the same finger (called false match) and
mistaking two measurements from the same finger to be from two different fingers (called
false non-match). Note that these two types of errors are also often denoted as false
acceptance and false rejection; a distinction has to be made between positive and negative
recognition; in positive recognition systems (e.g., an access control system) a false match
determines the false acceptance of an impostor, whereas a false non-match causes the
false rejection of a genuine user. On the other hand, in a negative recognition application
(e.g., preventing users from obtaining welfare benefits under false identities), a false match
results in rejecting a genuine request, whereas a false non-match results in falsely accept-
ing an impostor attempt. The notation “false match/false non-match” is not application
dependent and therefore, in principle, is preferable to “false acceptance/false rejection”.
However, the use of false acceptance rate (FAR) and false rejection rate (FRR) is more
popular and largely used in the commercial environment.
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Chapter 3

A Linear Time Euclidean Distance
Transform

3.1 Introduction

Many image analysis applications require the measurement of objects, the components of
objects or the relationship between objects. One technique that may be used in a wide
variety of applications is the distance transform or Euclidean distance map [71, 74]. Let
pixels I(x, y) within a two-dimensional digital image be divided into two classes: object
pixels and background pixels.

I(x, y) ∈ {Ob,Bg} (3.1)

The distance transform of this image, Id(x, y) then labels each object pixel of this
binary image with the distance between that pixel and the nearest background pixel.
Mathematically,

Id(x, y) =

{
0 I(x, y) ∈ Bg
min(‖x− x0, y − y0‖,∀I(x0, y0) ∈ Bg) I(x, y) ∈ Ob

(3.2)

where ‖x, y‖ is two dimensional distance metric. Different distance metrics result in differ-
ent distance transformations. From a measurement perspective, the Euclidean distance is
the most useful because it corresponds to the way objects are measured in the real world.
The Euclidean distance metric uses the L2 norm and is defined as:

‖x, y‖L2 =
√

x2 + y2 (3.3)

This metric is isotropic in that distances measured are independent of object orienta-
tion, subject of course to the limitation that the object boundary is digital, and therefore
in discrete locations. The major limitation of the Euclidean metric, however, is that it
is not easy to calculate efficiently for complex shapes. Therefore several approximations
have been developed that are simpler to calculate for two-dimensional digital images using
a rectangular coordinate system. The first of these is the city block, or Manhattan metric,
which uses the L1 norm:
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‖x, y‖L1 = |x|+ |y| (3.4)

where the distance is measured by the number of horizontal and vertical steps required
to traverse (x, y). If each pixel is considered a node on a graph with each node connected
to its 4 nearest neighbors, the city block metric therefore measures the distance as the
minimum number of 4-connected nodes that must be passed through. Diagonal distances
are over-estimated by this metric because a diagonal connection counts as 2 steps, rather
than

√
2 .

Another measure commonly used is the chessboard metric, using the L∞ norm:

‖x, y‖L∞ = max(|x|, |y|) (3.5)

which measures the number of steps required by a king on a chess board to traverse (x, y).
The chessboard metric considers each pixel to be connected to its 8 nearest neighbors, and
measures the distance as the minimum number of 8-connected nodes that must be passed
through. Diagonal distances are under-estimated by this metric as a diagonal connection
counts as only 1 step.

A wide range of other metrics have been proposed that aim to approximate the Euclid-
ean distance while retaining the simplicity of calculation of the city block and chessboard
metrics.

‖x, y‖quasi−Euclidean =

{
|x|+ (

√
2− 1)|y| |x| > |y|

(
√

2− 1)|x|+ |y| otherwise
(3.6)

Perhaps the simplest of these is to simply average the city block and chessboard
distance maps:

‖x, y‖Hybrid =
1

2
(|x|+ |y|+ max(|x|, |y|)) (3.7)

Figure 3.1 graphically compares these different metrics in measuring the distance from
a point in the center of an image. The anisotropy of the non-Euclidean distance measures
is clearly visible.

There exists several approaches to calculate the distance transform. the simplest
approach is the so-called grassfire transform using morphology operators [41, 89, 19]. The
two pass chamfer distance algorithm may be adapted to measure the Euclidean distance by
propagating vectors instead of the scalar distance [23, 68, 80]. Another class of techniques
combines the idea of the grassfire transform with the propagation approach described in
the previous section. These methods maintain a list of boundary pixels, and propagate
these in a non-raster fashion [21, 86, 27].

3.2 Linear Time Independent Scanning

From Pythagoras’ theorem, the distance squared to a background pixel can be determined
by considering the x and y components separately. Therefore it is possible to indepen-
dently consider the rows and columns. The first step looks along each row to determine
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(a) (b)

(c) (d)

Figure 3.1: Four commonly used distance metrics C measuring the distance from the
center of the image: (a) Euclidean metric, Equation 3.3; (b) city block metric, Equation
3.4; (c) chessboard metric, Equation 3.5; (d) a quasi-Euclidean metric, Equation 3.6

the distance of each object point from the nearest boundary point on that row. This re-
quires two scans, from left to right and right to left to measure the distances from the left
and right edges of the object respectively. The second step then considers each column,
and for each pixel in that column determines the closest background point by examining
only the row distances in that column:

I2
d(x, y) = min

n
(I(x, yn)2 + (y − yn)2) (3.8)

Thus the search has been reduced from two dimensions in equation 3.2 to one dimen-
sion. The search can be accomplished with a scan down and up the column propagating
the row distances and selecting the global minima at each pixel [75]. Unfortunately, as
applied, this algorithm requires that multiple row points be propagated simultaneously.
The effect is that in the worst case the algorithm as described is not linear in the number
of pixels.

The key to making an independent scanning algorithm operate in linear time is to
determine in advance exactly which pixels in a column that a particular row will influence.
This information may be obtained by constructing a partial Voronoi diagram for each
column.
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3.2.1 Row Scanning

The first step operates on each row independently. It consists of two passes (see Figure 3.2
for illustration): from left to right and then right to left. The left to right pass determines
the distance to the left boundary of an object:

I(x, y) =

{
I(x− 1, y) + 1 I(x, y) ∈ Ob
0 I(x, y) ∈ Bg

(3.9)

If the pixel on the edge of the image is an object pixel, its distance is set to ∞. The
right to left pass replaces this with the distance to the right boundary if it is shorter:

I(x, y) =

{
min(I(x, y), I(x + 1, y) + 1) I(x, y) ∈ Ob
0 I(x, y) ∈ Bg

(3.10)

0 0 0 0 0
1 2 3 4 5
5 4 3 2 1

Row Scanning

Scanning
Direction

1 2 3 2 1
Min

1 2 1

1

1 1

1 1

1 1

1 1

2 2

2

2

2 2

3

1 1

Figure 3.2: Compute horizontal distance by bidirectional scanning and take minimum of
each such distance.

3.2.2 Column Scanning

Consider an image with two background pixels at I(x1, y1) and I(x2, y2), with y1 < y2.
Let I1 and I2 be the corresponding minimum row distances in column x. The distance
squared function in column x is illustrated in Figure 3.3. The column is split into two
with part of the column coming under the influence of (x1, y1) and part coming under the
influence of (x2, y2). The boundary between the two regions is given from the intersection
of the two parabola:

I2
1 + (y′ − y1)

2 = I2
2 + (y′ + y2)

2 (3.11)

Solving this for the position of the intersection gives:

y′ = y2 +
I2
2 − I2

1 − (y2 − y1)
2

2(y2 − y1)
(3.12)

Note that there will always be exactly one intersection point, corresponding to where
the perpendicular bisector between I(x1, y1) and I(x2, y2) intersects column x, although

15



I2

1

I2

2

y1 y′ yy2

Figure 3.3: The distance squared along a column, showing the regions of influence of two
background points.

the bisector may not necessarily be between y1 and y2. As the distance is only evaluated
for integer values of y, it is not necessary to know the precise location of the intersection,
only which two pixels it falls between. This means that integer division may be used,
and the remainder or fractional part discarded. If the numerator is positive, the number
calculated is the last pixel under the influence of y1. If negative, it is the first pixel under
the influence of y2.

Assume that the image is being scanned in the increasing y direction. Now con-
sider adding a third background point I(x3, y3), where y2 < y3 with intersection between
parabolas 2 and 3 at y′′ . If y′ < y′′ then there are three regions of influence, corresponding
to the sets of points nearest to each of the background pixel. However if y′′ < y′ then
background point 2 has no influence in column x because its parabola will be greater than
the minimum of parabolas 1 and 3 at every point. The boundary between parabolas 1
and 3 may then be found from equation 3.12.

Extending this search to N points would require N2 tests in the worst case. However,
by making use of the fact that the points are ordered, and scanning in only one direction
at a time, the number of tests may be reduced to N .

The basic data structure used to maintain the information is a stack. Each stack
item contains a pair of values (y, yI) representing respectively a row number, y, and the
maximum row which y row influences, yI . The stack is initialized as (0, N). This is saying
that in the absence of further information, the first row will influence the whole image.

For each successive row, equation 3.12 is evaluated with y1 as the row number from
the top of stack, and y2 the new row. There are three cases of interest:

1. y′ > N . The boundary of influence between y1 and y2 is past the end of the image,
so the new row will have no influence.

2. y′ > yI
0 , where yI

0 is the influence from the previous stack entry, and corresponds to
the start of the influence of row y1. In this case row y1 has a range of influence, and
yI

1 is set to y′ . The new row, y2 is added to the stack, with yI
2 set to N .

3. y ≤ yI
0 . In this case, row y1 has no influence on the distance transform in this
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column. Row y1 is therefore popped off the top of the stack, and equation 3.12
is reevaluated with the new top of stack. This process is repeated until either the
stack is empty (the new row will influence all previous rows) or case 2 is met (the
start of the influence of the new row has been found).

After processing all of the rows, the boundary points between each of the key influ-
encing rows is known. Since the row that will provide the minimum distance for each row
is known, it is simply a matter of using the stack as a queue for a second pass down the
column to evaluate the distances.

Since equation 3.12 may be evaluated multiple times for each row, it is necessary to
demonstrate that this algorithm actually executes in linear time. Observe that in cases 1
and 2, equation 3.12 is evaluated once as the new row is added (or discarded). If case 3
is selected, one existing row will always be eliminated from the stack for each additional
time, then equation 3.12 is evaluated. These subsequent evaluations may therefore be
associated with the row being eliminated rather than the row being added. As a row may
only be eliminated once at most, the total number of times that equation 3.12 is evaluated
will be between N and 2N . Therefore the total number of operations is proportional to
N and the above algorithm executes with time proportional to the number of pixels in
the image.

3.3 Efficient Implementation

First note that both equations 3.8 and 3.12 involve squaring operations. Rather than
calculate this each time using multiplications, a lookup table can be precalculated and
used. The maximum size of this lookup table is the maximum of the number of rows or
columns in the image. Rather than use multiplications to populate the lookup table, it
may be filled as follows:

x2 =

{
0 x = 0
(x− 1)2 + 2x− 1 x > 0

(3.13)

3.3.1 Row Scan

The minimum operation of equation 3.10 may be eliminated if the width of the object on
row y is known. So as the row is scanned, the distance from the left edge of the object is
determined, as in equation 3.9. However, when the next background pixel is encountered,
the width of the object is known from the distance of the last pixel filled. Therefore as
the line is filled back, it only needs to be filled back half of the width. This right-to-left
fill is performed immediately rather than waiting for a second pass since the position of
the right edge is now known.

Storing the squared distance rather than store just distance is more useful since it
needs to be squared in equation 3.12.

17



3.3.2 Column Scan–Pass 1

The most expensive operation within the column scanning is the division in equation
3.12. Therefore the speed may be increased by reducing the number of times equation
3.12 is evaluated. Since, in general, many of the rows are eliminated, if those rows may
be eliminated beforehand this can save time. Separating the scan into two passes, first
down the column and then up the column, and propagating the distances while scanning
can achieve this.

Referring to equation 3.12, observe that if I2 ≤ I1 then y′ < y2 . This implies that
if the image is being scanned in the positive direction, the intersection point has already
been passed, and as far as the rest of the scan is concerned, y1 may be eliminated. For
a typical image, this implies that approximately half of the initial scans in the first pass
may be eliminated by a simple comparison.

Secondly, in assigning the distances during the first pass, if the distance on any row
is decreased, that row will have no influence in the second pass. This is because any
background pixel that causes such a reduction must be closer to that object pixel (for the
reduction to occur) and also be in a row above it (to have influence in the first pass). In
the second pass, back up the column, if equation 3.12 was applied to those two rows, the
boundary would be below the row that was modified. This implies that it will have no
influence in the upward pass. Therefore all such rows may be ignored in the second pass.
This may be accomplished by setting the minimum row distance of that pixel to ∞.

Taking these into account, the first column pass may be implemented as follows:

1. Skip over background pixels–they will have zero distance. Reset the stack
and push the row number of the last background pixel onto the stack.
To avoid scanning through these pixels in the second pass, the location
of the first background pixel may be recorded in a list.

2. If I2(x, y) is infinite (there are no background pixels in this row), skip to
step 10 to update the distance map.

3. If the stack is empty, skip to step 5. Otherwise calculate the new distance
that would be propagated to the current row from the bottom of the
stack, yc:

I2
new = I(x, yc)

2 + (y − yc)
2 (3.14)

4. If I2
new(x, y) < I2(x, y) then the previous rows have no influence over the

current row. Therefore the complete stack is reset, and the current row
number is pushed onto the stack. Proceed with processing the next pixel
(step 11).

Steps 5 to 9 consist of a loop that updates the stack.

5. If the stack is empty, push the current row onto the stack, and go to step
10.
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6. If the current distance is less than that on the row pointed to by the top
of stack, (I2(x, y) < I2

tos(x, y)) then the current top of stack will no longer
have any influence. Pop the entry from the top of the stack, and loop
back to step 5.

7. Calculate the influence boundary between the top of stack and the cur-
rent row using equation 3.12. If this boundary is past the end of the
image, the current row will have no influence. Set I2(x, y) to ∞ and skip
to step 10.

8. If the boundary is greater than that of the previous stack entry (top-of-
stack–1, if it exists) then adjust the boundary on the top of stack to the
value just calculated. Push the current row onto the stack and skip to
step 10.

9. Otherwise the current top of stack has no influence, so pop the top entry
from the stack and loop back to step 5.

10. If the new value was not calculated in step 3, then calculate it now (if
the stack is empty, skip to step 11). This value is written to the output
image, I2

d(x, y). If I2
new(x, y) < I2(x, y) then set I2(x, y) to ∞ because this

row will not have any influence on the second pass. If the boundary of
influence of the entry on the bottom of the stack ends at the current row,
then the entry may be pulled from the bottom of the stack (that entry
will have no further influence on the rest of the column).

11. Move to the next pixel in the current row, and repeat.

At this stage, all of the distances that need to be propagated down the image will have
been propagated. Most of the rows that are unlikely to influence the propagation back
up the image have also been eliminated.

3.3.3 Column Scan–Pass 2

The second column scan, from the bottom of the image to the top, proceeds in the same
manner as the first scan. The exceptions are:

Step 1: Rather than scanning through the background pixels a second time,
use the previously recorded top of the run.

Step 4: Also check if I2
new(x, y) > I2

d(x, y). In this case, the distance being
propagated up will no longer have any influence (the pixels have already
been set with a lower distance). Therefore clear the stack, and continue
scanning with the next pixel (step 11).

Steps 7 and 10: I2(x, y) does not need to updated, as this is not used any more.
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3.3.4 Analysis of Complexity

Scanning through the image requires 1 increment and 1 comparison for every pixel visited.
During the row pass, the whole image is scanned once in the left to right direction. Half of
the object pixels are scanned a second time from right to left to update the distance from
the right edge. Testing to see if a pixel is object or background requires 1 comparison.
While the object pixels are being updated, a separate counter is maintained to keep track
of the distance, requiring 1 addition, and 1 squaring operation (via table lookup).

For the column scanning, the exact complexity of the algorithm is made more difficult
to calculate by the loop in steps 5 to 9 of the column pass. However, it was argued that
equation 3.12 would be evaluated somewhere between 1 and 2 times per object pixel on
average. The worst case is actually less than 2 because that would imply that no row had
any influence! The average gains made by splitting the column analysis into two passes
will not necessarily result in gains in the worst case.

The whole image is scanned during the first pass of column scanning. This results in
1 increment and 1 comparison per pixel, plus a test for a background pixel at each pixel.
In the second pass, only the object pixels are processed.

The tests in steps 2-4 require 1 comparison each, and are executed during both passes
through the object rows. equation 3.14 is evaluated either on step 3 or 10, and requires
2 additions, 1 squaring operation and 1 stack access to obtain the row to be propagated.
It will be evaluated at most twice per object pixel (once in each pass). The test of step 4
ensures that the loop (steps 5-9) will only be entered in only one of the passes. Therefore
the operations in the loop may be executed up to 2 times per object pixel. Accessing the
top of stack (an array lookup) is performed in steps 6 and 8 (with a subtraction in step 8
to access the previous entry). Evaluation of equation 3.12 requires 3 additions, 1 squaring
operation, 1 division, and 1 stack access. The tests in steps 5-8 require 1 comparison each.
As a result of the tests, a value is either pushed into the stack (an addition to adjust the
stack pointer, and a stack access) or popped off the stack (adjusting the stack pointer
only). As these are also associated with the looping, they will be executed once each per
object pixel in the worst case. Finally, in step 10, there are 2 comparisons, a stack access,
and an addition to adjust the stack if the bottom entry has no further influence.

