JAIST Repository

https://dspace.jaist.ac.jp/

K T- Robust Scalable Group Kpy Exc
with O(logn) Complexity
Author(s) Hat ano, Tetsuya; Miyaji, Atsuko;
L Lecture Notes in Computer| Scien
Citation
189-207
Issue Date 2011-07-02
Type Journal Article
Text version aut hor
URL http://hdl . handle.net/ 101009/ 985
This is the author-createfd vers
Tetsuya Hatano, Atsuko Milyaji,
_ Lecture Notes in Computer| Scien
Rights . :
2011, 189-207. The origingl pub
available at www.springer]ink.c
http://dx.doi.org/10.212007f978-3
Il nformation Security and Privac
Description Australasian Conference, ACI SP
Australia, July 11-13, 201
JAPAN
ADVANCED INSTITUTE OF
® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

hang:

0

ion
and
ce,
| i caf
om,
-642-

Yy, 1
2011,

T-Robust Scalable Group Key Exchange Protocol
with O(log n) complexity

Tetsuya Hatano, Atsuko Miyaji *, and Takashi Sato

Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. Group key exchange (GKE) allows a large group of n parties to
share a common secret key over insecure channels. The goal of this paper
is to present T-robust scalable GKE with communicational and computa-
tional complexity O(logn) for the size of n parties. As a result, our GKE
not only has a resistance to party failures resulting from party crashes,
run-down batteries, and network failures, but also satisfies scalability:
each party does not need to have the same environment such as computa-
tional resources, batteries, etc. The previous schemes in this area focus on
Burmester-Desmedt GKE with complexity O(n) (BDI) and without scal-
ability. As a result, the previous robust GKEs, proposed by Jarecki, Kim
and Tsudik (JKT), need computational complexity O(n) without scalability
although it allows any T-party fault in any position.

We, by focusing the well-known Burmester-Desmedt GKE with complex-
ity O(log 1) (BDII), propose a new robust GKE with scalability, called CH-
GKE. CH-GKE can reduce the communicational and computational complexity
and allow parties be in different environments. Then, we extend CH-GKE to
increase the number of faults and present T-robust scalable efficient GKE
by a novel combination of CH-GKE and JKT. Our T-robust scalable GKE
can work in flexible settings between fault tolerance and efficiency, such
as communicational and computational complexity.

Key words: group key exchange, robustness, scalability
1 Introduction

A group key exchange protocol (GKE) allows a large group of n parties to share a
common secret key over an insecure channel, and thus, parties in the group can
encrypt and decrypt messages among group members. Secure communication
within a large group has become an integral part of many applications. For
example, ad hoc wireless networks are deployed in many areas such as homes,
schools, disaster areas, etc., where a network is susceptible to attacks ranging
from passive eavesdropping to active interference. Besides ad hoc networks,
another environment where ad hoc groups are popular is in the context of new
emerging social networks such as Facebook and LinkedIn.

* This study is partly supported by Grant-in-Aid for Scientific Research (A), 21240001

Widely-known GKEs based on the DH-key exchange protocol, such as BDI
[4] and BDII [5], can work with constant rounds. The important difference in ef-
ficiency between BDI and BDII is that BDI needs communicational complexity
O(n) while BDII works with only communicational complexity O(log#). An-
other important difference in practicality between BDI and BDII is scalability.
BDI assumes that all parties work in the same environment. On the other hand,
parties in BDII can work in different environments. For example, some parties
may have large computational resources, but others may have low resources;
while some parties may have almost unlimited electrical power, others may
run on small batteries. On the other hand, both schemes are not robust: if some
parties fail during protocol execution, then some other parties cannot share
a common secret key. Therefore, the protocol must be re-started from scratch
whenever a player fails, which increases the computational, communicational,
and round complexity, since total complexity of protocols is multiplied by the
number of faults. This is why we need a constant-round GKE that is robust to
some parties’ failures.

The first robust GKE was proposed by [1], which needs round complexity
O(n). Subsequently, the constant-round robust GKE was proposed by [6], which
needs communicational complexity O(12). The efficient robust GKE, called JKT
in this paper, was proposed by [9]. JKT works with constant-round complexity
and both communicational' and computational complexity O(n + T), and toler-
ates up to T-party failures. JKT has a useful feature of flexible trade-off between
complexity and fault tolerance. The feature is practical because complexity
of GKE can be arranged according to the reliability of network. R-TDHI1 [3]
achieves the full robustness for a tree-based GKE [10], however, it does not have
a feature of flexible trade-off between complexity and fault tolerance.

In this paper, we focus on JKT, which is T-robust GKE and satisfies a feature of
flexible trade-off between complexity and fault tolerance. JKT is constructed by
adding robustness to BDI, and thus, it inherits all features described above from
BDI: it can achieve neither O(log 1 + T) complexity nor scalability. We present T-
robust GKE among # parties, which can achieve efficient communicational and
computational complexity as well as scalability up to T-party failures. From the
feature of scalability, our T-robust GKE can work in different environments of
parties with large resources and/or low resources. Our T-robust GKE can work
with both computational and communicational complexity O(log# + T). This is
the first result that can work with O(logn) complexity according to the size of
parties 1. Let us explain how we construct the efficient T-robust GKE. In order to
achieve such efficiency, we investigate adding robustness to BDII and construct
a new scalable constant-round robust GKE, which is secure in the standard
model under the Square Decision Diffie-Hellman assumption. The proposed
GKE, called CH-GKE in this paper, inherits efficiency and scalability described
above from BDIIL. For example, CH-GKE works with 2 round complexity with

! Communicational complexity can be measured from the point of view of maximum
number of sent or received messages. In JKT, maximum number of sent messages is
O(T) but that of received messages is O(n + T).

communicational and computational complexity O(log#), which tolerates up
to 5 party failures. Then, we generalize the construction of CH-GKE to increase
the number of party failures. Finally, we combine both CH-GKE and JKT, and
propose T-robust GKE with O(log#) complexity, where it tolerates up to any
T-party failures in any positions.

This paper is organized as follows. Section 2 summarizes computational
assumptions, security assumptions and definitions of GKE, together with nota-
tions. Section 3 reviews the previous GKEs related with our scheme BDI, JKT,
and BDII. Section 4 presents CH-GKE and its generalization. Then, T-robust
GKE is presented in Section 5. Section 6 compares our T-robust GKE with pre-
vious GKEs.

2 Preliminary

This section summarizes notations, assumptions, and the basic security notions
used in this paper.