It demonstrates that this linear-time Euclidean squared distance transform may be
implemented efficiently in terms of computation using only integer arithmetic.
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Chapter 4

Binarization of Fingerprint Images

4.1 Introduction

AFIS are usually based on minutiae matching [28, 40, 48, 53]. Minutiae, or Galton’s
characteristics [34] are local discontinuities in terms of terminations and bifurcations of the
ridge flow patterns that constitute a fingerprint. These two types of minutiae have been
considered by Federal Bureau of Investigation for identification purposes [91]. Most of the
fingerprint matching techniques require extraction of minutiae that are the terminations
and bifurcations of the ridge lines in a fingerprint image. Crucial to this step, is either
detecting ridges from the gray-level image or binarizing the image and then extracting
the minutiae. Our work adopts the binarization of fingerprint images (see Figure 4.1 for
an illustration).

Most of the previous algorithms designed for fingerprint binarization [17, 64, 69] are
heuristics, in that they do not start with a definition of an optimal threshold. In contrast,
we define a condition for an optimal threshold based on equal widths of ridges and valleys
and then design a combinatorial algorithm for finding such an optimal threshold. Width is
estimated using EDT. Most of the methods developed in fingerprint analysis use arbitrarily
selected parameters and in many cases they are not justified; it is just experimentally
selected. Our work depends minimally on an arbitrary choice of parameters because EDT
value adapt itself to the data.

Our work proposed in this chapter involves binarization of fingerprint images that is to
be preceded by an enhancement step. So, below we discuss briefly enhancement. Also, we
briefly discuss and review segmentation and binarization methods applied to fingerprint
images.

4.1.1 Enhancement of Fingerprint Images

Fingerprint images require specialized enhancement techniques owing to their inherent
characteristics like high noise content, particular structural content of alternating ridges
and valleys. Conventional image processing enhancement techniques are not very suitable
for a fingerprint image [26]. Fingerprint image enhancement algorithms are available both
for binary and gray level images. A binary fingerprint image consists of ridges marked as
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Figure 4.1: A flowchart showing different phases of fingerprint analysis. The highlighted
block shows our work in this chapter.

object (1) pixels and the rest as background pixels (0). Hung [26] designed an algorithm
for enhancing a binary fingerprint image based on the structural information of its ridges.
Ridge widths are normalized based on some region index. Ridge breaks are corrected
using the dual relationship between ridge breaks and valley bridges. However, obtaining
a binary fingerprint image from a gray-tone image involves inherent problems of binariza-
tion and thinning or ridge extraction procedures [15]. Thus, most of the enhancement
algorithms are designed for gray-level fingerprint images. The much widely used PCASYS
package [13] uses an enhancement algorithm described earlier [24]. It involves cutting out
subregions of the images (a 32×32 block to be specific), taking their FFT and suppression
of a band of low and high frequency components followed by some non-linear operations
in the frequency domain and transforming it back to the spatial domain. This algorithm
was also used by Kovács-Vajna [53]. We have also used this enhancement algorithm in
our work owing to its simplicity and elegance.

4.1.2 Segmentation of Fingerprint Images

In literature concerning fingerprints, some authors have used the term segmentation to
mean the process of generating a binary image from a gray-level fingerprint image. But,
as suggested in [62], the most widely held view about segmentation of a fingerprint image
is the process of separation of fingerprint area (ridge, valley and slope areas in between
ridge and valley areas) from the image background. The process of segmentation is
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useful to extract meaningful areas from the fingerprint, so that features of the fingerprint
are extracted from these areas only. Fingerprint images are characterized by alternating
spatial distribution of varying gray-level intensity values of ridges and ravines/valley. This
pattern is unique to a fingerprint area compared to the background which does not have
this spatial distribution of gray-level values. Also, global thresholding for segmentation
does not work as the spatial distribution of gray-level values keeping their alternating
structure intact, can vary in the absolute magnitude of their gray-level values. Thus,
local thresholding is needed. Exploitation of these property have been the key of most of
the segmentation algorithms. O’Gorman and Nickerson [37] used a k×k spatial filter mask
with an appropriate orientation based on user inputs for labeling the pixels as foreground
(crest) or background. Mehtre and Chatterjee [63] described a method of segmenting
a fingerprint image into ridge zones and background based on some statistics of local
orientations of ridges of the original image. A gray-scale variance method is used in the
image blocks having uniform gray-level, where the directional method of segmentation
fails. Ratha et al. [69] used the fact that noisy regions show no directional dependence,
whereas, fingerprint regions exhibit a high variance of their orientation values across the
ridge and a low variance along the ridge to design a segmentation algorithm that works
on 16×16 block. Maio and Maltoni [61] used the average magnitude of gradient values to
discriminate foreground and background regions. The idea behind this is that fingerprint
regions are supposed to have more edges than background region and as such would have
higher gradient values.

4.1.3 Binarization of Fingerprint Images

A general problem of image binarization is to obtain a threshold value so that all pixels
above or equal to the threshold value are set to object pixel (1) and below the threshold
value are set to background (0) [84]. Thresholding can be done globally where a single
threshold is applied globally or locally where different thresholds are applied to different
image regions. Images, in general, have different contrast and intensity, and as such local
thresholds work better. The thresholding problem can be viewed as follows. Given an
image I with N ×N pixel entries, and gray-level intensity value g ranging from 0, 1, . . .
to M − 1, select a value t ∈ [0,M − 1] based on some condition so that a pixel (i, j) is
assigned a value of 1 if the gray-level intensity value is greater or equal to t, else assign
0 to the pixel (i, j). The condition mentioned above is decided based on the application
at hand. The binarization methods applicable to fingerprint images draw heavily on the
special characteristics of a fingerprint image. Moayer and Fu [64] proposed an iterative
algorithm using repeated convolution by a Laplacian operator and a pair of dynamic
thresholds that are progressively moved towards an unique value. The pair of dynamic
thresholds change with each iteration and control the convergence rate to the binary
pattern. Xiao and Raafat [92] improved the above method by using a local threshold, to
take care of regions with different contrast, and applied after the convolution step. Both
of these methods requiring repeated convolution operations are time consuming and the
final result depends on the choice of the pair of dynamic thresholds and some other design
parameters. Coetzee and Botha [17] proposed an algorithm based on the use of edges in
conjunction with the gray-scale image. The resultant binary image is a logical OR of two
binary images. One binary image is obtained by a local threshold on the gray scale image
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and the other binary image is obtained by filling in the area delimited by the edges. The
efficiency of this algorithm depends heavily on the efficiency of the edge finding algorithm
to find delimiting edges. Ratha et al. [69] proposed a binarization approach based on the
peak detection in the gray-level profiles along sections orthogonal to the ridge orientation.
The gray-level profiles are obtained by projection of the pixel intensities onto the central
section. This heuristic algorithm though working well in practice has a deficiency that it
does not retain the full width of the ridges, and as such is not a true binary reflection of
the original fingerprint image.

Fingerprint images are characterized by alternating spatial distribution of gray-level
intensity values of ridges and ravines/valleys of almost equal width. In this work, we
propose a combinatorial algorithm for binarization of fingerprint images using linear time
Euclidean distance transform algorithms. Most of the previous algorithms discussed here
are heuristics in that they do not start with a definition of an optimal threshold. In
contrast, we define a condition for an optimal threshold based on equal widths of ridges
and valleys. Computing the width of arbitrary shapes is a non-trivial task. So, we
estimate width using distance transform and provide an O(N2 log M) time algorithm for
binarization where M is the number of gray-level intensity values in the image and the
image dimension is N × N . With M for all purposes being a constant, the algorithm
runs in near-linear time in the number of pixels in the image. We show how distance
transform can be used as a measure for width and then design an algorithm to efficiently
compute the threshold for binarization. Another significant advantage of our algorithm
is that binarization and fingerprint area segmentation can be done simultaneously.

4.2 Euclidean Distance Transform

A two-dimensional binary image I of N×N pixels is a matrix of size N×N whose entries
are 0 or 1. The pixel in a row i and column j is associated with the Cartesian co-ordinate
(i, j). For a given distance function, the Euclidean distance transform of a binary image
I is defined in [11] as an assignment to each background pixel (i, j) a value equal to the
Euclidean distance between (i, j) and the closest feature pixel, i.e. a pixel having a value
1. Breu et al. [11] proposed an optimal O(N ×N) algorithm for computing the Euclidean
distance transform as defined using Voronoi diagrams. Construction and querying the
Voronoi diagrams for each pixel (i, j) take time θ(N2 log N). But, the authors use the
fact that both the sites and query points of the Voronoi diagrams are subsets of a two-
dimensional pixel array to bring down the complexity to θ(N2). In [39], Hirata and Katoh
define Euclidean distance transform in an almost same way as the assignment to each 1
pixel a value equal to the Euclidean distance to the closest 0 pixel. The authors use a
bi-directional scan along rows and columns of the matrix to find out the closest 0. Then,
they use an envelope of parabolas whose parameters are obtained from the values of the
bi-directional scan. They use the fact that two such parabolas can intersect in at most
one point to show that each parabola can occur in the lower envelope at most once to
compute the Euclidean distance transform in optimal θ(N2) time. In keeping with the
above, we define two types of Euclidean distance transform values. The first one DT1,0 is
the same as the above. The second one is DT0,1 which is the value assigned to a 0 pixel
equal to the Euclidean distance to the nearest 1 pixel. Using the results given in [39], we
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have the following fact:

Fact 1 Both DT1,0 and DT0,1 can be computed in optimal time O(N2) for an N × N
binary image. Also, the values of both DT1,0 and DT0,1 are greater than or equal to 1.

4.3 Euclidean Distance Transform and Width

Figure 4.2: Magnified view of a part of the gray scale topology of a fingerprint image.

The fingerprint images are characterized by almost equal width ridges and valleys as
shown in Figure 4.2. We will use this particular characteristic of the fingerprint image for
binarization. Measuring the width for arbitrary shapes is a difficult, non-trivial problem.
In this section, we model the problem in a continuous domain to show how distance
transform can be used to find equal width ridges and valleys.

4.3.1 Model in The Continuous Domain

The fingerprint image can be modeled as shown in Figure 4.3. In the continuous domain,
the image is a continuous function f : (x, y) → IR. A cross section of this function along
a direction perpendicular to the ridge increases till it reaches the ridge point which is a
maxima, then decreases till it reaches the valley, which is a minima; and this cycle repeats.
Let t ∈ [0,M ] be a threshold, such that if f is thresholded at t, and if the value of f is
greater than t, it is mapped to 1, else to 0. See Figure 4.3. The highlighted part shown
on the right is the part mapped to 1. After thresholding, the parts would be rectangles as
shown in Figure 4.4. We compute the total distance transform values of the rectangles.
Consider a rectangular object ABCD of width w and height h, with h > w. The medial
axis of this object is given by the line segments AE, BE, EF , FD, FC. The medial
axis divides the rectangular shape into four regions such that the nearest boundary line
from any point in the region is determined. As an example, the region 1 has AD as
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Figure 4.4: Diagram for computing total distance transform.

its nearest boundary line and region 3 has AB as its nearest boundary line. The total
distance transform value for region 1 is

∫ wi/2

0

∫ y+(h−wi/2)

−y+wi/2
(wi/2− y) dxdy = (w2

i h)/8− w3
i /12

Similarly, the total distance transform value for region 3 is

∫ −x+wi/2

x−wi/2

∫ wi/2

0
x dxdy = w3

i /24

So, the total distance transform value φdt(wi) of the rectangle is

w2
i h/4− w3

i /12 = w2
i /4(h− wi/3)

Note that, the total distance transform value increases (decreases) with the increase (de-
crease) of width because φdt(wi)

′ > 0 and h > w. Now, the total distance transform DT1,0
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Figure 4.5: Sequence of binarization with increase of t.

is w2
1h/4−w3

1/12+w2
3h/4−w3

3/12 and the total distance transform DT0,1 is w2
2h/4−w3

2/12.
Now, as t increases, both w1 and w3 decrease and w2 increases. This implies that with
increase of t, DT1,0 decreases and DT0,1 increases (see Figure 4.5 for an illustration).
So, DT1,0 and DT0,1 can intersect only once and evidently, DT1,0 is equal to DT0,1 when
w1 = w2. That is, the optimal value of threshold is reached when DT0,1 = DT1,0, imply-
ing w1 = w2. This simple analysis shows that total distance transform can be used as a
measure of finding a threshold that gives equal width ridges and valleys. Our goal in this
work is to find an optimal threshold to binarize the fingerprint image. The optimality
criteria is given by the equal width of ridge and valley. So, more formally we have the
following definition.

Definition 1 The optimal threshold is a value t ∈ [0,M ] that binarizes the image such
that the ridge width is equal to the valley width or sum total of distance transform values
are equal.

4.3.2 Discrete Image and Distance Transform

In the discrete model, the co-ordinates are discrete given by the pixel locations. The
gray-level values g are also discrete taking values from 0 to M − 1. So, the observations
from the previous subsection do not directly apply. But, the crucial observation from the
previous subsection is that sum total of DT1,0 values decreases with t and the sum total of
DT0,1 values increases with t. Then, the optimal threshold t can be obtained as that value
of t that makes the width of the 1 region and 0 region equal and can be computed from
the intersection of the curves of the sum total of DT0,1 and DT1,0 values. For, the analysis,
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we make the following assumption. The pixels take the gray-level intensity values such
that all the intermediate gray-level values between the maximum and the minimum are
present. With that assumption, we have the following lemma.

Lemma 1 The sum total of DT1,0 values decreases with the threshold t. Similarly, the
sum total of DT0,1 values increase with the threshold t.

The proof is easy. We know that each of the Euclidean distance transform values in
the discrete domain is greater than or equal to 1 (see Fact 1). So, with the threshold t
increasing, pixels in the binary image move from the regions of 1 to 0, thus making DT1,0

and DT0,1 decreasing and increasing respectively. Also, note that the assumption that the
pixels take the gray-level intensity values such that all the intermediate gray-level values
between the maximum and the minimum are present, ensures the strictly decreasing and
increasing relations of sum total of DT1,0 and DT0,1 values. Otherwise, it would have been
non-increasing and non-decreasing respectively.

Also, in the discrete case, we may not be able to locate a single value, where the
functions of sum total of DT1,0 and DT0,1 meet. So, we modify the definition of the
optimal threshold in the discrete case as follows.

Definition 2 The optimal threshold can be two values t1 and t2 such that t2− t1 = 1 and
the sum total of DT1,0 values is greater than the sum total of DT1,0 values at t1 and their
relation reverses at t2.

With this definition in place, we are in a position to design the algorithm in the next
section.

4.4 Algorithm

To take care of different contrast and intensity across different image regions, we apply
local thresholding. We cut out sub-blocks of image region and apply the enhancement
algorithm due to [24] followed by our binarization algorithm. Figure 4.6 is a visual illus-
tration.

Algorithm for binarization
Input: A gray-level fingerprint image I with gray-level intensity

varying from 0 to M − 1, and of size N ×N ;
Output: A thresholded binary image

1. do for all sub-block Bi of the image I;
2. Apply the enhancement algorithm given in [24];
3. t1 = 0, t2 = M − 1; mid ← d(t1 + t2)/2e;
4. do
5. mid ← d(t1 + t2)/2e;
6. Compute SumDTmid

1,0 and SumDTmid
0,1 ;

7. if(SumDTmid
1,0 > SumDTmid

0,1 ) t1 ← mid;
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8. else t2 ← mid;
while(t2 − t1 > 1)

9. Threshold obtained for binarization is t1 or t2;

Theorem 1 The binarization algorithm under Definition 2 runs in time O(N2 log M).

The loop originating in Step 4 runs O(log M) times and the dominant computation is
the computation of Euclidean Distance Transform and its sum which takes O(N2) time
(see Fact 1). Thus the total time complexity of the binarization process is O(N2 log M).
With M , the number of gray-levels, being a constant for all practical purposes, the algo-
rithm for binarization runs in time that is linear in the number of pixel entries which is
O(N2).

S
u
m
D
T

gray scale

DT1,0

DT0,1

step1step2 step3 steplogM

Figure 4.6: Diagram of binarization algorithm.

Remark 1 Note that the monotonic curves corresponding to sum of DT1,0 and DT0,1

may not intersect when sum of DT1,0 is always greater than sum of DT0,1. This happens
for image blocks which are noisy or do not have a proper gray level distribution, like
a fingerprint image. We characterize such blocks as non-binarizable blocks. Thus, our
binarization algorithm has an added property of segmenting the fingerprint image region.