2.1 The Security Assumptions, and Model of GKE

Let G be a cyclic group of prime order p and let k be a security parameter.
Definition 1. A DDH (Decision Diffie Hellman) parameter generator 7 Gppy is a
probabilistic polynomial time (ppt) algorithm that, on input 1%, outputs a cyclic
group G of prime order p. The DDH problem with respect to 7 Gppy is: given g,
¢, 8",y € G to decide whether y = ¢* or not.

Definition 2. A Square-DDH (Square-Decision Diffie Hellman) parameter gen-
erator 7 Gsyuare-ppH 1 @ probabilistic polynomial time (ppT) algorithm that, on
input 1%, outputs a cyclic group G of prime order p. The Square-DDH problem
with respect to 7 Gsgar-ppy 18t given g, &%, y € G to decide whether y = g"2 or
not.

Definition 3. Let Py, P>, ..., P, be interactive polynomial-time Turing Machines
with history tapes that take part in a Protocol I1. Protocol IT is a Group Key
Exchange (GKE) if each member P; computes the same key K = K; when all
group members follow the protocol as specified. We call P; a party and the n
parties a group.

Definition 4 ([11]).Let IT be a GKE protocol with 7 parties, let k be a security
parameter, and let P = {Py,---,P,} be a set of n parties, where n is bounded
above by a polynomial in k. We assume that parties do not deviate from the
protocol. An active adversary is given access to the following Send, Execute,
Reveal, Corrupt and Test oracles, where all except Test oracle are queried several
times, and Test oracle is asked only once at any time during the adversary’s
execution and on a fresh instance?: Send(P, i, m) sends message m to instance

2 I'[;, is a fresh instance unless the following is true: A, at some point, queried Reveal
(P,i) or Reveal (P’, j) with P’ € pidj, where pid;, denotes the party identity for IT,.

H;, and outputs the reply generated by this instance; Execute(P1, i1, -+ , Py, in)

executes the protocol between unused i;-th instances of party P;, {H;;j}ls j<n, and
outputs the transcript of the execution; Reveal(P, i) outputs a session key ski,
for a terminated instance 1'[;',,' Corrupt(P) outputs the long-term secret key of a
party P; Test(P, i) chooses a bit b € {0, 1} uniformly at random and outputs skiP
or a random session key if b = 1 or b = 0, respectively.

Finally, the adversary outputs a guess bit b’. Then, Succ, the event in which
A wins the game for a protocol I1, occurs if b = b’ where b is the hidden bit used
by the Test oracle. The advantage of A is defined as Adv,(k) = |Prob[Succ]-1/2]|.
We say IT is a secure group key exchange protocol against an active adversary,
if, for any PPT active adversary A, Adv}; is negligible (in k).

In the passive adversary model, Send oracle is ignored. We focus solely on the
passive case since the Katz-Yung compiler [11] or a variant of [7] transforms any
GKE secure against a passive adversary into one secure against outside active
adversaries.

2.2 Notation and Assumptions on GKE

We make some assumptions necessary to compute the computational complex-
ity. The GKE we will build consists of multiplications on G, scalar multiplications
on G, and inversions on G, whose computational complexity are denoted by M,
EM, and I, respectively.

This paper focuses on GKE which can be robust against some number of
node faults, while keeping both communicational and computational complex-
ity per party down. Let us first make some observations on GKE. In this paper,
when we evaluate the communicational complexity per party, it is from the
point of view of the party with the maximum sent and received data. We distin-
guish between point-to-point and broadcast communication, while we do not
distinguish between multicast and broadcast communication. We use p (resp. b)
to denote messages in G through point-to-point (resp. broadcast) communica-
tion, both of which are investigated in two cases of sent and received messages.
The computational complexity is measured by the number of M, EM, and I.

We also use the phrase of “auxiliary elements”, introduced in [8]. In some
GKEs, some parties compute data, which help other parties compute a shared
key. That is, those parties cannot compute a shared key without auxiliary ele-
ments”. Actually, failures happen for those parties who need auxiliary elements
to compute a shared key but those are not sent to them. In order to achieve
a GKE robust against party faults, we will discuss how we provide auxiliary
elements in spite of fault parties.

3 Background

This section summarizes previous GKEs: BDI [4], its fault-tolerant version [9],
and BDII [5]. In BDI, parties are arranged in a ring (See Figure 3.1). When n

parties Pq, P, - -, P, wish to generate a session key, they proceed as follows (the
indices are taken modulo n so that party Py is P, and party P, is P1).

Protocol 1 (BDI[4])

1. Each P; computes z;j = g" for a secretly chosen r; € Z,, and sends it to Piy and
Pi+1-

. Ti g e
2. Each P; computes xi_1,ir1] = (i—j) = g gnd broadcasts.

3. Each P; computes a shared key K = (zi1)"" - x

gT17‘2+1‘27‘3+---+1‘,,1‘1

n-1 . Al e —
li-1,i+1 X[, z+2] Xi-3, 117

ANAN
CANAA
AN /\/\M

Fig.3.1. BDI Fig.3.2. JKT Fig.3.3. BDII

The original BDI is not robust because if any message in the 2nd round is
not delivered, then all parties abort, since all parties need auxiliary elements
broadcasted in the 2nd round to compute a shared key. BDI is modified to
achieve robustness in [9], which is called JKT in this paper. JKT uses Hamilton
cycle or Hamilton path to compute a shared key. The maximum failures as well
as the key computation in the Hamilton-cycle JKT are different from ones in the
Hamilton-path JKT when both compute the same amount of auxiliary elements
in the 2nd round. Here we present both Hamilton-cycle and Hamilton-path JKT
in the case of sending the same amount of auxiliary elements and discuss each
differences (see Figure 3.2).

Protocol 2 (JKTI[9])

1. Each P; computes z; = §" for a secretly chosen r; € Z, and broadcasts.
2. Let ActiveListy be the list of indices of all parties who complete the 1st round.

Each P; computes xy, i = (ﬁ) = ¢"i i for T nearest neighbors to the right and
T nearest neighbors to the left among parties k € ActiveListy and broadcasts.

3. Let ActiveListy be the list of indices of all parties who complete the 2nd round.
Each P; sorts the parties in ActiveListy in the same order. We assume that the alive
parties constructs a Hamilton cycle or Hamilton path taken twice: {Py,, Pa,, - -+ , Pa,,}
or {Pay,*++ ,Pay s, Pay, Pays, v+, Puy), respectively. In the case of Hamilton cy-
cle or path, each P, computes a shared key K = z, " - X"~ . X!"2... X, ,

51?1:[_2).“ X2m -3 Xt%,’ﬁ 4. .. Xa,- . = gz(ra1 Tay +lay Tag +--4Ta, ram),

respectively. Here, Xa, = X5, ;a7 (X ¢1i+1/ai]) = gl Ty

81‘(11 Tay oy Tay +=+awlay op K =

Let us discuss how many auxiliary elements in the 2nd round is necessary to
achieve T-robust GKE. T-robust GKE means that GKE toterates all patterns of
party faults up to T In the case of Hamilton cycle, 2(T +1) auxiliary elements are
necessary for T-robust GKE. In the case of Hamilton path, 2T auxiliary elements
are enough to achieve T-robust GKE. The detailed comparisons among two
types of JKT and our scheme will be shown in Section 6. The security of JKT is
given in the theorem below.

Theorem 1 ([9]). Assuming the Square-DDH over G is hard, JKT is a secure
group GKE protocol.

Another typical GKE is BDII, proposed by the same authors as BDI. Both
BDI and BDII have different features. BDI is fully contributory, but requires
O(n) computational and message complexity for any party. In fact, all parties
are arranged symmetrically, and thus all parties need to have the same compu-
tational resources. On the other hand, BDII is not contributory, but can work
with O(log#n) computational and message complexity for any party. Further-
more, parties are not arranged symmetrically, and thus BDII can adapt to the
situation of parties with different computational resources.

Up to now, no fault-tolerant version of BDII has been proposed. In order to
achieve robust GKE with O(log) message size, we focus on BDII in this paper.
In BDII, parties are arranged in a binary tree (See Figure 3.3). Therefore, all but
the leaves of the tree, each has one parent and two children. We denote the
parent, the left child, and the right child by parent(i), 1.child(i), and r.child(i),
respectively, and denote the set of ancestors of a party P; by ancestor(i). Parties
Py and P, are parents to each other, thatis, P; (resp. P») is the parent of P,
(resp. P1). Such a relation is used to compute X1 cni1qi) and Xr cniigq for i = 1 or
2. However, for a party P, either P; or P; is included in ancestor(i).

When n parties Py, P, - - -, P, wish to generate a session key, they proceed as
follows.

Protocol 3 (BDII[5])

1. Each P; computes z; = g" for a secretly chosen r; € Z,, and sends it to its neighbors.

Zparent(i) Zparent(i))}’,‘

ri I _
2. EaCh Pi Computes bOth xl'Child(i): (Zl.child(i)) = g"rmr(t)"t o tlnd xr.child(i)— (Zr.child(i)
= QM TTiehiti) and multicasts these to its left and right descendants, respectively.
3. Each P; computes a shared key K = (Zparent(i))" * I1jcancestor(yXj = &'

Theorem 2 ([7]). Assuming the DDH over G is hard, BDII is a secure group
GKE protocol.

4 Robust GKE with O(log n) complexity

This section presents our GKE with robustness with O(log n1) complexity, called
Cross-Help GKE (CH-GKE). We start with intuition on how to make BDII robust,
then presents CH-GKE and its generalization.

4.1 Intuition

Our robust GKE is constructed over BDII in Section 3. Let us discuss why BDII
isnot robust in detail. In BDII, a party P; in level £; makes two auxiliary elements
for two children in level ¢; + 1. In the key-sharing phase, a party P; computes
a shared key by using all auxiliary elements sent by ancestors in the path from
the parent of P; to the root P; or P (see Figure 3.3). Note that the path has been
determined uniquely in BDIL. This is why if a party P; in level ¢; fails after the
1st round and cannot send any auxiliary element to descendants, no descendant
can compute a shared key. However, unlike BDI, any ancestor of P; as well as
any party who is not in the same path from the failed P; to the root can compute
a shared key.

Before showing our strategy, let us start with a primitive construction of
robust GKE. In BDII, an auxiliary element computed by the parent of P; is
necessary for P; to compute a shared key. Suppose that we add a few extra
edges to the graph of BDII and two or more parties compute auxiliary elements
for P;, then one of the alive auxiliary elements enables P; to compute a shared
key. For example, suppose that we add 1 more edge to P; from parties in level
¢; — 1 and add 2 more edges to parties in level ¢; + 1 from P;. Then, if either
path from level £; — 1 to P; is alive, 4 parties in level £; + 1 as well as P; can
compute a shared key. However, in order to let the 2 X 4 path available, P;
computes and multicasts 2 X 4 auxiliary elements for 4 parties in level £; + 1.
Thus, if both I; edges from parties in level {; — 1 to P; and O; edges from P; to
parties in level ¢; + 1 exist?, then the number of auxiliary elements is I; X O;. That
is, computational and communicational complexity increases multiplicatively
according to the number of edges coming in and coming out. Our scheme can
reduce the multiplicative cost to the additive cost.

Our scheme, CH-GKE, achieves efficient robust GKE, by realizing a cross-help
idea with additive computational and communicational complexity. In order to
realize such efficient cross-help, we introduce the following ideas.

1. The division and restoration of auxiliary elements
In order to achieve robustness, paths to enable key-sharing need to be in-
creased, which also increases the number of auxiliary elements. For example,
for I; X O; paths, I; X O; auxiliary elements are required. In order to reduce
computational and communicational complexity, we generalize a technique
used in [9]: divide I; X O; auxiliary elements into I; + O; parts; divided parts
are computed and multicasted; then, in the key-sharing phase, a necessary
auxiliary element is restored from two parts of I; and O;.

2. A new relation between Py (resp. P») and descendants of P, (resp. P1)
Parties P1 and P, are sisters of each other for those who are descendants of
Py and P». That is, P1 (resp. P) is the aunt for parties P; who are P,’s (resp.
Py’s) children. See Figure 4.1.

Let us show an overview of CH-GKE briefly. We denote a child, a parent,
and ancestors in the same notation as in Section 3. In addition to these, the sister

3 edges are input edges to P;. O; edges are output edges from P;

of i who has the same parent as i, the left child and the right child of the sister,
and the sister of parent are denoted by sister(i), L.niece(i) and r.niece(i), and
aunt(i), respectively.