4.5 Previous Binarization Algorithms and Compar-

isons

Here, we review three previous works and compare these methods with ours.
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4.5.1 Three Previous Major Binarization Algorithm

Moayer and Fu [64] proposed an iterative algorithm using repeated convolution by a
Laplacian operator and a pair of global dynamic thresholds that are progressively moved
towards an unique value. The pair of global dynamic thresholds changes with each itera-
tion and controls the convergence rate to the binary pattern. This method, which requires
repeated convolution operations, is time consuming and the final result depends on the
choice of the pair of dynamic thresholds and some other design parameters. As local in-
formation can not be dealt with well, some impulsive noise needing further preprocessing
will always remain.

Coetzee and Botha [17] proposed an algorithm that generates the resultant binary
image as a logical OR of two binary images. One binary image is obtained by a local
threshold on the gray scale image and the other binary image is obtained by filling in
the area delimited by the edges. The efficiency of this algorithm depends heavily on the
efficiency of the edge finding algorithm to find delimiting edges. As this method uses
local thresholds, the results are fairly clear. But, on the flip side, this method uses many
arbitrary parameters: (i) the authors use a 2d× 2d (adaptive) window with d = 2; (ii) in
the gray-scale window, they chose a threshold of 0.6 of the maximum gray value (see Ps.
1443 and 1444 of [17]). The choice of none of these parameters is explained. In effect, our
experiments show that a threshold of 0.4 of the maximum gray value works better. Also,
as the algorithm uses two windows (gray-scale and edge), the running time is prohibitively
long.

Ratha et al. [69] proposed a binarization approach based on peak detection in the gray-
level profiles along sections orthogonal to the ridge orientation. The gray-level profiles
are obtained by projection of the pixel intensities onto the central section. This algorithm
has two positive factors: (i) the orientation field computed for binarization is also used
for the following steps; (ii) this algorithm is the fastest among all of the four methods
(including ours) we compared. This method uses a fixed length line segment in certain
orientations to binarize, and as such generates the following drawbacks: (i) If the ridges
are very close in the image, the binarized ridges are merged together; (ii) Most of the
bifurcations and even some ridges are broken by the oriented line segments. Again, like
the other two algorithms, this method depends on many arbitrary parameters (see P. 1667
of [69]). Also, the authors did not mention anything about the size of the one-dimensional
averaging mask used (see P. 1664 of [69]). This heuristic algorithm, though working well
in practice, has a deficiency that it does not retain the full width of the ridges, and as
such is not a true binary reflection of the original fingerprint image.

4.5.2 Comparisons

There are two distinct features of our binarization algorithm compared to the other three
methods: (i) as we view binarization as an optimization process, we start with a very clear
definition of an optimal threshold; this in turn, allows us to design a truly deterministic
algorithm; (ii) our algorithm uses no arbitrary parameter; the choice of a 32× 32 window
for local thresholding (see Section 4.4) is dictated by the algorithm for enhancement
in [24, 13]. As there is no mathematical way of comparing the results, below we give
qualitative comparisons.
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Table 4.1: Comparative results of quality and time.

Algorithm Rank by quality Time in secs.
Mean Variance

Our method 1.12 0.0027 1.474
Moayer and Fu [64] 2.51 0.0057 2.092
Ratha et al. [69] 2.76 0.0359 0.543

Coetzee and Botha [17] 3.61 0.0233 38.769

Fingerprint images used

We used the fingerprint images from (i) NIST Special Database 4 [90], (ii) NIST Special
Database 14 [13], (iii) Database B1 of FVC2000 [33], (iv) Database B2 of FVC2000 [33]
and (v) fingerprint images scanned by the FUJITSU Fingerprint Sensor (model: FS-
210u). The images of (i) and (ii) are of size 480× 512. The images of (iii) and (v) are of
size 300× 300 and (iv) are of size 364× 256. All of the images are of 500 dpi resolution.
From each database, two images of good quality and two images of bad quality (four in
all) were manually selected, thus making 20 images. The enhanced version of the selected
images are shown in Figure 4.7. For each data set, the two images on the left are of good
quality and the other two on the right are of bad quality. The quality was determined
manually.

Qualitative comparison

First of all, the images were enhanced using the enhancement algorithm of [24]. Then, we
ran all the four binarization algorithms on these 20 enhanced images on a Sun Blade 150,
sparc, Solaris 5.9, 550 MHz (see Figures 4.8, 4.9, 4.11 and 4.10). For a qualitative com-
parison, we did the following. We asked 5 unbiased volunteers conversant with fingerprint
technology to rank the resulting binarized images. Obviously, we kept the identity of the
authors of all the algorithms a secret from them! The mean and variance of the ranks are
shown in Table 4.1. It can be seen that on an average the users ranked the output of our
binarization algorithm better than others. As to time, our deterministic algorithm ranks
second; the fastest being the algorithm from Ratha et al. [69].

4.6 Discussion and Conclusion

We have developed a combinatorial algorithm for binarization of fingerprint images expoit-
ing the fingerprint characteristics of equal width ridge and valleys. We used Euclidean
Distance Transform as a measure of width as determining width for arbitrary discrete
shapes is a non-trivial task. We have reported relevant results from standard image data-
bases widely used. But, the definition 2 used for our algorithm has a drawback in realistic
terms. During the acquisition of fingerprints, ridges, being the elevated structures on the
finger, exert more pressure on the device making the acquisition. And as such, the widths
of the ridges should be greater than the width of the valley for a more realistic model.
But, still the lemma 1 will hold and the algorithm instead of trying to find the crossover

31



point of sum total of SumDT1,0 and SumDT0,1 will terminate when SumDT1,0 is greater
than SumDT0,1 by a certain ε. Determining this ε from real fingerprint images is a future
problem we would like to address.
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(a) Fingerprint images scanned by the FUJITSU Fingerprint Sensor (model: FS-210u).

(b) From FCV2000 database.

(c) From FCV2002 database.

(d) From NIST14 database.

(e) From NIST4 database.

Figure 4.7: Enhanced Images from 5 databases.
33



(a) EDT binarized images from FUJITSU database.

(b) EDT binarized images from FCV2000 database.

(c) EDT binarized images from FCV2002 database.

(d) EDT binarized images from NIST14 database.

(e) EDT binarized images from NIST4 database.

Figure 4.8: Binarized images by EDT.
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(a) Binarized images from FUJITSU database.

(b) Binarized images from FCV2000 database.

(c) Binarized images from FCV2002 database.

(d) Binarized images from NIST14 database.

(e) Binarized images from NIST4 database.

Figure 4.9: Binarized images by Moayer and Fu’s algorithm.
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(a) Binarized images from FUJITSU database.

(b) Binarized images from FCV2000 database.

(c) Binarized images from FCV2002 database.

(d) Binarized images from NIST14 database.

(e) Binarized images from NIST4 database.

Figure 4.10: Binarized images by Ratha et al’s algorithm.
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(a) Binarized images from FUJITSU database.

(b) Binarized images from FCV2000 database.

(c) Binarized images from FCV2002 database.

(d) Binarized images from NIST14 database.

(e) Binarized images from NIST4 database.

Figure 4.11: Binarized images by Coetzee and Botha’ algorithm.
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Chapter 5

Eliminating Impulsive Noise and
Useless Components

5.1 Introduction

The performance of fingerprint recognition relies heavily on the quality of the input finger-
print image. However, in practice, due to skin conditions (e.g., wet or dry), sensor noise,
incorrect finger pressure, and inherently low-quality fingerprints, a significant percentage
of fingerprint images contain a lot of noise (see Figure 5.6(a)). Noises in fingerprint images
fall into two categories: impulsive noise (“salt and pepper” noise) and useless components
(see Definition 4). Note that useless components are often mistaken for the terminations
that are an essential minutia of a fingerprint. In this chapter, we are going to introduce
our linear time algorithm for binary fingerprint image denoising using Euclidean distance
transform. Since the information of distance transform values can be obtained directly
from the binarization phase (see Figure 5.1 for an illustration). The results show that
using this method on fingerprint images with impulsive noise and useless components is
faster than existing denoising methods and achieves better quality than earlier methods.

Several techniques have been developed for eliminating impulsive noise. Ratha, Chen,
and Jain [69] implement a morphological opening in which the structuring element is
a small box oriented according to the local ridge orientation. Wahab, Chin, and Tan
[88] correct the binary image at locations where orientation estimates deviate from their
neighboring estimates. This correction is performed by substituting the noisy pixels ac-
cording to certain oriented templates. Ikeda et al. [45] use morphological operators to
enhance ridges and valleys in the fingerprint binary image. Since the first two methods
consider the orientation, a fine selection of the directional filters is necessary. Although
the third method employs an isotropic constructing element and as a result keeps the
original shape of the fingerprint, the impulsive noise cannot be completely eliminated.
However, the time complexity of these three is at least O(N2 × d2) for an image with
N ×N pixel entries and a filter whose radius is d. It is time consuming. In this chapter,
we first propose a simple and linear time complexity method, which employs generalized
morphological operators (GMO) [1] based on distance transform and integral image [87],
to eliminate the impulsive noise.

Up to now, there has been little in the literature with regard to eliminating the useless
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Figure 5.1: A flowchart showing different phases of fingerprint analysis. The highlighted
block shows our work in this chapter.

components. In order to do so, the structuring element chosen must have a good fit.
There are three existing categories of methods for choosing the optimal or appropriate
SEs. S. Fejes and F. Vajda’s [29, 30, 31] algorithm employs the least mean square. It
needs a reference image, which means this method will first do a training phase. But
during fingerprint recognition process, it is unlikely that system could provide a reference
image. Anelli, Loncaric and Dhawan’s [2, 59, 58] algorithm uses a genetic algorithm
(GA) to choose an optimal SE. Although GA really can find the optimal results with
correct criteria, it is a time-consuming algorithm, and fingerprint recognition is a real time
application. GA cannot satisfy this realistic restriction. T. Kikuchi and S. Murakami’s
[52] algorithm is based on the standard deviation of a linear SE with directionality. In
their method, the length of the linear SE is determined by experience. In contrast, we
define a condition for eliminating useless components based on the fact that the width of
useless component must be less than the average width of finger ridges. We show how
distance transform can be used as a measure for width and then design an algorithm to
efficiently determine the size of the SE.
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5.2 Ordinary and Generalized Morphological Opera-

tors

5.2.1 Ordinary Morphological Operators (OMO)

In mathematical morphology, signal transformations are called morphological filters, which
are nonlinear operators that locally modify the geometrical features of signals. More de-
tails can be found in Serra and Soille [78].

Let B ⊂ Z2 be a simple compact set of small size called structuring element. F
denotes a set of foreground pixels (black pixels) and F c denotes the background (white
pixels).

Translation:

The translation of a set F by a point x denoted by F + x is defined as:

F + x = {f + x : ∃f ∈ F} (5.1)

Where F denote a set of foreground pixels (Black pixels) and F c denote background
(white pixels).

Reflection:

B̆ is the reflection of B given by:

B̆ = {x : ∃b ∈ B; x = −b} (5.2)

Erosion:

The fundamental operation of mathematical morphology is erosion. The erosion of set
F by set B is denoted by F ªB and is defined by:

F ªB =
⋂{F + b : ∃b ∈ B̆} (5.3)

Dilation:

The second most basic operation of binary mathematical morphology is dilation. It is
a dual operation to erosion, meaning that it is defined via erosion by set complementarily.
The dilation of set F by B is denoted by F ⊕B and is defined by :

F ⊕B =
⋃{F + b : ∃b ∈ B} (5.4)

There are two secondary operations that play a key role in morphological image
processing, these being opening and its dual, closing.

Opening:

The opening of image F by image B is denoted by F ◦ B and is defined as erosion
followed by dilation, namely:

F ◦B = (F ªB)⊕B (5.5)
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Closing:

The closing of F by B is denoted by F • B and is defined as dilation followed by
erosion, namely:

F •B = (F ⊕B)ªB (5.6)

From the properties of morphological operators, it is obvious that the shape and
size of the structuring element determine the nature and degree of the morphological
transformation. The most common structuring elements are horizontal cross, diagonal
cross (4-connected set) and 3 × 3 matrix (8-connected set), respectively (see the Figure
5.2).

Figure 5.2: Structuring element: Left (1): Horizontal cross. Middle (2): Diagonal cross.
Right (3): 3× 3 matrix.

Morphological operators detailed so far, which in the following will be called ordi-
nary morphological operators (OMO), consider only the intersection of the structuring
elements B with F (or F c). Therefore, when a large morphological kernel is used, the or-
dinary morphological operators have excessive operation (e.g., erosion, dilation). For this
reason, it is suggested to define new morphological operators that generalize the ordinary
morphological operators, thus achieving control over their strictness. They are described
briefly in the following subsection.

5.2.2 Generalized Morphological Operators (GMO)

The morphological dilation of F by B can be generalized by combining the size of the
intersection into the dilation process. In that sense, the dilation of F would be done if and
only if the intersection between F and the shifted B̆ is big enough. The obtained advantage
of the generalized dilation is avoiding excessive dilation caused by small intersections.
That is, the mass of an intersection should be big enough to cause a change.

The generalized dilation of F by B with strictness s is defined by:

F
s⊕ B = {x : #(F

⋂
B̆) ≥ s}; s ∈ [1,min(#F, #B)] (5.7)

where # denotes the cardinality of a set.

Ordinary dilation is obtained as a special case of generalized dilation when s = 1.
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The generalized erosion of F by B with strictness s is defined by:

F
sª B = {x : #(F c

⋂
B) < s}; s ∈ [1, #B] (5.8)

where it is assumed that #F < ∞.

Similarly, the ordinary erosion is also obtained as a special case of generalized erosion
when s = 1.

The properties of generalized morphological operators can be found in [1].

It is important to note that, using the generalized operators in existing algorithms
with strictness greater than one may increase the resistivity of the algorithms to noise
and small intrusions.

5.3 Description of Structuring Elements Using Euclid-

ean Distance Transform

Symmetrical and circular SEs play a fairly central role in mathematical morphology in
the continuous plane, since they provide an isotropic treatment of the image. In the
continuous domain, we use Bd to denote a circular SE whose radius is d, (see Figure 5.3).
It is defined as:

d

Figure 5.3: Structuring element defined by distance value in continuous domain.

Bd = {b : d(b, 0) ≤ d} (5.9)

Where d(b, F ) is the distance from SE center point b(i, j) to the nearest pixel belonging
to F . Then, erosion and dilation by Bd can also be expressed as the threshold of a distance
value.

F ªB =
⋂{F − b : d(b, F ) ≤ d}

F ⊕B =
⋃{F + b : d(b, F ) ≤ d}

(5.10)

The above equations show that morphological operators only deal with the pixels
whose distance values are not greater than d.

For digital images, however, circular SEs are rarely used because there is no “real”
circular SE on a discrete lattice. The straightforward method to describe an SE is to
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pick up all pixels around the center point b(i, j). However, this method has a drawback;
whenever the center moves to the position b(i′, j′), we have to update all other pixels
in B. The process is naive and time consuming, and induce time complexity of the
algorithm to O(N2 × d2) for an image of size N ×N and a SE of radius d. Fortunately,
we can employ Euclidean distance transform value to easily describe a “circular” SE in
the discrete domain and further reduce time complexity of algorithm to O(l × d2). O.
Cuisenaire and B. Macq proposed a similar idea using local distance transformation [22].
3 × 3 SEs and cross SEs are much in use. In the following discussion, they will be used
as examples to explain this principle, (see Figure 5.4).

1

1

2

(a) 3× 3 SE: d =
√

2

1

(b) Cross SE: d = 1

Figure 5.4: Use of Euclidean distance value to describe “circular” SEs.

In the discrete space, we assume each pixel is a unit square. For a 3 × 3 SE, the
distance between a horizontal (or vertical) neighbor and the center is 1. Similarly, the
diagonal neighbor is at distance

√
12 + 12 =

√
2 from the center. This means every pixel

whose distance from point b(i, j) lies in [1,
√

2] will be covered by a 3 × 3 SE centering
on the point b(i, j). Thus, we can easily denote 3 × 3 SE by Bd=

√
2 (Figure.5.4 (a)). In

a corresponding way, since the cross SE only has horizontal and vertical neighbors, it
can be denoted by Bd=1 (Figure.5.4 (b)). Next, the “circular” SEs denoted by Euclidean
distance transform value are given.





SE with 5 pixels, Bd=1

SE with 9 pixels, Bd=
√

2

SE with 13 pixels, Bd=2

SE with 21 pixels, Bd=
√

5

SE with 25 pixels, Bd=
√

8

SE with 29 pixels, Bd=3
...

...

(5.11)

5.4 Eliminating Impulsive Noise using Linear Time

GMO

In practice, due to factors like skin conditions (e.g. wet or dry), sensor noise, or incor-
rect finger pressure, fingerprint images obtained from sensors often contain a lot of noise,
which heavily affects the accuracy of further processing. The noises of fingerprint im-
age have many shapes and directions. Thus, a fine selection of the directional ordinary
morphological operators is required; a large morphological kernel may be also required.
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In such cases, the effects of denoising may damage the expected results due to extreme
strictness of the ordinary morphological operators. So, we employ GMO in our system.

5.4.1 Advantages of GMO using Distance Transform

First, the GMOs have controllable strictness, and thus excessive erosion and dilation can
be prevented. On the other hand, by controlling the strictness of a GMO, the GMO can
adapt itself to the orientation and shape of fingerprint without adopting many directional
operators.

Second, according to the properties of morphological operators, only the edge of a set
F needs to be considered for computing these morphological operations. More accurately,
equation 5.10 can be modified as follows,

F ªB = F
⋂

(∂(F )ªB)

F ⊕B = F
⋃

(∂(F )⊕B)
(5.12)

where ∂(F ) is the edge of F , that is the set of pixels of F with at least a direct neighbor
not belonging to F and the distance transform value not greater than d. Assume l is the
length of the contour of F (l is the cardinality of the set ∂(F )), then the computational
complexity is reduced from O(N2×d2) to O(l×d2) for any SE of radius d. If the strictness
of the GMOs is greater than 1, operators should count the number of intersected pixels
between B and F c (or B̆ and F ). Naive methods are dependent on the size of SEs. So,
O(l× d2) + N2 time is needed to check if the pixels belong to ∂(F ) by distance transform
values.

Note that we usually use rectangular SE to do denoising (e.g. 3× 3 SE, 2× 3 SE, or
3× 2 SE, etc.). Our method can further reduce O(l× d2) to linear time by using integral
image method.

5.4.2 Reducing Time Complexity by Integral Image

Integral Image was first used by Viola and Jones [87]. It is very similar to the summed
area table used in computer graphics for text mapping [20]. The integral image can
be computed from an image using a few operations per pixel. Once computed, any
rectangular SEs can be computed at any scale or location in constant time.

The integral image at location (x, y) contains the sum of the pixels above and to the
left of (x, y), inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (5.13)

where ii(x, y) is the integral image and i(x, y) is the original image. Using the following
pair of recurrences:

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y)
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p(x, y)

ii(x’, y’)

ii(x’, y’’)

ii(x’’, y’)

ii(x’’, y’’)

Figure 5.5: Count inverse pixels of center using integral image.

where s(x, y) is the cumulative row sum, the integral image can be computed in one pass
over the original image. Then any rectangle sum can be computed in four array references.

Owing to GMO’s strictness s > 1, during morphological operations, operators should
know the number of intersected pixels between B and F c (or B̆ and F ). Our strategy is
to first represent the original binary image using an integral image (see Figure ??). When
SE scans the point p(x, y), we do the following operation.

n = ii(x′, y′)− ii(x′′, y′)− ii(x′, y′′) + ii(x′′, y′′)

where n is the number of background pixels in SE. For erosion, the state of the point
p(x, y) is converted if and only if n ≥ s. It is similar to dilation.

From above, we get the following conclusion:

{
O(N2) if rectangular SEs were used.
O(N2 × d) if isotropic SEs were used.

(5.14)

In our method we employ rectangular SEs. So, the complexity of eliminating impulsive
noise is linear.

5.4.3 Algorithm and Results

As the impulsive noise is fairly small and thin (specifically, one or two pixels wide in
our case). And according to the property of GMO [1], strictness s must lie in interval

[2, b#B/2c]. For a small SE, the integer midpoint b2+b#B/2c
2

c of the interval is reasonable

strictness value. Therefore, a square SE of 3 × 3 pixels (corresponding to d =
√

2) with
strictness of value 3 is used. The processing steps of this phase are as follows:

Input: A binary fingerprint image I of size N ×N with impulsive noise. p(i, j) ∈ I.
Output: A binary image without impulsive noise.
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1. Implement Euclidean distance transform for foreground pixels (F );
2. Represent binary image by integral image;

3. IF p(i, j) = 1or
√

2

F
3◦ Bd=

√
2;

End.

It is known that computing times of Euclidean distance transform and integral image
are both linear. In step 3, finding available pixels takes exactly N2 time. As analyzed
in the previous subsection, generalized opening using integral image can be done in O(l)
time. Therefore, the total time complexity is linear.

We tested 60 fingerprint images scanned from FUJITSU Fingerprint Sensor (model:
FS-210u). These images are of size 300×300 and 500 dpi resolution. To make comparisons
with our result easier, we list the average real computing times of these images in Table
5.1 and show result images in Figure 5.6, where OMO and GMO denote the methods
based on ordinary and generalized morphological operators respectively. O. MO (Ratha)
and O. MO (Wahab) are approaches proposed by Ratha et al [69] and Wahab et al
[88] respectively. OMO results show broken ridges due to its excessive operation. For
the Ratha, Chen, and Jain results [69], most impulsive noise has been removed, but
computing time is longer than others, due to the need of finding the orientation of ridges.
The Wahab, Chin, and Tan results [88] are fast but a little noise remains since only a few
templates are employed. The approach of Ikeda et al. [45] needs special hardware, so we
could not simulate it. Therefore, it is not shown in the Table 5.1 or Figure 5.6. From their
paper, however, we learn that their approach does not remove the noise on the boundary
of fingerprint ridges. In our results, the image is fairly clean and the fingerprint is less
affected, because a GMO with strictness can adapt itself to the orientation and shape of
fingerprint without adopting many directional operators. Moreover, another advantage
of using GMO is that it needn’t apply a closing to refill, as happens with the ordinary
morphological operation. Thus, with GMO it is possible to carry out less operations.
However, some useless components remain.

Method Time (sec)

OMO 0.059
GMO 0.087

Ratha[69] 0.323
Wahab[88] 0.088

Table 5.1: The average real computing time among four methods to eliminate impulsive
noise.

5.5 Automatically Choosing Appropriately-Sized SEs

to Eliminate Useless Components

Owing to skin condition (e.g., wet) or incorrect finger pressure, some fingerprint images
contain useless components, which are often mistaken for the terminations; this makes
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(a) Binary images with noise.

it very difficult to correctly identify the minutiae relationships of a person’s fingerprint
image. Thus, AFIS recognize the fingerprint with useless components as a distinct print.

Definition 3 Useless Component is an object disjoint from other objects and whose
largest width is less than the mean width of fingerprint ridges.

In order to eliminate useless components, a good SE is necessary. It is well known
that the performance of mathematical morphology is heavily dependent on structuring
elements (SEs). SEs have two aspects, size and shape. For denoising applications, the size
of an SE is enlarged if membership values of the local area are uniform. If membership
values of a local region are dispersed compared to other regions, minutiae may exist in
that region. In this case, the SE must be small. For enhancement or feature extraction,
in which expected objects either are distributed in the background with masses of other
objects or are almost blended with background, the shape of the SE should approximate
the target as closely as possible. So far, how to choose an optimal or adaptive SE is still
a hot topic.

There are several methods to find optimal or adaptive SEs, as described in the intro-
duction. None of them, however, start with a definition of appropriate SEs. In contrast,
we define a condition for eliminating useless components based on the width of the useless
component, which must be less than the average width of finger ridges. We also employ
distance transform and show how it can be used as a measure for width and then present
our algorithm to efficiently determine the size of SEs.

5.5.1 Distance Transform and Ridge Width

Fingerprint images are characterized by almost equal width ridges (a small part of the
image is shown in Figure 5.7). We will use this particular characteristic of fingerprint to
estimate the size of SEs. Measuring the width for arbitrary shapes, however, is a diffi-
cult, non-trivial task. For easy understanding, we first model this problem in continuous
domain to show how distance transform can be used to estimate the widths of ridges and
useless components in fingerprint images and then, generalize it to the discrete domain.
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(b) Using OMOs.

(c) Using Ratha et al.’s approach.

(d) Using Wahab et al.’s approach.

(e) Using GMO by integral image.

Figure 5.6: Results obtained by various methods.
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Figure 5.7: Magnified view of a part of the gray scale topology of a fingerprint image.

Model in the Continuous Domain

The fingerprint ridge can be modelled in 3D domain as shown in Figure 5.8(a). In the
continuous domain, the image is a continuous function f : (x, y) → IR. This function
increases along a direction perpendicular to the ridge till it reaches the ridge top point,
then decreases till it reaches the bottom. Since distance transform values are used to
approximate to gray scale in our method, we obtain a distance transform 3D model as
shown in Figure 5.8(b).

w

h

w/2

w/2

(a) 3D model of real ridge.

w

h

w/2

w/2

(b) Distance transform 3D model.

Figure 5.8: Diagrams of the 3D model.

After projecting distance transform 3D model onto a plane, we get the planar diagram
shown in Figure 5.9. We compute the total distance transform value of this shape. Con-
sider this special geometric object of width w and height h, with h À w. The medial axis
of this object is given by the dot line segment AB, CD and EF . These dot line segments
divide the geometric shape into four regions such that the nearest boundary line from any

49



h

w

A

B C

D

E F3

1

2

4

y

x

Figure 5.9: Diagram for computing total distance value.

point in the region is determined. For instance, the region 1 has AD as its nearest bound-
ary line and region 3 has ÂB as its nearest boundary arc. The total distance transform

value for region 1 is
∫ w

2
0

∫ h
0 (w

2
− y) dxdy = 1

8
w2h. Similarly, the total distance transform

value for region 3 is
∫ 3

2
π

π
2

∫ w
2

0 (w
2
− r)r drdθ = 1

48
πw3. So, the total distance transform value

is:

φdt(w) =
1

8
w2h× 2 +

1

48
πw3 × 2

=
1

4
w2h +

1

24
πw3

=
1

4
w2(h +

1

6
πw) (5.15)

From this result, we can find some relationship between the distance transform value
and the width of the ridge. The length of the ridge, however, is fairly difficult to measure.
Given this difficulty, it is reasonable to use the average distance transform value to measure
ridge width. We first compute the area of the geometric object. The areas for region 1
and 3 are 1

2
w × h, and π(1

2
w)2 × 1

2
respectively. So, the total area is:

φS(w) =
1

2
w × h× 2 + π(

1

2
w)2 × 1

2
× 2

= wh +
1

4
πw2

= w(h +
1

4
πw) (5.16)

The average distance transform value is equal to total distance transform value (equa-
tion 5.15) divided by area (equation 5.16). So,

Edt(w) =
1
4
w2(h + 1

6
πw)

w(h + 1
4
πw)

=
1

4
w

h + 1
6
πw

h + 1
4
πw

<
1

4
w

≈ 1

4
w if h À w (5.17)
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In the definition of a fingerprint 3D model, the length is much greater than width.
It implies that the average distance transform value can be approximated to one-fourth
of the ridge width with a negligible error. So four times the average distance transform
value is less than but almost equal to the average ridge width. Useless components are
objects disjoint from other objects and their largest width is less than the mean width of
the fingerprint ridges. This shows that the average distance transform value can be used
as a good measure of estimating appropriate SEs. Our goal is to automatically determine
appropriate “circular” SEs for eliminating useless components. The criteria is given by
the definition of useless component (see Definition 1). So, more formally, we have the
following lemma.

Lemma 2 When an isotropic SE satisfies the following condition:

max(wuseless) ≤ 2d ≤ mean(wridge)

the useless components can be eliminated, but some eroded ridges of the fingerprint shall
remain.

PROOF. According to the erosion of ordinary morphology, eroding an object can be
found by intersecting all translates of the object by the reflection of the SE. As in our
previous assumption, the diameter of isotropic SE is not less than the maximum width
of the useless component. Then the object translated by the reflection of SE is too far
to intersect any other translated object, i.e.

⋂{F − b : b∃B} = φ. Thus, the useless
components can be eliminated under such condition. The diameter 2d, however, is not
greater than the mean width of fingerprint. That means some wider portions, which are
wider than SE, are not translated so far away that they can intersect each other. So,
some of skeleton of the fingerprint remains.

Discrete Image and Distance Transform

In the discrete model, the co-ordinates are discrete given from the pixel locations. So,
the observations from the previous subsection do not directly apply. But, the crucial
observation from the previous subsection is that the average distance transform value
approximates to one-fourth the width of the ridge. Then, an appropriate SE B can be
obtained from the observation: Radius of the SE is less than but approximates to half the
average width of the ridges. This observation still works in the discrete domain. However,
the circular SE can move in an arbitrary direction in continuous domain. On the contrary,
a “circular” SE only can move straight (in a horizontal or vertical direction) or diagonally
with one step in the discrete domain. In this case, the SE radius must be remeasured by
the same method as that used to measure ridge width instead of the simple radius d. We
also need to consider the equal probability of moving straight or diagonally. Thus, the
radius r of SE is the mean of radiuses in these two cases. Then, we have the following
Definition:

Definition 4 An appropriate SE can be determined when half the average width of ridges
is located in the corresponding interval.
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2 ≤ 2Edt(w) < 2.828, Bd=1

2.828 ≤ 2Edt(w) < 3, Bd=
√

2

3 ≤ 2Edt(w) < 3.606, Bd=2

3.606 ≤ 2Edt(w) < 4, Bd=
√

5

4 ≤ 2Edt(w) < 4.243, Bd=
√

8

4.243 ≤ 2Edt(w) < 4.472, Bd=3
...

...

(5.18)

where Edt(w) is the average distance transform value. Bd is a circular SE with radius d.

With this definition in place, we are in a position to design an algorithm in the next
section.

5.5.2 Algorithm and Results

Our strategy is to take information from an original image I with useless components
and an eroded image Ie by using the SE that satisfies Definition 4, in which useless
components are eliminated completely but fingerprints cannot totally be deleted although
they are affected to some degree. Then, we integrate fingerprint images I and Ie to
restore the expected image Ir without useless components. More precisely, we establish
a correspondence between the two images. The objects which do not correspond to any
information in the eroded image Ie, are classified as useless components. We then eliminate
them. The remaining objects, which have correspondences, are classified as fingerprint
and remain in the final output image Ir.

To take care of non uniform ridge width across different image regions, we cut out
sub-block of image region and pick up the minimal average distance transform value as
criteria.

Input: A binary fingerprint image I of size N ×N with useless components.

Output: A binary image without useless components.

1. Apply Euclidean distance transform on entire image;
2. do for all sub-block of the image I;

Compute average distance transform value Edt(wi);
3. Pick up min(Edt(wi)), then select appropriate SE B by definition 1;
4. Erode I by B;
5. Restore Ir by integrating I and Ie.

The detail of step 5 is described as follows:

Input: A binary image I with useless components and eroded image I ′.
p(i, j) ∈ I; p′(i, j) ∈ I ′.

Output: Restored image Ir.
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Q is a queue.
BEGIN
For i,j = 1 to n

If p(i, j) ∈ F and not visited
Push(p(i, j)), count = 0;

Mark useless components.
While Q is not empty

Pop(p(i, j)), label p(i, j) visited;
If any neighbor of p(i, j) is in F and not visited

Push it into Q and label it visited;
If p′(i, j) ∈ F then count++;

Eliminate useless component.
If count == 0

Push(p(i, j));
While Q is not empty

Pop(p(i, j)), let p(i, j) ∈ F c;
If any neighbor of p(i, j) is in F

Push it into Q;
END.

Time complexity of eliminating useless components algorithm is analyzed as follows:

• Because p(i, j) is pushed and popped only once, Step 1 takes n2 time to mark useless
components.

• Step 2 is similar to step 1. Thus, it takes n2 time for eliminating useless components.

It is clear that time complexity is O(n2).

In this stage, we tested the same set of 27 images containing useless components as that
used for the previous denoising stage (see Section 4.3). We also list average real computing
time in Table 5.2 and show the SEs chosen by different methods in Figure 5.10. The final
results processed by other methods are almost the same, so Figure 5.11 only shows our
result, where DT, LMS, GA and SD denote the methods based on distance transform, the
least mean square, genetic algorithm and standard deviation, respectively. Time means
the CPU time. Error means the number of useless components not eliminated.

Method Time (sec) Error (num)

DT 0.063 0
LMS [29, 30, 31] 0.34 1
GA [2, 59, 58] 1.02 0

SD [52] 0.374 0

Table 5.2: The average real computing time among four methods to eliminate useless
components.

The results show that our method (DT) is much faster than other three and works
well. The least mean square method needs more time due to its training phase, and
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(a) DT. (b) LMS.

(c) GA. (d) SD.

Figure 5.10: SEs chosen by different methods.

the chosen SE is not big enough, so that a few useless components remain. The genetic
algorithm method takes the longest time, although it does find the optimal SE. But this
computing time is unacceptable for a real time system. The standard deviation method
can find an appropriate SE and run as fast as LMS. However, the length of the linear SE
is determined manually, rather than automatically. Our method avoids these drawbacks.
It runs fast and produces satisfactory results. Thus, it can be used with significant gains
for fingerprint recognition in realtime applications.

5.6 Conclusion

We have developed a combinatorial linear time algorithm to eliminate impulsive noise and
useless components from fingerprint images using Euclidean distance transform. There
are two contributions. The first one represents binary fingerprint images and SEs by
integral image and distance transform values, and reduce the time complexity of GMO
from O(N2 × d2) to O(N2). The results are fairly clean and the fingerprint shapes are
less affected. The second contribution is an algorithm for automatically determining
an appropriate “circular” SE to eliminate useless components from fingerprint images
exploiting the average fingerprint ridge width. We used Euclidean distance transform
as a measure of width for determining the radius of SEs. One of the advantages of our
method does not require parameters determined using experiences. Ordinary erosion with
an appropriate SE only needs O(l) + N2 time to eliminate useless components. So, the
entire algorithm for fingerprint denoising is linear time.
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(a) Images with useless components.