The relations among neighbors of party P; are shown in Figure 4.2. In the
basic construction of CH-GKE, the cross-help is done by sisters: parent and
aunt of P; in level ¢;(i > 2) make P;’s auxiliary elements, and P; makes auxiliary
elements for 4 parties such as children and nieces in level £;+1. Then, P; computes
and multicasts 2+4 = 6 auxiliary elements. In the general construction, the cross-
help is generalized in such a way that I; parties in level £; — 1 make P;’s auxiliary
elements, and P; in level {; makes auxiliary elements for O; parties in level ; + 1.
Then, P; computes I; + O; auxiliary elements and multicasts them.

parent(3) aunt(3)
Level 1
parent (i)

3 Level 2

Level 3
/\ /\ Level £ — 1
Level £

Fig.4.1. Party Tree of CH-GKE

l.child(i) r.child(i) l.niece(i) r.niece(i)

Fig.4.2. CH-GKE

4.2 Cross-Help GKE (CH-GKE)

This section presents the basic version of CH-GKE, which tolerates all patterns
of party fault if either sister is alive in a binary tree. Parties P; and P; in level 1
can cross-help each other, and thus, CH-GKE tolerates even if either party fails
after the 1st round.

Figure 4.2 shows the relations of parties in CH-GKE, where a dotted line rep-
resents a flow of additional auxiliary elements to BDIL. For example, additional
auxiliary elements constructed by aunt(i) are sent to i and sister(i).

G.par(i)y

7 8 9 10 1 12 13 14 G.child(i) G.child(i)s

Fig.4.3. Example of CH-GKE Fig.4.4. Generalized CH-GKE

Protocol 4 (CH-GKE)

1. Each party P; computes z; = " for a (private) uniformly and randomly chosen
ri € Zj and sends it to its neighbors.

2. Let ActiveListy be the list of indices of all parties who complete the 1st round.
Then, P; (i € {1,2}) in level 1 computes 5 auxiliary elements Yijaunt(i), il Yili, 1.child()],
Yili, r-child@)], Yili, Lniece(d], ANA Yii rniece(n], ANd multicasts them to parties in levels
> 2, where

~ A\
Zaunt(l)) 1 = graunt(i)'rifriz,‘

Yilaunt(i),i] = (Z

Zi

Yili, 1.child()] = (

Z1.child(i)

i i
2 Zi 2
P2 i1y T _ i 2 s 1aey T
— g, 1.child(i) 1/]/i[i,nchild(i)] — — g, r.child(i) i
Zyr.child(i)

2 ST
i —Trniece(i) i

i i
Zi 2 s eent T Zi
Yili, Lniece()] = :) = gliTmiece®) iy i sece(] = :) =g
Zl.niece(i) Zr.niece(i)
Let P; be an inner-node party in level £; > 2. Then, P; computes 6 auxiliary elements

Yilparent(i), i, Yi[aunt(),], Yi[i, 1.child(i)], Yi[i, r.child(i)], Yi[i, 1.niece(?)], and Yili, rniece(i)]
and multicasts them to parties in level > {; + 1, where

Zparent (i) i R Zaunt (i) i R
VYilparent(i),i] = (— = g T e i = | —— | = gm0
Zi Zi
1, 1,
Zi l - child(i)7i - Zi l r—r child(i)Ti
Yili, L.child()] = =8t = ; Vili, r.child()] = =g
Z1.child(i) Zy.child(i)

2
i Traiece(i)Ti |

Yili, Lniece(i)] = (.) = g 0 Y sece) = (.) =g
Z1.niece(i) i Zrniece(i)

3. Let ActiveListy be the list of indices of all parties who complete the 2nd round.

Then, P; (i € {1,2}) in level 1 computes K = z;"unt(i). Note that P; can compute

K even if Paynt(i) ¢ ActiveListy. On the other hand, P; in level £; > 2 picks

up a set of indices from ActiveList, whose parties form a path from the (reset)

parent of P; to Py or P, where the set is denoted by ancestor(i): ancestor(i) =

{parent(i), -+, 1 o0r2}). Actually, the set consists of ¢; — 1 indices of each party

from the level €; — 1 to 1. If either sister is alive in a binary tree, then ancestor(i)
exists. A shared key is given as

T 7. V. = o
K= Zparent(i) HIEM(I)Y] =&

Foarent()Tj—12 12 —Tchild(j)!] r)i~ child()"}
where Y = Yjiparent(j, 1Y jlj, chitagp) = g =TT = g Tand0r

PP A S o
(for j #1,2), Y} = Yjtaunc(, 1Y 1j chitaqy = § 011§ 1T EHNT = Qamlebsiet)
(for j = 1 or 2), and parent(j) (resp. child(j)) is the (reset) parent (resp. child) of
j in ancestor(i).

Protocol 4 satisfies correctness. Example 1 shows how Party 14 computes a
shared key in CH-GKE among 14 parties. See Figure 4.3, where black or white
nodes correspond to parties alive or dead in the 2nd round, respectively; big
nodes correspond to parties in the path ancestor(14); bold edges correspond
to the path ancestor(14) and dotted lines represent a flow where auxiliary
elements have not been sent in the 2nd round.

10

Example1 Let n = 14; and Activelist, = {1,3,4,5,7,8,9,10,11,12,13,14}.
Then, Party 14 computes a shared key as follows. In this case, the reset parent of
P14 is Ps and the reset parent of Ps is P1, which becomes the end of the path, and
thus, ancestor(14) = {5,1}. So, P14 computes Y5 = gr1r5—r§gr§—r14r5 = ghisrshe;
Y = g’m*’? g*?*’l”’) = Q"5 and thus, results in K = zg”Y1Y5 = g,

Remarks 1 1. Parties with low computational resources are arranged to nodes in
leaves. Then, they can skip the 2nd round. Those parties executes 1 exponentiation in
the round 1 and the computation of the shared key.

2. Parties with large computational resources are arranged to inner nodes. They need to
execute both the 1st and the 2nd rounds.

4.3 Generalized CH-GKE

We show the generalization of Protocol 4 as Protocol 5. Figure 4.4 shows the
relations of parties in the generalized CH-GKE. In Protocol 5, a concept of
children and parent of a party in level {; are generalized to {G.child(i);} and
{G.parent(i);}: a party in level {; makes auxiliary elements for O; parties in level
t; + 1, denoted by G.child(i)y,:--,G.child(i)o; and I; parties in level £; — 1,
denoted by G.parent(i);,--- ,G.parent(i);, make P;’s auxiliary elements, respec-
tively. Remark that the number of I; is less than that of parties in level ¢; — 1.
The generalized CH-GKE tolerates all patterns of party faults if one party in
{G.parent(i);}; for each party P; is alive in a binary tree. The detailed protocol
is given in the below, which is the same as Protocol 4 except using {G.child(i);}
and {G.parent(i);}.