(b) Eroded images.

(c) Images without useless components.

Figure 5.11: Results of eliminating useless components.

55



Chapter 6

Minutiae Detection

6.1 Introduction

Most automatic systems for fingerprint comparison are based on minutiae matching;
hence, reliable minutiae extraction is an extremely important task and a lot of research
has been devoted to this topic. Most of the proposed methods require the fingerprint
gray-scale image to be converted into a binary image, and then submit the binary image
to a thinning stage which allows for the ridge line thickness to be reduced to one pixel
(see Figure 6.1 for illustration).

6.1.1 Thinning Based Methods

A binary thinned fingerprint image is also denoted as skeletons of ridges. The skeleton
of a binary object in a plane is a tree-form curve. A skeleton is called the medial axis,
or more generally, the medial set of an object [66, 67, 83]. The skeleton of an object is a
fundamental geometric feature for image and shape analysis. Therefore, skeletonisation
has been studied in the field of pattern recognition and computer vision for a long time.

Figure 6.1: (a) shows a fingerprint gray scale image; (b) shows the image obtained after
a binarization of the image in (a); (c) shows the image obtained after a thinning process
of the image in (b).
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Once a binary skeleton has been obtained, a simple image scan allows the pixel cor-
responding to minutiae to be detected: in fact the pixels corresponding to minutiae are
characterized by a crossing number different from 2. The crossing number cn(p) of a pixel
p in a binary image is defined as half the sum of the differences between pairs of adjacent
pixels in the 8 neighborhood of p [4]:

cn(p) =
1

2

∑

i=1...8

|val(pimod8)− val(pi−1)| (6.1)

where p0, p1, . . . , p7 are the pixels belonging to an ordered sequence of pixels defining the
8 neighborhood of p and val(p) ∈ {0, 1} is the pixel value. It is simple to note that a pixel
p with val(p) = 1:

• is an intermediate ridge point if cn(p) = 2;

• corresponds to termination minutia if cn(p) = 1;

• defines a more complex minutia (bifurcation, crossover, ect.) if cn(p) ≥ 3

(a) cn(p)=2 (b) cn(p)=1 (c) cn(p)=3

Figure 6.2: (a) intra-ridge pixel; (b) termination minutia; (c) bifurcation minutia.

Classical thinning algorithm for planar objects based on the discrete transform usually
transforms T and V shape junctions to Y shape junctions. These changes of junctions af-
fect the final form of thinning process yielding unexpected needles and branches which are
not in the original forms. Hilditch’s thinning is an algorithm that does not produce unex-
pected needles and branches. The method contains processes based on the configuration
in the neighborhood of each point [38]. A. Imiya, M. Saito and K. Nakamura proposed
a thinning algorithm based on curvature flow in a space is defined using configurations
of vertices on an isostatic polyhedron derived form the 6-connected boundary. It also
removes needles and branches. However, all of these works need more computing time to
improve skeleton quality for further matching stage. Therefore, thinning for fingerprint
minutiae extraction has two drawbacks: (i) it may introduce a large number of spurious
minutiae; (ii) it is time consuming.

6.1.2 Our Work

To reduce preprocessing time of AFIS, we proposed a novel method which extracts minu-
tiae directly from binary image. Most of the minutiae detection algorithms find out the
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minutiae from the one-pixel thick ridge image obtained by thinning after binarization
(see, for example, [28]). Once our binarization process finishes, we have a matrix with
each ridge pixel having a corresponding EDT value. Our goal is now to exploit this in-
formation to detect minutiae directly from the thick ridges of the binary image without
thinning (see Figure 6.3 for illustration). This will be useful for saving time in real world
application. In most cases the location of the minutiae will not be exact the same in
different versions of the same fingerprint owing to distortion, so it makes sense to find out
a small region of connected pixels in which the minutiae lies; in other words, this region
is a set of connected pixels. Our goal, then, is to find these minutiae regions for further
matching. The minutiae treated will be bifurcation and termination.

Fingerprint image
   acquisition

Fingerprint image
  preprocessing

Minutiae extraction,
fingerprint 

classification

Matching

Result

Enhancement

Segmentation 
and/or

Binarization

Denoising

Ridge extraction

Reference fingerprint
dadabase

(a) Usual approaches.

Fingerprint image
   acquisition

Fingerprint image
  preprocessing

Minutiae extraction
using EDT,
fingerprint 

classification

Matching

Result

Enhancement

Segmentation 
and/or

Binarization

Denoising

Reference fingerprint
dadabase

(b) Our approach.

Figure 6.3: Two flowcharts showing the different phases in fingerprint analysis taken by
(a) usual approaches and (b) our method. In (b) the highlighted modules show the area
of our work.

6.2 Detecting Bifurcation Minutiae

6.2.1 Bifurcation Minutiae in the Continuous Domain

We first show how EDT can be used for finding a bifurcation minutia in the continuous
domain in the following observation.

Observation 1 If we draw a circle C centered at a bifurcation point in the continuous
domain with a radius r + ε (where r is the EDT value in the continuous domain and ε is
an arbitrarily small positive number), then C must contain three background components.
See Figure 6.4(a) for an illustration.
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r ε

(a) Bifurcation in the continuous domain; the background components are shown
shaded.

1 2 3

4

567

8 p(i,j)

EDT+sqrt(2)

CL

(b) Circles formed by the EDT value; the circle CL is the smallest radius circle
covering all the 9 EDT circles (shown dotted).

Figure 6.4: Finding bifurcation minutiae.

Loosely speaking, this bifurcation point corresponds to the bifurcation in the medial
axis of the continuous structure. Next, follows a discussion on carrying forward Observa-
tion 1 in the continuous domain to the discrete domain.

6.2.2 Bifurcation Minutiae in the Discrete Domain

The issue here is to find out an appropriate radius for a circle so that Observation 1 holds
in the discrete domain.

Definition 5 An EDT circle is a circle centered at a grid point (i, j) with a radius r,
where r is the EDT value of the grid point (i, j).

EDT in the discrete domain has a geometric significance as mentioned in the following
fact.

Fact 2 For a ridge pixel pi having an EDT value r, if we draw a circle C centered at pi

with a radius r, then there will be at least one valley pixel on the circumference of C.

59



The radii of two EDT circles whose centers lie in the 8-neighborhood of each other cannot
be arbitrary. The following Observation is easy to follow.

Observation 2 Let the EDT value at a grid point (i, j) and any of its 8-neighbors be r
and ri, (i = 1, . . . , 8) respectively. Then, surely r −√2 ≤ ri ≤ r +

√
2.

The equality is attained when (i, j), any ri and the pixel that contributes to the EDT
value at (i, j) lie on a straight line.

Unlike in a continuous domain, where a point can be chosen as mentioned in Obser-
vation 1, it is very difficult to choose a unique pixel as a bifurcation in a discrete digital
image. This happens because the medial axis is not uniquely defined for a digital image.
So, we mark a set of 9 connected pixels as a region where a bifurcation lies.

Observation 3 If there is a bifurcation region in a 3× 3 window of pixels, there will be
three background components of connected pixels inside the union of those 9 EDT circles.
See Figure 6.4(b) for the union of the 9 EDT circles.

This observation is true because in whatever way a bifurcation enters or leaves the 3× 3
region, it divides the 3 × 3 region into three regions and in each region there will be
at least one pixel; and the EDT circle centered at this pixel will have three different
background components. But, finding out the correct union of these 9 circles is somewhat
time consuming. So, we will find out a circle CL with the least radius centered at (i, j)
that covers the union of the 9 EDT circles centered at (i, j) and its 8 neighbors.

Lemma 3 The radius of the circle CL is given by the EDT value plus
√

2.

The proof follows from Fact 2, Observations 2 and 3.

So, to test for a bifurcation region, we form the circle CL; and if in this circle there are
three separate background components, we mark the pixels in this region as bifurcation.

6.2.3 Avoiding Spurs and Bridges to Find Bifurcation Minutiae

The theory developed earlier for detecting bifurcation fails when there are spurs or bridges,
which are deformities in the ridge structure. A spur [62] is a small protrusion from the
original ridge and gives rise to a false minutia. A bridge [62] is a structure that joins
two ridges across a valley and gives rise to two false minutiae. See Figure 6.6(a) and
(b) for examples. To avoid the false minutiae thus generated, we developed the following
heuristic. Note that, in the case of spurs, the circle CL is such that it will cut the spur
and generate a bifurcation. To avoid that, we increase the radius of CL, to find only two
connected components and avoid this false bifurcation. In case of bridges, if the radius of
CL is increased appropriately, then both the false minutiae can be removed by detecting
the intersection of two such circles. In massive experiments, statistics show the average
width of ridges (valleys) is around 5 ∼ 6 pixels wide in 300 × 300, 500 dpi image (see
Figure 6.5). Note that, from our binarization algorithm, we can estimate the width as
average of the EDT values. So, we increase the radius of CL and make the new radius
as EDT + 3 (3 = d(5/2)e = d(6/2)e). We now apply the same method of the previous
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subsection with a new circle C ′
L whose radius is EDT + 3. The only modification is

that we detect the intersection of C ′
Ls to avoid bridges. See Figure 6.6(a) and (b) for an

illustration of spur and bridge removal respectively.

10~12

Figure 6.5: The average width of ridges (valleys).

EDT + sqrt(2)

EDT + 3

Spur

Ridge
avoiding this false BM

CL

(a) Avoiding detection of spurs as bi-
furcation.

EDT + sqrt(2)

EDT + 3

Bridge

Ridge

Ridge

Valley

avoiding this false BM

avoiding this false BM

CL

(b) Avoiding detection of bridges as bi-
furcation.

Figure 6.6: Finding correct bifurcation minutiae(BM) by avoiding spurs and bridges.

6.3 Detecting Termination Minutiae

There is a widely held belief that a ridge termination minutiae is a dual of a valley
bifurcation minutiae as pointed out in [62] (see Pg. 85-86 of [62] and Figure 6.7(a)). With
this duality principle in place, we thought that the methodology developed for detecting
ridge bifurcation could simply be applied to detect valley bifurcation and hence, ridge
termination. But, during our experiments on different data sets, we came across a counter
example to this duality principle as shown in Figure 6.7(b), where a ridge termination
does not correspond to a valley bifurcation. So, we developed the following heuristic
method to detect such minutiae. The heuristic method can to some extent differentiate
between spurs [62] and real termination minutiae.

Refer to Figure 6.8 for the following part of the discussion. We use the circle C ′
L

defined for determining bifurcation minutiae to detect the termination minutiae.
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Figure 6.7: Misconception of duality relation between ridge termination and valley bifur-
cation.
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Figure 6.8: Finding termination minutiae.

Observation 4 A ridge termination minutiae has the following two properties: (i) it is
surrounded by a single component of valley pixels inside the union circle and (ii) the length
of the elongated part of the ridge termination (estimated by bd) is greater than the width
of the ridge (estimated by ac) inside the union circle.

Based on the above observation, our heuristic method for finding a termination is as
follows:

Description 1

1. Find the two intersection points of the ridge with the union circle (a and c), and compute
the length W of the line segment ac.

2. Find the middle point b of the arc ac of the union circle; and the farthest point d on the
ridge boundary from b. Compute the length H of bd.

3. If H > W , then the origin of the union circle is a termination minutiae.

We could remove many spurs in our heuristic for finding terminations because spurs
do not satisfy the structural information stated in Observation 4.
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Figure 6.9 (a) and (b) are instances of extracted bifurcation and termination minutiae
regions using our algorithm.

(a) A magnified view of a bifurcation
minutiae region.

(b) A magnified view of a termination
minutiae region.

Figure 6.9: A figure showing minutiae regions.

6.4 Minutiae Detection Results

The bifurcation and termination minutiae detected by our algorithm were compared man-
ually with the minutiae present in the enhanced images and the results are given in Table
6.1. It can be seen that even for bad quality fingerprint images, our total error is within
acceptable limits. Another interesting point to note is that there is no error for exchang-
ing termination and bifurcation minutiae. Figure 6.10 shows the enhanced, binarized and
minutiae detected images of of a representative image from each of the five data sets
considered. The time taken for minutiae detection averages 0.177 sec. on an IBM x40,
inter pentium M, WinXP, 1.4GHz.

Table 6.1: Minutiae detection results; T: termination, B: bifurcation

Good Quality Fingerprint Image
Minutiae Dropped False exchanged total error
T B T B T B

Total 48 31 2 0 0 3 0
Percentage 79 2.53% 3.8% 0% 6.33%

Bad Quality Fingerprint Image
Minutiae Dropped False exchanged total error
T B T B T B

Total 67 32 3 0 5 7 0
Percentage 99 3.03% 12.12% 0% 15.15%
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(a) Scanned by the FUJITSU Fingerprint Sensor (model: FS-210u).

(b) From FCV2000 database.

(c) From FCV2002 database.

(d) From NIST14 database.
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(e) From NIST4 database.

Figure 6.10: Enhanced, binarized and minutiae detected images of a representative image
from each of the 5 databases. The cross marks indicate terminations and the boxes
indicate bifurcation.

6.5 Conclusion

In this chapter, we focussed on minutiae extraction of fingerprints using a Euclidean
distance transform. The particular choice of EDT helped us in developing deterministic
algorithms for binarization and denoising. We used the same EDT to find bifurcation and
termination minutiae. Working with the original binary image (not the thinned one) has
its added advantage: spurs and bridges can be removed in the same phase as minutiae
detection. The most notable distinction of our work is that it uses fewest arbitrarily
selected parameters.

65



Chapter 7

Fingerprint Distortion Correction

7.1 Introduction

There is a popular misconception that automatic fingerprint recognition is a fully solved
problem, since it was one of the first applications of machine pattern recognition almost
fifty years ago. On the contrary, a great number of challenging problems still exist. In
particular, all current on-line fingerprint identification techniques require the matching
algorithms to become more tolerant with respect to some factors which prevent the false
rejection rate (FRR) from decreasing beyond a certain limit.

One of the main difficulties in matching two fingerprint samples of the same finger is
to deal with non-linear distortions. Distortion arises from the elasticity of finger skin, the
pressure and movement of fingers during image capture. It changes the spatial location
of minutiae, and then leads to great difficulties in establishing a match among multiple
images acquired from a single finger.

Many approaches have been proposed to cope with fingerprint distortion. They can
be classified into several categories.

Dorai, Ratha and Bolle [25] proposed an automatic method for detecting the presence
of distortion from compressed fingerprint videos of fingerprints, and then rejecting the
distorted frames. Unfortunately, such kind of sensor is too expensive to be widely used.
Another limitation is that once a print is acquired, nothing can be done about distortion
in the data. Distorted prints in large legacy databases cannot benefit from this technique.

Conventional matching techniques use tolerance boxes. In order to tolerate minutiae
pairs that are apart because of distortion, and to decrease the false rejection rate (FRR),
the tolerance boxes can be enlarged. However, as a side effect, this gives non-matching
minutiae pairs with a higher probability to be paired, resulting in a higher false acceptance
rate (FAR). Jain et al. [47] and Luo, Tian and Wu [60] define the tolerance boxes in polar
coordinates. In their methods, in order to compensate for the effect of distortion, the
size of the tolerance boxes is incrementally increased moving from the center toward the
borders of the fingerprint area. However, this still increased the probability of higher
FAR.

Senior and Boole [77] proposed a canonical model. They believed the most evident
effect of distortion is the local compression or stretching of the ridges and valleys. Their
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model normalizes a fingerprint image to a canonical form by deriving a fingerprint rep-
resentation in which all the ridges are equally spaced. This model can actually correct
traction deformation very well, but torsion deformation cannot be adequately corrected.

Cappelli, Maio and Maltoni [14] explicitly modeled skin distortion caused by non-
orthogonal pressure of the finger against the sensor surface. Their distortion model defines
three distinct distortion regions according to different pressure. Experiments showed
that this model provides an accurate description of the elastic distortion. However, the
parameters of this model should be given by experiments, not automatically. So, this
model is not yet used in AFIS.

A.M. Bazen and S.H. Gerez [5] and A. Ross, S.C. Dass and A.K. Jain [72] attempted to
find a smoothed mapping between the input and template minutiae. Both of them used
a thin-plate spline model to deal with the non-linear distortion. Through an iterative
procedure, which starts from the possible matching pairs (minutiae or ridge curve), the
minutiae in the input fingerprint are locally moved to better fit the template minutiae.

In this chapter, we propose a combined RBF model for correcting fingerprint elastic
distortion (see Figure 7.1 for an illustration). The main contributions of this work have
two aspects: first, lead RBF model into fingerprint distortion and find the best basis
function and parameters for this problem; second, propose a combined RBF model which
separately uses rigid and nonrigid transformations based on particularity of fingerprint
distortion. Experiments with data of 20 real fingerprints show our combined RBF model
can decrease a horrible distortion into around 30% comparing with a rigid transformation.

Fingerprint image
   acquisition

Fingerprint image
  preprocessing

Minutiae extraction
using EDT, fingerprint 

classification

Matching

Result

Enhancement

Segmentation 
and/or

Binarization

Denoising

Reference fingerprint
dadabase

Distortion correction

Figure 7.1: A flowchart showing different phases of fingerprint analysis. The highlighted
block shows our work in this chapter.
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In RBF model, control-points are required to construct the linear and nonlinear com-
ponents. Process of finding these control-points between input and templet fingerprints
is called indexing or alignment. So we first briefly review the technique of indexing we
used in below.

7.2 Indexing Using Delaunay Triangulation

Indexing has received considerable attention in the literature [54, 12, 6] since it does not
require considering each template separately, thus, it is less dependent on the database
size. During indexing, features which remain unchanged under geometric transformations
(invariants) are extracted from groups of template points and used to form indices. The
indexed locations are filled with entries containing references to the templates. The tem-
plates listed in the indexed entries are collected into a list of candidate templates and the
most often indexed templates are selected for further verification.

Although indexing is an attractive approach, very often it becomes less effective due to
limited index selectivity. The heart of the problem is the low dimensionality of the invari-
ants used to form the indices. In addition, indexing has high memory requirements. In
the case of fingerprints, memory requirements can become much higher since fingerprints
contain more features on the average than typical objects. Indexing usually consider every
possible group of features (of a specific size) for building the table. There are two main
reasons for this: first, it is desirable to build some degree of redundancy in the table so
recognition can become more robust and second, there is usually no a-priori knowledge
for choosing certain groups over others. Although redundancy can improve robustness,
redundancy with limited index selectivity increase false positives, slowing recognition time
significantly

One way to deal with the problem of limited index selectivity is by choosing larger
size groups. However, this will further increase memory requirements since the number
of groups increases exponentially with size [16]. To get around this problem, grouping
has been suggested in object recognition to identify important groups of features only
[46]. Using grouping in fingerprint recognition, however, will not be a good idea since the
minutiae have a rather random distribution. Another idea to improve index selectivity is
by adding new invariants to the index, thus, increasing its dimensionality. The FLASH
algorithm is based on this idea [12]. In [35], the FLASH algorithm was used for fingerprint
identification. FLASH considers triangles of minutiae to compute a 9-dimensional index
which includes information about the lengths of the sides of the triangle formed by the
triangle, the ridge count between each pair, and angle information. Although the idea of
using high-dimensional invariants does improve index selectivity, new issues arise since we
need to consider how the high-dimensional invariants will be computed fast and reliably.

We use a new indexing approach. Central to the new approach is the idea of associat-
ing a unique topological structure with the minutiae using Delaunay triangulation. The
minutiae triangles of the Delaunay triangulation are then used for indexing. There are
several advantages behind this idea. First of all, we only consider O(N) triangles for in-
dexing, implying lower memory requirements and less redundancy. Second, the minutiae
triangles of the Delaunay triangulation have good discrimination power since, among all
possible triangles, they are the only ones satisfying the properties of the Delaunay trian-
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gulation. The improved index selectivity has less redundancy of the information. Finally,
indexing can be implemented in a low-dimensional space

7.2.1 Delaunay Triangulation

Triangulation is a process that takes a region of space and divides it into subregions.
The space may be of any dimension, however, a 2D space is considered here since we
are dealing with 2D points (minutiae). In this case, the subregions are simply triangles.
Triangulation has many applications in finite elements simulation, surface approximation
and nearest neighbor identification [82, 7]. Here, however, our goal, is to associate a 2D
topological structure with the minutiae.

The Delaunay triangulation for a set S of points in the plane is the triangulation
DT (S) of S such that no point in S is inside the circum-circle of any triangle in DT (S).
Delaunay triangulations maximize the minimum angle of all the angles of the triangles in
the triangulation; they tend to avoid “sliver” triangles.

Given a set S of points p1, p2, . . . , pN , we can compute the Delaunay triangulation of S
by first computing its Voronoi diagram. The Voronoi diagram decomposes the 2D space
into regions around each point such that all the points in the region around pi are closer
to pi than they are to any other point in S. Given the Voronoi diagram, the Delaunay
triangulation can be formed by connecting the centers of every pair of neighboring Voronoi
regions. Figure 7.2(left) shows a set of 2D points, their Voronoi diagram is shown in Figure
7.2(middle) while their Delaunay triangulation is shown in Figure 7.2(right). Delaunay
triangulation has certain properties, including: (i) the Delaunay triangulation of a non-
degenerate set of points is unique, (ii) a circle through the three points of a Delaunay
triangle contains no other points and (iii) the minimum angle across all the angles in all
the triangles in a Delaunay triangulation is greater than the minimum angle in any other
triangulation of the same points.
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Figure 7.2: (left) A set of points, (middle) its Voronoi diagram, and (right) its Delaunay
triangulation.

Property i supports the use the Delaunay triangles for indexing. Property ii implies
that the insertion of a new point in a Delaunay triangulation affects only the triangles
whose circum circles contain that point. As a result,noise affects the Delaunay triangu-
lation only locally. This is very important in the context of our application. The last
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property implies that the triangles obtained are not skinny. This is also very desirable in
our application since the computation of the geometric transformations between finger-
prints is based on corresponding minutiae triangles. Using skinny triangles can lead to
instabilities and errors [54]. In a comparison study that involved several well known topo-
logical structures [85], the Delaunay triangulation was found to have the best structural
stability under random positional perturbations.

The Delaunay triangulation and the Voronoi diagram are very efficient algorithms
since the number of edges in both of them is proportional to a small constant times the
number of points (O(N)). Since each edge belongs to at most two triangles or polygons,
then the number of triangles generated by the Delaunay triangulation is also linear to the
number of points. The complexity of the algorithm is O(Nlog(N)) (N is the number of
points).

7.2.2 Building the Index Table

Once the minutiae have been extracted, their Delaunay triangulation is computed. Figure
7.3 demonstrates the Delaunay triangulation of the minutiae extracted from one of the
fingerprints.

Figure 7.3: The Delaunay triangulation of minutiae.

The index table is built by considering the minutiae triangles formed by the Delaunay
triangulation. Then, an index is formed using the invariants and appropriate information
is stored in the indexed table location. Without using the Delaunay triangulation, we
would have to consider every possible triangle. Assuming N minutiae on the average, the
number of possible triangles is O(N3). In contrast, the Delaunay triangulation yields only
O(N) triangles. Since these triangles satisfy the properties of the Delaunay triangulation,
they can be found through a well defined procedure and have good discrimination power.
Using these triangles for indexing preserves index selectivity and allows for implementing
a low dimensional indexing scheme.
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Given a minutiae triangle (e.g., see Figure 7.4), we compute invariants which are then
used to form a high dimensional index. The invariants are based on the edges and angles
of the minutiae and the orientation field:

(L, θ1, θ2, T1, T2, R)

where L is the length l3 of edge AB (here, we use edge AB as an instance); θ1 and
θ2 are the angles between the edge AB and the orientation field at the point A and B
respectively; T1 and T2 are minutiae types of minutiae A and B; R is the number of ridges
that edge AB crosses over.

A

B C

l3 l2

l1

Figure 7.4: Invariants using the minutiae triangle.

As using triangle edge as comparing index has many advantages. We first compute
the Delaunay triangulation of minutiae sets of input and template fingerprints. Second,
use triangle edge as our comparing index. To compare two edges, L, θ1, θ2, T1, T2, R values
are used, all of which invariant of the translation and rotation. We assume two edges
match if they satisfy the following set of conditions:

|Linput − Ltemplate|
max(Linput, Ltemplate)

< t1

|θ1input − θ1template| < t2

|θ2input − θ2template| < t2

T1input = T1template

T2input = T2template

|Rinput −Rtemplate| < t3

where ti is a threshold.

If one edge from an input image matches two or more edges from the template image,
we need to consider the triangulation to which this triangle edge belongs to and compare
the triangle pair. Each index generated by a input fingerprint is used to retrieve all
template fingerprints stored in the database under the same index.

Most indexing-based approaches accumulate evidence about a template by casting a
vote for every entry stored in the indexed locations and by histograming the entries to pick
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the ones which have received a high number of votes [54]. The problem with this approach
is that it takes into consideration only the number of votes received by a particular entry
and does not consider whether these votes are consistent among themselves. To introduce
a measure of coherence, Lamiroy and Gros have proposed voting in the transformation
space [55]. The key idea behind this approach is to consider transformations which form
large clusters in the transformation space. The same idea was also used in [35].

We have also adopted this idea in our work since it is very effective. Specifically, each
of the entries retrieved from the index table represents a hypothesized correspondence
between minutiae in the input fingerprint and minutiae in the template fingerprint. These
correspondent minutiae are the control-points we expect for our combined RBF model.

7.3 Fingerprint Deformation

The most conversional fingerprint matching techniques simply use rigid-Affine transfor-
mation to deal with distortion. However, they invariably lead to unsatisfactory matching
results since the distortion is basically elastic in nature, owning to the soft tissue of finger.
Actually, distortion is a combination of rigid and nonrigid transformations. Below, we
briefly discuss the rigid-affine model and the nonrigid model.

7.3.1 Rigid-Affine Model

A spatial transformation is considered rigid if the spatial distance between consecutive
points is preserved. Rigid transformation can be decomposed into a translation and/or
rotation. A translation is a constant displacement over space. A rigid model is a con-
strained subset of an affine model. So, an affine transformation can be decomposed into
a linear transformation and a translation. In 2D, a simple affine transformation can be
expressed by a linear polynomial of the following equation:

fk(~x) = a1k + a2kx + a3ky k = 1, 2 (7.1)

where ~x = (x, y).

With a rigid-affine model, fingerprint structures retain their shape and form during
matching. This limits their practical application. To address the issue of deformable
behavior, we need an elastic model in which a structure may not necessarily retain its
shape or form during transformation.

7.3.2 Nonrigid Model

A nonrigid transformation is opposite to a rigid one, in which the spatial distance between
consecutive points cannot be preserved owing to various pressures on finger surface. In
this case, prints are compressed on themselves or stretched. Such behavior is synonymous
with the characteristics of a higher degree polynomial:

fk(~x) =
n∑

i=0

(a1kx
i + a2ky

i) k = 1, 2; n ≥ 3 (7.2)
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7.3.3 Radial Basis Function

Scattered data interpolation is fundamental in deriving a smooth spatial transformation
from the correspondence of minutiae between a pair of prints. The advantage of using
scattered data interpolation methods to model deformation is that they need fewer control-
points, or the control-points are sparsely distributed. The problem of scattered data
interpolation can be formulated as follows:

Problem 1 Given n pairs of data points (~xi, ~ui), where ~xi, ~ui ∈ Rd and i = 1, . . . , n,
derive a continuous function f : Rd 7→ Rd with f(~xi) = ~ui.

Control-points in input and template prints can be extracted by an indexing algorithm
using Delaunay triangulation. One way of approaching scattered data interpolation is to
use Radial Basis Function, abbreviated RBF. The RBF [73, 3] offers several advantages.
First of all the geometry of the control-points is by no means restricted. This implies that
the distribution of control-points can be both sparse and irregular. Secondly, the RBF
provides easily controllable behavior that can be tailored to meet specific requirements.
An RBF may be purely deformable, or it may contain some form of linear component,
allowing both local and global deformations.

RBF Interpolation

Generally, a RBF spatial transformation in d dimensions, denoted T (~x), is composed of
k mapping functions k = 1, . . . , d such that:

T (~x) = [f1(~x), . . . , fk(~x), . . . , fd(~x), . . . , ] (7.3)

where f1(~x) represents the mapping function in the first dimension etc. Each of the
mapping functions can be decomposed into a global component and a local component.
Although the two components are distinct, they are evaluated almost simultaneously,
giving rise to a single transformation. This decomposition enables a family of transforma-
tions to be defined where, if desired, the influence of each control-point can be controlled.
Given n corresponding control-point pairs, each of the k mapping functions of the RBF
has the following general form:

fk(~x) = Pmk(~x) +
n∑

i=1

Aikg(ri) (7.4)

The first component Pmk(~x) is the global linear transformation denoted by a polynomial
of degree m. In 2 dimensions, the general form of a linear polynomial (see formula
7.1, m = 1) is used, making the global component an affine transformation. The latter
component is the sum of a weighted elastic or nonlinear basis function g(ri), where ri

denotes the Euclidean norm, such that:

ri = [~x− ~xi]
1
2 or ri = ‖~x− ~xi‖ (7.5)

The coefficients of the function fk(~x) are determined by following conditions:

f1(~xj) = uj and f2(~xj) = vj for j = 1, . . . , n (7.6)
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giving n linear equations together with the additional compatibility constraints:

n∑

i=1

Aik =
n∑

i=1

Aikxi =
n∑

i=1

Aikyi = 0 (7.7)

These conditions guarantee that the RBF is affine reducible. The coefficients of the basis
function and the polynomial can now be found by solving the linear system:

W = L−1Y (7.8)

where

L =

[
G P
P T 0

]
(7.9)

G =




g(r11) g(r12) · · · g(r1n)
g(r21) g(r22) · · · g(r2n)

...
...

. . .
...

g(rn1) g(rn2) · · · g(rnn)




(7.10)

P T =




1 1 · · · 1
x1 x2 · · · xn

y1 y2 · · · yn)


 (7.11)

W T =

[
A11 A21 · · · An1 a11 a21 a31

A12 A22 · · · An2 a12 a22 a32

]
(7.12)

Y T =

[
u1 u2 · · · un 0 0 0
v1 v2 · · · vn 0 0 0

]
(7.13)

Basis Functions

A number of candidate 2D basis functions are given in Table7.1. The choice of a basis
function is determined by the interpolation conditions and the desired properties of the
interpolation. Radial basis functions can be tailored to many specific needs, and their
range of influence can be controlled by adjusting the parameters of the RBF.

As Table 7.1 illustrates, both the TPS and multiquadric basis functions monotoni-
cally increase with distance from the center. In contrast, the Wendland, Gaussian and
Inverse MQ basis functions monotonically decrease with distance from the center. Since
fingerprint distortion is elastic rather than viscous (like brain tissue for example), the
influence of control-points on the corrected results increases with distance at a certain
range from the center. On the other hand, fingerprint distortion is not globally uniform.
For instance, if one side of a traction deformation center is compressed, the opposite side
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Table 7.1: Basis Functions

Basis Function g(ri) Parameters

Linear ri -
Thin-Plate Spline(TPS) r2

i log ri -
Wendland (1− ri)

4
+(4ri + 1) -

Multiquadric(MQ) (r2
i + δ)+µ δ > 0, 0 < µ

Inverse Multiquadric (r2
i + δ)−µ δ > 0, 0 < µ

Gaussian e(−r2
i /δ) δ > 0

must be dilated. Therefore, MQ suits elastic deformation. Gaussian and Inverse MQ basis
functions, especially Wendland’s Compactly Supported Function [32] are more suitable
for viscous deformation problems. As TPS and Wendland have no parameters, clearly
they cannot adapt themselves to a particular deformation problem. They may not be a
good choice for our problem.

In the following section, we discuss the interpolation effects by means of these five
basis functions with different parameters, and find out the best basis function, meanwhile,
choose the best parameter.

7.4 Experimental Comparison Among Various Basis

Functions

To show how the nonrigid deformation model can deal with distortion by means of different
RBF basis functions, a numerical evaluation measure employs an average distance of all
minutiae pairs between input print and template print:

r̄ =

∑n
i=1[(u

′
i − ui)

2 + (v′i − vi)
2]

1
2

n
(7.14)

where f1(~xi) = u′i and f2(~xi) = v′i for i = 1, . . . , n, and point (xi, yi) is a minutia in input
print, similarly, point (ui, vi) is the corresponding minutia in template print.

7.4.1 Evaluation Using Different Parameter Values

As an illustration of Table 7.1, MQ, inverse MQ, and Gaussian basis functions have at
least one parameter, so we evaluate these functions through a reasonable range of each
parameter. On the contrary, TPS and Wendland basis functions produce only one value
for each of them.

Our strategy is follows: First, fix µ′ by a value common in literatures and then find
out the δ∗ which locally minimizes the r̄. Finally, find out the µ∗ making r̄ minimal using
δ∗ (see Figure 7.5 for an illustration).

We tested 20 pairs of prints from different fingers scanned by the FUJITSU Fingerprint
Sensor (model: FS-210u). Size and resolution are 300 × 300 and 500dpi respectively.
These fingerprints contain horrible distortions than the prints in the FVC2000 database
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(a) MQ (0 ≤ δ ≤ 1;µ = 0.5)
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(b) MQ (δ∗ = 0; 0 ≤ µ ≤ 1)
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(c) IMQ (0 ≤ δ ≤ 1000;µ = 0.5)
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(d) IMQ (δ∗ = 171; 0 ≤ µ ≤ 10)
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Figure 7.5: (a) and (b) show µ∗ = 0.2, δ∗ = 0 can make a normal RBF model using MQ
basis function locally minimal; (c) and (d) are similar to (a) and (b), µ∗ = 0.46, δ∗ = 171;
(e) show δ∗ = 412 can make a normal RBF model using Gaussian basis function locally
minimal.
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[?]. Figure 7.5 shows the average searching results of the MQ, inverse MQ, and Gaussian
basis functions through a reasonable parameter range. The parameters found and the
minimal average distance r̄ are listed in Table 7.2. We also list the average distance r̄rigid

of minutiae pairs with rigid transformation.