Protocol 5 (Generalized CH-GKE)

1. Each party P; computes z; = g" for a (private) uniformly and randomly chosen
ri € 2 and sends it to its neighbors.

2. Let ActiveList; be the list of indices of all parties who complete the 1st round.
Then, P; (i € {1,2}) computes 5 auxiliary elements VYiparent(i),il, Yili, 1.child()],
Yili, r.child)l, Yili, Lniece@l, ANA Yili rniece], And multi-casts them to parties in
levels > 2. Let P; be an inner-node party in level £; > 2. Then, P; computes
I; + O; auxiliary elements, {if parent(i);, i1}j=1,- 1 14 {Yifi, c.chirae);1}j=1,,0,, and
multicasts them to parties in levels > €; + 1, where

7
ZGAparent(i)- ! P
i _ g"G.parent(t)]- Ty

L
. 2
Zj _ gf,- “TG.child(); i
Zi

7 Yili, G.child(i);] =
ZG.child(i);

]/i[G.parent(i),-,i] = (
3. Let ActiveListy be the list of indices of all parties who complete the 2nd round.
Then, P; (i € {1,2}) in level 1 computes K = z;"unt(i). P; in level £; > 2 picks up a
set of indices from ActiveListy whose parties form a path from the (reset) parent
of P; to Py or P1, where the set is denoted by ancestor(i). If one of {G.parent(i);};
is alive in a binary tree, then ancestor(i) exists. A shared key is given as
K=z () H]'Eancestor(i)Yj = gmz,

paren

where Yj = Yjparent(j), 1Yjlj child() @nd parent(j) and child(j) are the (reset)
parent and child of j in ancestor(i), respectively.

11

Remarks 2 1. For P;inlevel {; > 2, the number of generalized parents I; (resp. children
O;) needs to be I; < 2071 (resp. O; < 26*1) to satisfy correctness.

2. The more auxiliary elements I; + O; are generated, the more party faults CH-GKE
tolerates. However, it needs to locate positions where parties have failed.

4.4 Security of CH-GKE

Theorem 3 that a passive adversary breaks CH-GKE (Protocol 4) is used to solve
the Square-DDH Problem.

Theorem 3. Assuming the Square-DDH over G is hard, CH-GKE (basic) (Protocol 4),
denoted simply by I1, is a secure group GKE protocol. Namely,

AdVEE(t, gox) < Advgi T PR(E),

where AdvIGYKE(t, Gex) 1s an adversary to I1 with q..Execute queries and in t time, and

Adve P is an adversary to Square-DDH in t' = t + 0.(13n — 15)EM time for

the number of parties n.
Proof: Given an algorithm A against I running in time , we show how to

construct an adversary B against the Square-DDH.

A tuple (g,y,h) € G X G X G is given to B, where y = ¢g* with unknown x
to Band h = ¢ or a random number in G. Then, B runs A to decide whether
h = g"2 or not. B sets z; = y. Next, choose c3,---, ¢, € Z, randomly, and set

Lo
zi=2zi1-§ % =g = fori>2. z can be computed since z;_1 was computed
before. Note that 8 knows z; but does not know the logarithm r; of z; = g",
i
where r; = x =} ¢;. From this, 8 can compute Yiparent(i), il, Yilaunt(i, il, Yili, 1.chi1d()],
j=2
Yili, r.child(@)], Yili, Lniece()], AN Vifi rniece(i)] as follows.
In the case of Py, set

Zaunt(1)
21

T
Yilaunt(1),1] = ()1 = grzrl*r% = g(x’CZ)x’xz = y*CZ
which is computable since c; is known to 8. Let us discuss the other 4 auxiliary
elements. Set the number of 1.child(1l) to num.1c(1). Then, num.1¢(1) > 2 holds
and

" N num.1c(1) num.1c(1) num.1c(1)
21 Fi=TLchildny1 e g‘2 o (g‘2 o ;2 “
Yi[, lechild)] = | ——— =gt ani = g = =g F =y =
21.child(1)
num.1lc(1)
which is computable since)| c;is known to 8. The computation of the other
j=2

3 auxiliary elements follows the above.
In the case of P,, set

Zaunt(2)
22

r
Yolaunt(2),2] = ()2 = ghrl_"g = g’f(%—fz)—(x—cz)2 — yczg—cgl

12

which is computable since ¢, is known to 8. The other 4 auxiliary elements can
be computed in the same way:.

In the case of P;(i > 3), B can compute 6 auxiliary elements in the same way
as above. Let us discuss two auxiliary elements of yjparent(i), i and Yifaunt(, ij- Set
the number of parent(i) to num.par(i). Then, num.par(i) < i holds and

num.par(i) i i
ri o (= L =Y ep-(-Y o)
) — grparent(x)rl_ri — g j=2 j=2 j=2

Zparent(i)
Zj

Yilparent(i),i] = (

S I O)

]
= y j=num.par(i)+1 g j=num.par(i)+1 j=2

which is computable since ¥c; is known to 8. Vifaunt(),i] can be computed in
the same way as above. Let us discuss the other 4 auxiliary elements. Set the
number of 1.child(i) to num.1c(i). Then, num.1c(i) > i holds and

r i) num.Lc(i) i
Zi , 1771 chila() i (X7'chi) o '22 e 'chf)
Yili, 1.child()] = =gl = o = =
Z1.child(i)
num.lc(i) i num.Lc(f)

- 21 cj (ZZC;')(21 cj)
=y g

which is computable since Vc; is known to 8. The computation of the other 3
auxiliary elements follows the above.

As the ¢;(i > 2) are distributed uniformly at random, the distribution of z;
and y;j;, ;1 is identical to that in IT. The transcript consists of

T = {z;, Yilparent(i), il, Yi[aunt(i), il Yili, 1.child(i)], Yili, r.child(i)], Yili, L.niece(@)], Yili, r.niece(i)]}/

for each party P;. Let ActiveList, be the list of indices of all parties who
complete the 2nd round. Upon the Test request, B issues the shared key K as
follows,

K=g" = gx(xfcz) — gxzy—cz = hy .

If K is the shared group key, then i = ¢, i.e. (g, y,) is a valid Square-DDH set.
Therefore, B succeeds with the same advantage as A by (13n—15)EM additional
computational time to generate T.

We consider the case in which A makes a single Execute query, since 8 can
easily generate another set of (¢', ", /") of the same type as (g, y, h) for a random
exponent r € Z,. Bounding the number n by the total number of parties, the
claim follows. I

In the same way, we can show that a passive adversary that breaks the
generalized CH-GKE (Protocol 5) is used to solve the Square-DDH Problem,
whose proof will be shown in the final paper.