Table 7.2: Evaluation of various basis functions.

Basis Function min r̄ Parameters

Thin-Plate Spline(TPS) 8.5643 -
Wendland 6.3475 -
Multiquadric(MQ) 6.0104 δ∗ = 0, µ∗ = 0.2
Inverse Multiquadric 6.0264 δ∗ = 171, µ∗ = 0.46
Gaussian 6.2041 δ∗ = 412

Rigid Transformation r̄rigid = 17.5852

The results show that the MQ basis function with δ = 0, µ = 0.2 obtains the best
correction. It closely meets the analysis in subsection 7.3.3. However, the parameters
generated by the above strategy are not optimal, nor are they adaptive. Our goal is to
further improve the accuracy of the nonrigid model. To this end, we employed locality
parameters.

7.4.2 Evaluation Using Locality Parameters

As the property of fingerprint distortion, we would like to control the area of influence
of each basis function. Locality parameters, which can control the range of influence of
a basis function, can perform that task. They give less weight to distant control-points
and more weight to neighboring ones. For this reason, locality parameters induce a
better smoothness of the interpolation at the given control-points. The selection of such
parameters is critical for improving fingerprint matching.

An adaptive locality parameter was suggested by D. Ruprecht and H. Müler [73]. The
value of δ is extended to use unique values for each control-point, calculated from the
distance to the nearest neighboring control-point. This essentially allows the distortion
to be softer where control-points are widely spaced and stronger where they are closer
together. This may more effectively work on variably sparse or dense control-point set,
such as fingerprint minutiae. From the evaluation described in the previous subsection,
the MQ basis function gets the best score. Using this adaptive locality parameter, it is
modified as:

g(ri) = (r2
i + δi)

±µ (7.15)

where δi = mini6=j(rij) (j = 1, . . . , n). Here, we simply apply Delaunay triangulation [7]
on these control-points, then the δi can be easily obtained.

The results are listed in Table 7.3. It can be seen that the locality parameter does
indeed improve interpolation of MQ, but not much, because RBF depends heavily on
control-points selection. If the control-points are uniformly distributed on fingerprint, our
RBF distortion model works very well. Unfortunately, our alignment algorithm cannot
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guarantee this severe requirement. Therefore, we introduced a more precise distortion
model.

7.5 A Combined RBF Model

When the finger tip is orthogonally pressed against the plain surface of a fingerprint
sensor, not whole finger surface is orthogonal to the sensor surface due to the convexity
and soft tissue of the finger. Therefore, the pressures on the fingerprint are not uniform,
but monotonically decrease from the center (see Figure 7.6). We roughly separate a
fingerprint image scanned by planar sensor into two regions [14]:

I Rigid region. This is the closest contact region with the highest pressure, which
normally does not allow skin slippage. In our method, the radii of region I is 1/3
of radius of whole fingerprint region.

II Nonrigid region. Pressure monotonically decreases from the boundary of region I
to the external boundary of region II. The main elastic distortion is located in this
region.

I

II

Figure 7.6: Bottom views of a finger without and with distortion, two pressure touching
regions.

With this observation, we are ready to modify the method in previous section. From
section 7.3.3, we know RBF consists of a linear transformation and a nonlinear transforma-
tion (see equation 1,4). All coefficients of both components are calculated simultaneously
in the previous RBF model. Therefore, the control-points in nonrigid region II must af-
fect the accuracy of the linear polynomial. For distortion correction, it is advantageous to
more precisely compute the linear polynomial. According to the definition of rigid region
I, the minutiae in this region are almost relatively motionless, whether the print contains
distortion or not. Hence the control-points in region I can contribute to the polynomial
of the linear transformation of the whole print. The distortion in nonrigid region II is
caused by the same linear transformation and the local nonlinear transformation synchro-
nously. Our strategy is as follows: first, estimate the linear transformation of the whole
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print by the control-points in region I; second, remove the linear transformation effect of
the control-points in region II, and then construct a RBF distortion model for region II;
finally, correct distortions in regions I and II, respectively. According to this idea, we
modified the method and equations 8,12,13 as follows:

W ′ = L−1Y ′, (7.16)

where

ϕik = a1k + a2kxi + a3kyi , (7.17)

Y ′T =

[
u1 − ϕ11 · · · un − ϕn1 0 0 0
v1 − ϕ12 · · · vn − ϕn2 0 0 0

]

,

(7.18)

W ′T =

[
A11 A21 · · · An1 0 0 0
A12 A22 · · · An2 0 0 0

]

.

(7.19)

Input: Minutiae X and U from input and template fingerprints respectively.

Output: Minutiae X ′ in the corrected fingerprint.

1. Substitute three paired control-points1 ~xc
i ∈ XI and ~uc

i ∈ UI , which locate in rigid
regions I, into equation 1, and then obtain aik.

2. ∀~xc
i ∈ XII and ∀~uc

i ∈ UII , which locate in nonrigid regions II, Orderly compute
equations 17, 18 and 16. Obtain Aik.

3. For all ~xi ∈ X

If ~xi ∈ XI ; Then ~x′i ← equation 1.

If ~xi ∈ XII ; Then ~x′i ← equation 4.

End

In steps 2 and 3, we still employ the RBF model with locality parameters. The visual
results are shown in Figure 7.7 and the average distance is listed in Table 7.3. Figure 7.7a
and b are prints without and with distortion. Part c and d are correction results using
the rigid and combined RBF model, respectively. Circles in these figures denote their
own minutiae; crosses denote the mapped minutiae from prints with distortion. Part d
clearly shows that most mapped minutiae are very close to the minutiae to be matched.
The numerical measure r̄1 of Figure 1d is 5.2478; r̄2 of Figure 2d is 5.2045. Then, these
visual results and a better average distance r̄ prove that the combined RBF model has
more capability to cope with distortion owing to the more precise rigid transformation.

1Formula 1 shows that there are six coefficients to be specified. This means at least three paired
control-points in region I are required. Experiments show that this demand can be easily filled.
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1a(left), 2a(right) Regular prints.

(1b, 2b) Prints with distortion.

(1c, 2c) Using rigid transformation.
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(1d, 2d) Using RBF combined-distortion model.

Figure 7.7: Minutiae correspondence before and after the application of combined RBF
model

Table 7.3: Comparative results among MQ models

Method(MQ) r̄ Parameters

Global Parameter 6.0104 δ∗ = 0, µ∗ = 0.2
Locality Parameter 5.9454 δi, µ

∗ = 0.2
combined-distortion model 5.2136 aik, δi, µ

∗ = 0.2

Rigid Transformation r̄rigid = 17.5852

7.6 Conclusion

This chapter introduces a combined RBF model for correcting fingerprint elastic dis-
tortion. We first studied the properties of RBF and proposed a normal RBF model
with an appropriate basis function and locality parameters, rather than the parameters
common in literature. However, this improvement is not great. According to the partic-
ularity of fingerprint distortion, we further propose an improved combined RBF model,
which separately builds rigid and nonrigid transformations, to attack the distortion prob-
lem. Combined RBF model provides more accurate mapping function between a possible
matched-pair. Experiments show our combined RBF model can decrease a horrible dis-
tortion into around 30% compared with a rigid transformation.

Our future efforts will target a more in-depth study of the properties of fingerprint
distortion and the design of an effective and efficient optimization basis function.
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Chapter 8

Fingerprint Matching

8.1 Introduction

A fingerprint matching algorithm compares a input fingerprint with a templet fingerprint
stored in database; and returns either a degree of similarity (without loss of general-
ity, a score between 0 and 1) or a binary decision (mated/non-mated). Most matching
algorithms require an intermediate fingerprint representation derived through a feature
extraction stage. Among them, minutiae matching is certainly the most well-known and
widely used method for fingerprint matching, thanks to its strict analogy with the way
that forensic experts compare fingerprints and its acceptance as a proof of identity in the
courts of law in almost all countries.

Let T and I be the representation of a template and input fingerprint, respectively.
Each minutia may be described by a number of attributes, including its location in the
fingerprint image, orientation, type (e.g., ridge termination or ridge bifurcation), a weight
based on the quality of the fingerprint image in the neighborhood of the minutia, and
so on. Most common minutiae matching algorithms consider each minutia as a triplet
m = {x, y, θ} that indicates the (x, y) minutia location coordinates and the minutia angle
θ:

T = {m1,m2, . . . , mm}, mi = {xi, yi, θi}, i = 1, . . . , m
I = {m′

1,m
′
2, . . . , m

′
n}, m′

j = {x′j, y′j, θ′j}, j = 1, . . . , n

where m and n denote the number of minutiae in T and I, respectively.

A minutia m′
j in I and a minutia mi in T are considered “matching”, if the spatial

distance sd between them is smaller than a given tolerance r0 and the direction difference
dd between them is smaller than an angular tolerance θ0:

sd(m′
j,mi) =

√
(x′j − xi)2 + (y′j − yj)2 ≤ r0

dd(m′
j,mi) = min(|θ′j − θi|, 360◦ − |θ′j − θi|) ≤ θ0

(8.1)

Equation 8.1 takes the minimum of |θ′j−θi| and 360◦−|θ′j−θi| because of the circularity
of angles. The tolerance boxes (or hyper-spheres) defined by r0 and θ0 are necessary to
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compensate for the unavoidable errors made by feature extraction algorithms and to
account for the small distortions that cause the minutiae positions to change.

Let mm(.) be an indicator function (consistency measure) that returns 1 in the case
where the minutiae m′

j and mi match according to Equation 8.1:

mm(m′
j,mi) =

{
1 sd(m′

j,mi) ≤ r0 and dd(m′
j,mi) ≤ θ0

0 otherwise
(8.2)

Then, the fingerprint minutiae matching problem can be formulated as follows:

max min
m∑

i=1

mm(m′
PD(i),mi) (8.3)

where PD(i) is the alignment algorithm in section 7.2.2, which determines pairing between
I and T minutiae; in particular, each minutia has either exactly one mate in the other
fingerprint or has no mate at all.

To achieve consistency measure mm(.) in geometry aspect, the classical way is based
on tolerance box (e.g. circle, square or rectangle) [42, 43]. Jain, Hong and Holle. [47]
and Luo, Tian and Wu [60] proposed an adaptive tolerance box with respect to distance
in polar coordinates.

Figure 8.1: Minutiae of T are denoted by ◦, whereas I minutiae are denoted by ×. Pairing
is performed according to the minimum distance. The circles indicate the tolerance box
(the maximum spatial distance). The gray circles denote successfully mated minutiae;
minutia m1 of T and minutia m′

3 of I have no mates, minutiae m3 and m′
6 cannot be

mated due to their large direction difference.

Although, all of above matching methods employ some geometry information of minu-
tiae (e.g. type, coordinate and orientation). However, other particular information of
minutiae (especially for bifurcation) were lost, such as the shape of bifurcation. To in-
clude these information, precise calculating is naive and time consuming. In this chapter,
we design a simple polygon that include all previous information for bifurcation (and ter-
mination) minutia. Hence, based on a deterministic polygon matching algorithm, a new
fingerprint matching method is naturally proposed (see Figure 8.2 for an illustration). Its
time complexity of one simple polygon is (m + n) log(m + n).
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using EDT, fingerprint 
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Matching
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Reference fingerprint
dadabase
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Figure 8.2: A flowchart showing different phases of fingerprint analysis. The highlighted
block shows our work in this chapter.

8.2 Minutiae Polygons

8.2.1 Polygons of Bifurcation Minutiae

Let p be a bifurcation minutia with three ridges incident upon it, namely, where r is the
ridge before bifurcation, r1 and r2 are the two ridges after bifurcation. For each of r, r1

and r2, consider a line segment, which has length λ and is tangent to the corresponding
ridge at p. Let these three line segments be b1p, b2p and ap corresponding to r1, r2 and r,
respectively (see Figure 8.3 for an illustration). Let θ be the angle made by ap, measured
in counterclockwise direction with regard to x-axis. We call the group of the three line
segments b2p, b1p and ap as the bifurcation detail B(p, a, b1, b2) for minutia p.

Now consider a square ABCD = S(p, θ, ε) having side length ε, centered about the
minutia p, and having one of its sides perpendicular to ap, as shown in Figure 8.3. As
we go on sliding the minutia p with its three line segments within the ε-square, we get a
bifurcation polygon M (see Figure 8.4).

The polygon M can have different shapes, depending on the mutual orientations of
b1p, b2p and ap. When p coincides with A, the region around p can be divided into 4
quadrants, which are named as SLL (lower left region), SUL (upper left region), SUR

(upper right region), and SLR (lower right region), as shown in Figure 8.4. Each of b1 and
b2 can lie in any one of these 4 regions, thereby making 4 × 4 = 16 possibilities. Out of
these 16 possibilities, however, there will be 10 cases having distinct mutual positions of
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Figure 8.3: Minutia detail and defining ε-square box with regard to a bifurcation minutia
at p.

p

a

SUL SUR

SLL SLR

ε

λ
ε

λλb1

b2

Figure 8.4: Bifurcation polygon (case 1).

b1 and b2, considering the inter-changeability of b1 and b2. That is, for example, the case
of b1 ∈ SLR and b2 ∈ SUR, and the case of b2 ∈ SLR and b1 ∈ RUR, which are 2 different
cases in 16 possibilities, are the same in the later 10 cases. These 10 cases are enumerated
in Table 8.1. Cases 2, 6 and 9 can have two subcases each, depending on the relative
x-axis (or, y-axis) coordinates of b1 and b2, which will have differently shaped polygons
of M. Therefore, we get 7 + 6 = 13 different polygons, which are shown in Figures 8.4
and 8.5.

For a valid bifurcation minutia p, the angle 6 (b1, p, b2) should be less than both
6 (b1, p, a) and 6 (b2, p, a), which helps us to distinguish r form r1 and r2. Keeping this
point in consideration, out of the above 10 cases, cases 3, 4 and 7 are not possible for a
valid bifurcation minutia. Hence we have only 13 − 3 = 10 possible differently shaped
polygons.
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Figure 8.5: Bifurcation polygons (case 2 – 10).
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Table 8.1: Different cases for polygon formation

Case b1 ∈ b2 ∈ Condition

1 SLL SLL

2 (a) SLL SUL x[b1] ≤ x[b2]
2 (b) SLL SUL x[b1] > x[b2]
3 SLL SUR

4 SLL SLR

5 SUL SUL

6 (a) SUL SUR y[b1] ≤ y[b2]
6 (b) SLL SUR y[b1] > y[b2]
7 SUL SLR

8 SUR SUR

9 (a) SUR SLR x[b1] ≤ x[b2]
9 (a) SUR SLR x[b1] > x[b2]
10 SLR SLR

8.2.2 Polygon of Termination Minutiae

Let p also be a termination minutia. As there is only one ridge r incident upon it. A
termination detail T (p, a) has just one line segment ap corresponding to r, which is defined
as same as bifurcation detail. So, only the line segment ap contributes to termination
polygon. Analogously slid the minutia p with line segment ap within square S(p, θ, ε), we
get a termination polygon M, i.e. a rectangle (see Figure 8.6). Certainly, the shape of
termination polygon is unique.

p

a

SUL SUR

SLL SLR
ε

λ

ε

Figure 8.6: Termination polygon.

8.3 Polygon Generation

To generate the polygons for minutiae, those three line segments b2p, b1p and ap are
required. In discrete image, however, obtaining such above line segment is a non-trivial
task. Difficulty mainly focuses on the fingerprint ridge are a thick line object (i.e. the
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width of ridge are always greater than one pixel). On the contrary, the line segment
for generating polygon is a thin object (i.e. one pixel wide). How to determine the line
segment from a thick ridge has arisen.

In image processing, skeleton is often used to represent the structure of an object.
Essentially, the above line segment is another representation of a skeleton of fingerprint
ridge. Therefore, skeleton of minutiae ridge can be employed for minutiae polygon gener-
ation. There are a lot of skeleton algorithms were described in literature [93, 10, 36, 8].
Owing to our system uses Euclidean distance transform through preprocessing of AFIS
for reducing processing time, in this phase, we also employ a skeleton extraction algorithm
using Euclidean distance transform [79].

8.3.1 Skeleton Extraction

The distance function of pixel p ∈ Ob is defined as the smallest distance of p from all the
background pixels q ∈ Bg (please refer Equation 3.2). That is

Id(p) = min
q∈Bg

{d(p, q)}
where d(p, q) is the Euclidean distance between p and q. The skeleton can be easily derived
that if and only if a point p belongs to the skeleton of a ridge and a maximal disk with
the radius Id(p) hits the contour of Bg at least two places. We give out a definition as
below:

Definition 6 If the set A(p) contains more than one element, then p is a skeleton point.