Theorem 4. Assuming the Square-DDH over G is hard, CH-GKE (general) (Proto-
col 5), denoted simply by I1, is a secure group GKE protocol. Namely,

AdVEE(E, gex) < Adve T P(E),

13

where AdvGHKE(t, Gex) is an adversary to I1 with q..Execute queries and in t time;

Adv%q“re_DDH(t’) is an adversary to Square-DDH in t' = t + ger((2maxy + 1)n + 9 —
4maxp)EM time for the number of parties n; and max is the maximum number of
auxiliary elements constructed by a single party.

5 T-Robust GKE with O(logn) complexity

CH-GKE, shown in Section 4, achieves robustness with O(log 1) message size.
The generalized CH-GKE tolerates if one of paths from any alive party to P; or
P, is alive. However, it needs to locate positions where parties have failed. In
fact, either P or P, need to be alive. On the other hand, JKT tolerates any T-party
faults in any position, however, it needs O(r1) computational complexity.

In this section, we present T-robust GKE with O(log#n) communicational
and computational complexity. Our idea is to combine both JKT and CH-GKE
considering their advantages: JKT is a symmetric structure and tolerates any T-
party fault in any position but works in O(n) computational complexity, while
CH-GKE is an asymmetric structure and works in O(logn) communicational
and computational complexity. Our strategies to combine both T-robust JKT and
CH-GKE are: from the point of any T-party fault, the shared key is computed
in the procedure of T-robust JKT. Then, auxiliary elements for parties not in
JKT procedure to compute the shared key are generated and multicasted in the
procedure of CH-GKE. According to this strategy, parties are arranged to a
circle of JKT or trees of CH-GKE; and compute JKT-and-CH-GKE-like auxiliary
elements or CH-GKE-like auxiliary elements, respectively. Figure 5.1 shows an
arrangement of parties, where parties in a circle execute JKT part, parties in
trees execute CH-GKE part, dotted lines in the circle represent a flow that the
party 1 computes auxiliary elements in JKT part, and bold lines from the party
1 to nodes in level 1 of trees represent a flow that the party 1 computes auxiliary
elements in CH-GKE part. Let us show how we combine JKT and CH-GKE
briefly, then present our T-robust GKE (Protocol 6):

1. JKT part
T + 2 parties are arranged in the circle of JKT*. They compute auxiliary
elements to execute T-robust JKT, which are in total for T + 1 parties. They
also compute ones to execute CH-GKE, which are in total for 2(T + 1) parties,
because any party in level ¢; of CH-GKE needs to get auxiliary elements sent
by T + 1 different parties in level ¢; — 1, while the number of parties in level
¢; is twice as large as one in level £; — 1. Those auxiliary elements are called
JKT-and-CH-GKE-like auxiliary elements.

2. CH-GKE part
Arrange T + 2 trees of CH-GKE under each party in the circle of JKT. %
parties are arranged in each tree of CH-GKE, where the height of tree is

n

¢ =[log, 75 + 11-1. They execute CH-GKE and compute auxiliary elements

for 2(T + 1) parties in total in the same reason as above.

4 This is the smallest number of parties arranged in the circle, which can be set to more
than T + 2.

14

Protocol 6 (T-robust GKE) T-robust GKE among n parties is a combination of T-
robust [KT among T + 2 parties and T-robust CH-GKE among n — T — 2 parties.

INTTIALIZATION: ARRANGE PARTIES TO JKT orR CH-GKE
Set T + 2 parties in the circle in J[KT, where they are numbered from 1 to T + 2. Arrange
T + 2 trees of CH-GKE by setting each party in the circle of JKT to each root. Finally,

set L2 parties in each tree.

Grour Key ExcHANGE ProTOCOL

1. Each party P; computes z; = g" for a (private) uniformly and randomly chosen
ri € Zj and sends it to its neighbors.

2. Let ActiveList{KT (resp. ActiveListSH) be the list of indices of parties in the
circle (resp. trees) who complete the 1st round.

PartiEs IN THE CIRCLE OF JKT: Let P; be a party in the circle, who has generalized
children {G.child(i);} in trees. P; computes and broadcasts two types of auxiliary
elements: auxiliary elements xy, i seen in the 2nd round in JKT(Protocol 2) and
those seen in children parts of the 2nd round in CH-GKE between P; itself and
generalized 2(T + 1) children in the tree, P cni1q(); (see Section 4.3 for G.child(i);):

Z. rl i - - -
X[k,i] = (Z—;) = i (ActiveList]" 5 k #)
Zi : r? —TilG.child(i); . . CH . .
Yiti Genirey] = |] =8 i (ActiveList;” > G.child(i))).
G.child(i);

Parries IN TREES OF CH-GKE: Let P; be an inner-node party in level {; in a tree,
who has generalized parents {G.parent(i);} in the circle (resp. trees) if €; = 1 (resp.
i > 2) and generalized children {G.child(i);} in trees. P; computes (T+1)+2(T+1)
auxiliary elements and multi-casts them to parties in level > €; + 1 in the same way
as in Protocol 5:

"G.parent(i)]- iy

ZGAparent(i),v i 72
Zj

L
) 2
Zi] _ i Techild); i

7 Yili, G.child(i);] =
ZG.child(i);

Yilparent(i);, il = (
3. Let ActiveListéKT (resp. ActiveListS™) be the list of indices of parties in the

circle (resp. trees) who complete the 2nd round. Here we set #ActiveLi stéKT =T.

Assume that the alive parties in ActiveLi stéKT are sorted in the same order as

before and ordered {P,,, Py,, - -+ , Pur.}.

ParTiEs IN THE CIRCLE OF JKT: Each P, in the circle computes a shared key

K = ZZ?ZT, . Xt];_l . XZ::Z X, = grﬂl T+l Tag - lagy Toy |

where Xa;, = X{a;_y,a] - (x[,,m,,,],])*1 = g T (e (1,0, T')).

Parties N TREEs oF CH-GKE: Each P; in level 1 picks up a party P, €

ActiveLi stéKT whose corresponding auxiliary element, Y., i1, has been sent to

P;. A shared key is given as follows:

K = (K')T’ .XaTl_’—l LxI-2 .. X,

Aiy1

15

where K’ = Z:;I, " Yailas, 1] (x[ﬂm,ﬂi])_l = grairai+]'

Each P; in level €; > 2, first, picks up a set of indices from ActiveListS™ P; whose
parties form a path from the (reset) parent of P; to the (reset) ancestor in level 1.
The set is denoted by ancestor(i) in the same way as Protocols 4 and 5. We also
denote the index of the party in level 1 in ancestor(i) by ancestor(i)[1]. Then,
ancestor(i) = {parent(i),---,ancestor(i)[1]}. If the number of fault parties
is less than or equal to T, then ancestor(i) exists. Next, P; picks up a party

P, € ActiveListéKT whose corresponding auxiliary element, a4, ancestor()1]]/

has been sent to Pancestor(i1]- A shared key is given as follows:

K = (K')T’ .XaTl_’—l LxI-2 .. X,

Aiy1

where K' = Zri (i) . (njeancestor(i)Yj) : ya,-[a,-, ancestor(i)[1]] * (x[a,-+1,a,-])_1 = grairﬂiﬂ

paren
and Y]. = grparent(f)’f*’child(f)ff_

Protocol 6 satisfies correctness. Example 2 shows how Party 28 computes a
shared key in 5-robust GKE among 49 parties. See Figure 5.2, where black or
white nodes correspond to parties alive or dead in the 2nd round, respectively;
big nodes correspond to parties in the path ancestor(28); bold edges correspond
to the path of ancestor(28) and P,, € ActiveListﬁKT; and bold dotted edges

correspond to the path of ActiveLi stéKT, where a shared key is computed.

Example 2 Let S be a set of parties with #5 = n = 49, and F be a set of fault
parties, where F = {1,2,5,7,9,10,11,24,31}. Then ActiveListéKT ={3,4,6},T' =3,
and a shared key K is computed to K = g""++"%e+%e’s Party 28 computes the shared
key as follows. The reset parent of Pag is Pg and the reset parent of Pg is P, which
becomes the end of the path, and thus, ancestor(28) = {8}. Pag picks up a party

P; € ActiveListéKT, and computes K' = (Zparent(28))™ * Y3 - Y3[3,8] - x[‘6{3] = g's"s .

2 2 _
QIATTISI L oT3TIATS L oT6T3TTS = oTe13 for Yo = yg(3 8] Ys[s, 28] = &' V%, and thus, results
mkK= (K’)3 . X% - Xy = g3(1‘51‘3) . g2(7‘37‘r767‘3) . gmr(rrm — gr3r4+r4r6+r6r3_

T+2

Level 1

Level 2

G.child(1); £ R —RG.child(1)y(r41)

Fig.5.1. T-robust GKE Fig.5.2. Example of 5-robust GKE among
49 parties

16

The security of Protocol 6 is given in Theorem 5, whose proof will be shown in
the final paper

Theorem 5. Assuming the DDH and Square-DDH over G are hard, Protocol 6, de-
noted simply by I1, is a secure group GKE protocol.

6 Comparison

This section compares our scheme with previous schemes from the view point
of efficiency and robustness. Table 1 (resp. Table 2) summarizes the communi-
cational (resp. computational) complexity per user and robustness of ours (Sec-
tion 5), JKT, R-TDH1 (basic)>, BDI, and BDII. Note that, T-robust GKE means
GKE tolerates all patterns of party faults up to T.JKT (cycle) or JKT (path) means
Hamilton-cycle JKT or Hamilton-path JKT, respectively (See Section 3 for the
detailed differences). When we do not have to distinguish JKT (cycle) from JKT
(path), JKT is used simply. The notation of p and b is defined in Section 2.2.
In an asymmetric party setting seen in BDII and ours, parties can be in differ-
ent environment and have different computational resources since efficiency is
different to each party type. In such GKEs, comparison is done by parties with
large or low computational resources. Here after we focus on efficiency of JKT
and our GKE since these are the same paradigm, while neither BDI nor BDII is
robust and R-TDH1 is fully robust.

Our GKE has advantages over JKT in the received message complexity for
any party type and computational complexity for parties with low computa-
tional resources. In fact, the size of our received message is O(T + log), while
that of JKT is O(n). As for sent message complexity, ours is slightly worse than
that of JKT. On the other hand, the order of our computational complexity for
parties with low computational resources is O(T + log), while that of JKT is
O(T + n), due to our scalable party arrangement.

Let us compare both our GKE and JKT by using concrete parameter of (1, T).
We firstly demonstrate the received message size comparison in Figures 6.1 and
6.2. Figure 6.1 simulates the case that the ratio of fault parties, T/#, is fixed to
0.1 and group size changes from 10* to 107. In any case, our GKE has better
performance than JKT (path)®. Figure 6.2 simulates the case that the group size
is fixed to n = 107, and T/n changes from 0.1 to 0.8. When T/n < 0.67, received
message size of our GKE for parties with large resources is better than that of
JKT. As for parties with low resources, our GKE is more efficient than JKT in
any T'/n.

We next compare them in the computational complexity, shown in Figures 6.3
and 6.4. Note that, the computational complexity is estimated with complexity
of a single multiplication on G (M), where estimation is done by: |G| = 1,024
bits, EM = 1,536M, and I = 30M’. Figure 6.3 simulates the case that T/n is

% In our comparison, R-TDH1 in [3] is simplified to only key establishment for the
estimation of its basic complexity.

6 JKT (path) is slightly better than JKT (cycle) in the received message size, and, thus,
only JKT (path) is simulated.

7 The basic binary method is assumed for an exponentiation in G.

17

Table 1. Sent/received message complexity of several GKEs among n parties

| Party Type || Sent Messages (Large / Low) || Received Message (Large / Low Computational Resources) |
BDI b+2p (n—1)b +2p
BDIL 2b+3p/p log, nb + 3p / log, nb + p
TKT(cycle) 2T+ b +2(T + L)p 2(n—1)b +2(T + 1)p
JKT(path) 2Tb + 2Tp 2(n—2)b +2Tp
R-TDHI nb /b 2(n—1)b/b
ours 3(T+1)b+3(T+1)p /(T +1)p||2AT +1log,n+ b +3(T+1)p / 2T +log,n +)b+ (T + 1)p

Table 2. Computational complexity and robustness(max faults) of GKE among n parties

Party Type ||Large Computational Resources|| Low Computational Resources ||{Robustness
H#EMIH] #M|| #EMIHI] #M
BDI 31 2(n—1) 3[1 2(n—1)
BDII 412 log, n 2|0 log, n
TKT(cycle)|[2(T+2)[2| 6n + 8T — 4|[2(T +2)| 2 6n+8T —4
TKT(path) [[2(T +)| 2| 4Gn+T-6)|[2T+ 1)[2| 4@n+T -6)

0 0

3 2

R-TDH1 ||3(n — 1) 0 4 0 n—
ours 3T +5 18T +9 2| 2|6T +2log,n+5

S H[H oo

fixed to 0.1 and group size changes from 10 to 107. In any case computational
complexity of our GKE for parties with low resources is smaller than that of JKT.
That for parties are larger than that of JKT. Figure 6.4 simulates the case that the
group size n is fixed to n = 107 and T/n changes from 0.002 to 0.01. In the same
way as Figure 6.3, the computational complexity for parties with low resources
in our GKE is extremely reduced than that of JKT. That for parties with large
resources is slightly better than JKT in the range of T/n < 0.004.