A(p) = {q|d(p, q) = Id(p), q ∈ Bg}

Prior to giving out the skeleton extraction algorithm, two basic definitions are illus-
trated below.

1. Start point : The start point is one on the boundary of minutiae region (please
refer Figure 6.9), whose non-minutia neighbor has a 9 EDT circle covering two
background components. The start points are considered as sources or elementary
cells of the skeleton which grows up emitting from it. Start point is colored red in
Figures 8.I and 8.II. Its non-minutia neighbor, which has a 9 EDT circle covering
two background components, is colored green.

2. Branch generation: The set of points {pi} is called the directional-neighborhood of
p, denoted by Dp, if they are in the 8-neighborhood of p and located within ±45◦

slope changes from the current medial axis orientation of p. For example, using the
8-neighbors labeled p1, p2, . . . , p8 counterclockwise from the positive x axis of p, if
p7 and p are the skeleton points, the points p2, p3, p4 are the directional neighbors
of p, i.e. Dp = {p2, p3, p4}. Several cases are illustrated below:

p4 p3 p2 . . p2 p4 p3 . . p3 p2

. p . p5 p p1 p5 p . . p p1

. p7 . . . p8 . . p8 p6 . .
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Note that the set of directional-neighborhood contains always three elements. The
branch generation is to add the point which is the maximum of p’s directional-
neighborhood (see the blue points in Figures 8.I and 8.II). That is to say:

pnext = max
pi∈Dp

{pi} (8.4)

3. Minutia point : The minutia point is the one being the maxima (i.e. the largest
EDT value locally) in extracted minutiae region. Occasionally, there would exist
more than one maxima points in one minutiae region. In this case, the midpoint
among them is chosen as the minutia point.

The algorithm of skeleton extraction for minutiae is described as follows:

Input: Fingerprint image IEDT represented by EDT values and minutiae regions.

Output: Short skeleton incident upon the minutia.

1. Pick up a start point from minutiae region as initial skeleton point.

2. Choose its non-minutia neighbor that has a 9 EDT circle covering two background
components as next skeleton point. If number of eligible neighbors is more than one,
choose the midpoint of them.

3. Starting from start points and its chosen neighbor, the branch generation is used to
add more skeleton points. For each branch, the branch generation halts at the fifth
skeleton point.

4. Connect start points with minutia point to complete the skeleton.

Following shows the skeleton of fingerprint minutia.
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Figure 8.I: Skeleton of bifurcation.
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Figure 8.II: Skeleton of termination

8.3.2 Polygon Generation

The theoretical definition of line segments b1p, b2p and ap defines that they are tangent to
the corresponding ridges at minutia point p. But in discrete domain, it is a bit complicate
in practice. An alternative approach simply connects the fifth skeleton point with minutia
point on each branch. Therefore, they have almost 6 pixels length (please recall Section
6.2.3). Such line segments can generate similar minutia polygon without losing matching
accuracy.

With the line segments b1p, b2p and ap ready, we do Minkowski sum [51] of the minutia
detail B(p, a, b1, b2) (or T (p, a)) and the square S(p, θ, ε).

M = B(p, a, b1, b2) ∪ S(p, θ, ε) or T (p, a) ∪ S(p, θ, ε) (8.5)

Then ten different bifurcation polygons and one termination polygon are obtained.

8.4 Polygon Matching

The polygon matching is a kind of computation of the dissimilarity between the two
polygons. In other words, given two shapes P and Q, how much do they resemble each
other? (or: Are they identical up to some tolerance δ > 0 ?) P will be the input polygon
and Q is a template one. Here we will assume that P and Q are simple polygons in the
plane. Geometrically, the problem above can be formulated as follows:

Problem 2 Given P , Q, find the distance d(P,Q) between P and Q.

The simplest way to compute d(P, Q) is measuring how much P and Q overlapped.
Formally:
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d(P,Q) = 1− 2P
⋂

Q

P + Q
(8.6)

From above equation, it is clear that the less d(P, Q) denotes P and Q are closer
and more resemblant. However, if we fix the spatial distance between P and Q, this
d(P, Q) cannot represent how different they are. Therefore, more reliable distance metric
is necessary.

8.4.1 Hausdorff Distance

In many applications, not all points from P need to have a corresponding point in Q,
due to occlusion. Typically, the two point sets are of different size, so that no one-to-one
correspondence exists between all points. In that case, a dissimilarity measure that is
often used is the Hausdorff distance. Given two finite points sets P = {p1, . . . , pi} and
Q = {q1 . . . , qj}, the Hausdorff distance is defined as:

H(P, Q) = max(h(P,Q), h(Q,P )) (8.7)

where
h(P, Q) = max

p∈P
min
q∈Q

‖ p− q ‖
and ‖ · ‖ is some underlying norm on the points of P and Q (e.g., the L2 or Euclidean
norm).

The function h(P, Q) is called the directed Hausdorff distance from P to Q (this func-
tion is not symmetric and thus is not a true distance). It identifies the point p ∈ P that
is farthest from any point of Q, and measures the distance from p to its nearest neighbor
in Q (using the given norm ‖ · ‖). That is, h(P,Q) in effect ranks each point of P based
on its distance to the nearest point of Q, and then uses the largest ranked such point as
the distance (the most mismatched point of P ). Intuitively, if h(P,Q) = d, then every
point of P must be within a distance d of some point of Q, and there also is some point
of P that is exactly distance d from the nearest point of Q (the most mismatched point)
and vice versa.

The Hausdorff distance, H(P, Q), is the maximum of h(P,Q) and h(Q,P ). Thus it
measures the degree of mismatch between two sets, by measuring the distance of the
point of p that is farthest from any point of Q and vice versa. Intuitively, if the Hausdorff
distance is d, then every point of P must be within a distance d of some point of Q and
vice versa. Thus the notion of resemblance encoded by this distance is that each member
of P be near some member of Q and vice versa. Unlike most methods of comparing
shapes, there is no explicit pairing of points of P with points of Q (for example many
points of P may be close to the same point of Q).

8.4.2 An Algorithm for the Hausdorff Distance of Two Polygons

Let P , Q be two polygons with p, q vertices, respectively. To determine the Hausdorff
distance between P and Q, we consider the Voronoi diagram of P , Vor(P ).
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Vor(P ) assigns to each edge and each vertex of P its Voronoi-cell, i.e. the set of points
in the plane which are closer to this element (i.e. edge or vertex) than to any other one.
The edges of Vor(P ) are either line segments (if they separate the cells of two edges or two
vertices of P ) or parabolic segments (if they separate the cell of a vertex from the cell of
an edge). Vor(P ) has O(p) edges and vertices and can be constructed in time O(p log p).
In order to obtain a finite problem we observe the following:

Consider the intersection of a Voronoi-cell Vor(P ) with Q. Suppose that we move
monotonically on an edge of Q within this Voronoi-cell Vor(P ). As easily can be seen the
distance to the corresponding element of P defining cell Vor(P ) first decreases and then
increases monotonically (or is just monotone increasing or just monotone decreasing). It
follows that the maximal distance of a point of Q on this edge to P must be assumed at
the end points of the edge or at the intersection point with some Voronoi edge bounding
cell Vor(P ) (see Figure 8.7 for an illustration).

Figure 8.7: Intersection of Voronoi-cell Vor(P ) with Q. P is colored black; its Voronoi
edges are red. Q is colored blue.

It follows that the distance h(Q,P ) must be assumed at a vertex of Q or an intersection
point of an edge of Q with a Voronoi-edge of P . Furthermore if we move monotonically
on a Voronoi-edge e of P , the distance to the elements whose cells are separated by this
edge is described before. Summarizing we have

Lemma 4 The distance of Q to P , h(Q, P ) is assumed either at some vertex of Q or at
some intersection point of Q with some Voronoi-edge e of P having either the smallest or
largest x-coordinate among the intersection points of Q with e.

Notice that the number of points in Lemma 4 is O(p + q). It remains to show how
to find these points and their nearest neighbors on P , that is we have to determine the
cells of Vor(P ) containing the vertices of Q and the elements of P closest to the critical
intersection points.
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We do this by a plane sweep across the arrangement obtained by the possibly split
edges of Vor(P ) and Q. In order to obtain only the extreme intersection points of each
edge e of Vor(P ), we delete e from the data structure (e.g. 2-3 tree) as soon as the first
intersection point with Q has been found. Two such sweeps, one from left to right and
one from right to left are necessary. Since there are O(p + q) event points we obtain an
O((p+g) log(p+q)) algorithm for determining all candidates in the sense of Lemma 4. By
determining their distance to P and taking their maximum, we get h(Q,P ). Analogously,
h(P,Q) and thus H(P,Q) can be determined.

8.5 Minutiae Polygons Matching

The purpose of fingerprint minutiae polygons matching is to find the minimum average
Hausdorff distance among all possible matched fingerprint pairs. After fingerprint distor-
tion correction, all minutiae and minutiae polygons of input fingerprint are mapped to
a new position on the template fingerprint. If two polygons intersect with same minutia
polygon case and similar orientation, they are defined as paired. For each paired polygons,
calculate the Hausdorff distance Hk(Pi, Qj). We give out the matching score:

M1 =
2mpaired

nP + nQ

, M2 =

∑mpaired

k=1 Hk(Pi, Qj)

mpaired

i = 1, . . . , n; j = 1, . . . , m. (8.8)

where mpaired, nP and nQ denote the number of paired minutiae polygons, minutiae in the
overlap area of input and template fingerprints, respectively.

8.6 experimental Results

We evaluated our method by testing it on Database FVC2000 which consists of 880
fingerprints, 8 prints of each of 110 distinct fingers. In addition, we also scanned 80
fingerprints with heavy distortion from FUJITSU Fingerprint Sensor (model: FS-210u),
4 prints of each of 20 distinct fingers.

Due to the lack of benchmark of minutiae matching performance, we compared our
matching method with the TPS-based algorithm in [5] on two aspects: computing time
and accuracy of identification. In our method, ε = 3 and λ = 5 were used to generate
minutia polygons; µ = 0.2 was employed for MQ basis function. For TPS-based algorithm,
a tolerance box with radius r = 5 was used. Since TPS-based algorithm uses three local
structures for each minutia in alignment step, iteratively registers minutiae between two
fingerprints, they lead to matching time consuming and a higher risk of matching two sim-
ilar fingerprints coming from distinct fingers. On the contrary, our method uses triangle
edges for alignment, number of comparison is less. Moreover, parameters tailor MQ basis
function more suitable for elastic distortion and minutiae polygon works as tolerance box
with higher capability of tolerating distortion. These two advantages make our matching
does not need iteration on registering minutiae. Therefore, our method costs 49ms for one
matching rather than 107ms of TPS-based algorithm on average. So, computing time is
faster around one time. The matching performance (ROC) curves plotting the false reject
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rate (FRR) against the false accept rate (FAR) at various thresholds is presented in Fig.
8.8. For the data in FVC2000, two methods has almost same accuracy owing to these
fingerprints with slightly elastic distortion. But for the scanned fingerprints with heavy
distortion, our method is more accurate. We believe that this is due to minutiae polygon
has a higher capability of tolerating distortion and MQ basis function can be tailored by
parameters for this particular problem. To sum up, our matching method using minutiae
polygons not only provides computational efficiency, but also leads to better performance
in matching.

10-3

10-2

10-1

100

10-3 10010-110-210-4

F
R
R

FAR

our method
prints in FVC 2000

scanned prints

TPS-based method
prints in FVC 2000

scanned prints

Figure 8.8: ROC curves on FVC2000 DB and scanned fingerprints obtained with the
proposed method and the algorithm in [5].

8.7 Conclusion

We proposed a novel minutiae matching algorithm which includes the detail of minutiae
information not only the type and orientation. Conventional minutiae matching algo-
rithms define the tolerance box simply and experientially. Hence, matching result always
heavily depends on the pre-defined size and shape of tolerance box. Our approach gathers
not only type, orientation but angle between two branches (for bifurcation) into a simple
minutiae polygon. An efficient algorithm is also designed aiming at polygon matching.
One significant advantage of minutia polygon is that it is adaptive and does not depend
on the size in an appropriate range. In other words, minutia polygon can be enlarged
or shrunk by a reasonable scale for matching without losing accuracy. Experiment re-
sult shows that fingerprints can be well matched using our algorithm based on minutia
polygon.
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Chapter 9

Conclusions

We finish the dissertation with a summary of contributions of our work and some discus-
sions for future research.

9.1 Contributions

In this thesis, we have developed new combinatorial techniques using computational geo-
metric algorithms to improve Automatic Fingerprint Identification Systems. Two impor-
tant issues, which obstruct AFIS becoming more efficient, have been addressed. They are
speeding up preprocessing of AFIS and coping with fingerprint distortion.

It is known that the preprocessing of AFIS consumes almost 90 ∼ 95% of the to-
tal time. Because most proposed methods only concentrate on a certain step of AFIS,
therefore, a whole AFIS have to apply various techniques in each step. No more help-
ful information, which can accelerate system, is inherited from previous step. It causes
identification procedure, especially the preprocessing, to take a long time.

To address speeding up processing, a crucial idea of our work is a linear time Euclidean
distance transform (EDT). The same feature of Euclidean distance transform can be used
for binarization, denoising, minutiae extraction and matching. An EDT matrix is obtained
in binarization. From then on, each step of preprocessing employs the same EDT matrix
as basis of current step’s method. Thanks to the EDT used as a measure of fingerprint
ridge/valley width, preprocessing steps can directly realize their own methods on it. This
strategy in real application can save a lot of time. Experiment results prove our methods
can save 20 ∼ 30% of computing time; and they are also adequately good for further
processing.

As using EDT as a basis technique through preprocessing of AFIS, we designed novel
algorithms for each step. They differ greatly from conventional methods and hold their
own advantages summarized as follows.

• In Chapter 4, we proposed a combinatorial algorithm for binarization of fingerprint
images using a linear time EDT algorithm. Most of the previous algorithms are
heuristics in that they do not start with a definition of an optimal threshold. In
contrast, we define a condition for an optimal threshold based on equal widths of
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ridges and valleys. Another significant advantage of our algorithm is that binariza-
tion and fingerprint area segmentation can be done simultaneously.

• In Chapter 5, we first proposed a simple and efficient (linear time) mathematical
morphology method to eliminate impulsive noise, which can be restricted to a min-
imum number of pixels. Besides, we provided an automatic approach without any
experiential parameter for choosing appropriate structuring elements to eliminate
useless components by using EDT.

• Most of the minutiae detection algorithms find out the minutiae from the one-pixel
thick ridge image obtained from thinning. In Chapter 6, we developed a new way for
detecting minutiae straightaway from the thick ridges of the binary image without
thinning! The most notable distinction of our work is that it uses fewest arbitrarily
selected parameters.

To cope with fingerprint distortion, we in-depth investigated property of finger tips;
and then proposed a powerful distortion model and a novel minutiae polygon matching
algorithm. Matching results show our method can correct around 70% of a horrible
distortion compared with a common method. They prove this model has a high capability
to cope with fingerprint distortion, even can catch up with some manual distortion model.
Following are their advantages:

• In Chapter 7, we proposed an combined radial basis function model, which sepa-
rately builds rigid and nonrigid transformations, for attacking fingerprint distortion
problem. This model improves around 16% of accuracy than a normal RBF model.

• In Chapter 8, we designed a novel fingerprint minutiae polygon matching algorithm.
Minutiae polygon includes more information of minutia than conventional tolerance
boxes. Moreover, it is adaptive and does not depend on the size in an appropriate
range.

9.2 Future Research Diections

We achieved a lot of work on reducing preprocessing time and improving accuracy of
distorted fingerprints matching. To make system “intelligently” identify distorted finger-
prints using fewest passible parameters, following issues will be challenging areas of future
research.

• The definition of the optimal threshold used for binarization algorithm has a draw-
back in realistic terms. During the acquisition of fingerprints, ridges, being the
elevated structures on the finger, exert more pressure on the device making the ac-
quisition. And as such, the widths of the ridges should be greater than the width
of the valley for a more realistic model. But, still the lemma 1 will hold and the
algorithm instead of trying to find the crossover point of sum total of SumDT1,0 and
SumDT0,1 will terminate when SumDT1,0 is greater than SumDT0,1 by a certain ε.
Determining this ε from real fingerprint images is a future problem we would like
to address.
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• Our alignment algorithm for fingerprint distortion cannot guarantee control points
are uniformly distributed in fingerprint image. This problem, occasionally, causes
our combined RBF model correct local distortions unsatisfactorily. Designing an
efficient alignment algorithm with more invariants could contribute to a better dis-
tortion correction. We are going to include the minutiae polygon to achieve above
purpose.

• Time complexity of computing Hausdorff distance between two minutiae polygons
matching is O(n log n) owing to minutiae polygon is a simple polygon. In practice, it
is a bit long for a real time system. If a convex polygon can also represent minutiae
detail, time complexity of our algorithm will decrease to linear. Our next step will
investigate the possibility of this idea.

• In addition, as iris recognition problem has some common characteristics with finger-
print recognition, we are trying to extend our proposed methods to iris recognition.
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