The above evaluations can be summarized as follows: (i) From the view
point of received message complexity, our protocol has an advantage over JKT
in received message complexity for parties with low computational resources,
while JKT has an advantage over ours in sent message complexity (although
both are O(T)). (ii) From the view point of computational complexity, our pro-
tocol has an advantage over JKT for parties with low computational resources,
while JKT has an advantage over our GKE for parties with large resources. (iii)
Our GKE has very nice scalability in both computational and communicational
complexity and, thus, can be available to parties with relatively low CPU or
battery.

Finally, we show the optimal robust GKE for given parameter (1, T), seen
in Figures 6.5 and 6.6. Note that, our GKE is more efficient than JKT (cycle)
in even received message size in any range of (1, T/n). Thus, our GKE is com-
pared with only JKT (path) from the point of view of received message size
and computational complexity. JKT (path) has smaller received message size
and computational complexity than our GKE for parties with large resources
only if T/n is rather high. Note that, in any range, received message size and
computational complexity of our GKE for parties with low resources is smaller

18

Message Size (|G|)
1.x10°
IKT (path)

800000 |- — ours(Large)

- ours (Low)
600000 -
400000 -
200000 -

Fig.6.1. Received message size (T/n = 0.1)

‘Computational ity (M)

5.x10" == KT (cyde
KT (path)
4.x10" - ours(Large)
— ours (Low)
3.x107
2.x107
1.x10°

1
'
I
1
1
I
I
/ .
/ .
; .
.
7
7
.
’
.

Computational complexity (HM)

3.

2

1.

o __
4.0 45 5.0

Fig.6.3. Computational complexity (T/n =

0.1)

than those of JKT. By using our results, we can choose the optimal T-robust GKE

for given (n, T/n).

7 Conclusions

JKT was developed to achieve a robust GKE based on BDI, and thus, it suffers
communicational and computational complexity O(n) per party for the group
size n. Another robust GKE [3] also suffers communicational complexity O(n?)
although it satisfies fully robustness. Note that, up to now, GKE with communi-
cational and computational complexity O(logn) does not have any robustness.

We have proposed a new robust GKE, CH-GKE, with communicational and
computational complexity O(log). We have also shown that our robust GKE is
secure in the standard model under the Square-DDH assumption. By combining
both CH-GKE and JKT, we have proposed T-robust GKE with communicational
and computational complexity O(log 1), which tolerates any T-party fault in any

position.

References

1. Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz,]J. Stanton, and G. Tsudik, “Exploring

4.x10°
5% 10° — e - -
-
-"—
3.x10° =
"’

5x10° e’
5x =

8 - Ca —
2x10° =~ /.6 == XT(eyde
5x10° ez - KT (pah [

-

1.x10° b - ours(Large) [

, — ours(Low)
5.x 10 I

0.002 0.004 0.006 0.008

Group size (logzn)
70 P g2

Messagesize (|G|)
8.x10'
- JKT (cycle)
-- KT (path)
ours (Lar
6.x10 9
ous(bow) | ||| e
ax10' [
2x107 T
' Groupsize (logzn 0 .
7.0 P (logzn) 0.1 0.2 03 04 05 0.6 0.7

Fig. 6.2. Received message size (n = 107)

T/n
0.8

Fig.6.4. Computational complexity (n =
107

robustness in group key agreement”, In ICDCS’01, 399-409, IEEE CS, 2001.

Tn
0010

T
0.9

0.8

0.7

0.6

0.4

03

0.2

0.1

19

/n T/n

0.01
JKT (Jﬁ)
(path) 0.008 /
-
0.006
Ours
Ours
0.004 Large
(Large) (Large)
0.002
0.001 Group sze (n)
Group
10 10 104 10 106 107 103 10* 10 106 107

Fig.6.5. Optimal protocol (received mes- Fig.6.6. Optimal protocol (computational
sage size) complexity)

. A. Abdel-Hafez, A. Miri, and L. Orozco-Barbosa, “Authenticated group key agree-

ment protocols for ad hoc wireless networks”, International Journal of Network
Security, Vol.4, No.1, 90-98, 2007.

T. Brecher, E. Bresson, and M. Manulis, “Fully Robust Tree-Diffie-Hellman Group
Key Exchange”, In CANS’09, LNCS 5888(2009), 478-497, Springer-Verlag.

. M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution

system”, In Eurocrypt’94, LNCS 950(1994), 275-286, Springer-Verlag.

M. Burmester and Y. Desmedt, “Efficient and secure conference key distribution”, In
Security Protocols, LNCS 1189(1997), 119-130, Springer-Verlag.

C. Cachin and R. Strobl, “Asynchronous group key exchange with failures”, In
Proceedings of PODC’04, 357-366, ACM press, 2004.

Y. Desmedt, T. Lange and M. Burmester, “Scalable authenticated tree based group key
exchange for ad-hoc groups”, In FC'07, LNCS 4886(2007), 104-118, Springer-Verlag.

. Y. Desmedt and A. Miyaji, “Redesigning Group Key Exchange Protocol based on

10.

11.

12.

Bilinear Pairing Suitable for Various Environments”, Inscrypt 2010, Springer-Verlag,
to appear.

S. Jarecki, J. Kim and G. Tsudik, “Robust Group Key Agreement Using Short Broad-
cast”, In Proceedings of ACM CCS 2007, 411-420, ACM 2007.

Y. Kim, A. Perrig, and G. Tsudik, “Group Key Agreement Efficient in Communica-
tion”, IEEE Trans. on Comp, Vol. 53 (No.7), 905-921, 2004.

J. Katz and M. Yung, “Scalable Protocols for Authenticated Group Key Exchange”,
In CRYPTO 2003, LNCS 2729(2003), 110-125, Springer-Verlag.

E. Konstantinou, “Cluster-based group key agreement for wireless ad hoc networks”,
In Proceedings of ARES 2008, 550 - 557.

