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Abstract

Virtual Machine Monitors (VMMs), also called hyper-
visors, can be used to construct a trusted computing base
(TCB) enhancing the security of existing operating systems.
The complexity of a VMM-based TCB causes the high risk
of security vulnerabilities. Therefore, this paper proposes
a two-step execution mechanism to reduce the complexity
of a VMM-based TCB. We propose a method to separate a
conventional VMM-based TCB into the following two parts:
(1) A thin hypervisor with security services and (2) A spe-
cial guest OS for security preprocessing. A special guest
OS performing security tasks can be executed in advance.
After shutting down the special guest OS, a hypervisor ob-
tains preprocessing security data and next boots a target
guest OS to be protected. Thus, the proposed two-step exe-
cution mechanism can reduce run-time codes of a hypervi-
sor. This paper shows a design, a prototype implementation
and measurement results of lines of code using BitVisor, a
VMM-based TCB we have developed.

1. Introduction

Computer systems in current governmental and commer-
cial organizations are processing massive amounts of data

∗He currently belongs to Japan Advanced Institute of Science and Tech-
nology.

every day. As a result, these organizations are facing with
the high risk of information leak cases. This paper em-
ploys Virtual Machine Monitors (VMMs), also called hy-
pervisors, as a key component to enhance the security of
existing operating systems. A VMM is a technology to en-
capsulate an operating system, which was originally devel-
oped for mainframe computers [1]. An ideal VMM tech-
nology offers complete isolation of virtual machines (VMs)
[2]. Orange Book [3], a classic computer security standard
of US government, defines that Trusted Computing Base
(TCB) contains all of the elements of the system respon-
sible for supporting the security policy and supporting the
isolation of objects (code and data) on which the protection
is based. Thus, this paper employs a VMM technology to
construct a TCB.

Many organizations and researchers have proposed
VMM-based security mechanisms. For example, Net-
Top and Terra provide VMM-based security functions like
encrypted communication channel and storage encryption
[4, 5]. sHype developed by IBM research supports MAC
(Mandatory Access Control) policies for virtualized servers
[6]. In many cases, these security mechanisms employ ex-
isting commodity VMM software like VMware [7] and Xen
[8] to prove the concept. Although commodity VMMs pro-
vide general-purpose properties and high usability, they re-
quire a certain degree of complexity. For example, Xen hy-
pervisor has 100 KLOC (Kilo lines of code) [9] and the
VMkernel of VMware ESX server has 200 KLOC [10].
The large size and high complexity of software sometimes
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causes their poor testability and high vulnerability [11].

The complexity of hypervisors is not preferable to con-
struct a TCB. Therefore, some researchers have proposed
tiny hypervisors specialized for security-purpose. Derek
et al. propose a mechanism to reduce the complexity of
Xen hypervisor to construct a TCB [9]. SecVisor [12] is
developed as a tiny hypervisor that ensures code integrity
for commodity OS kernels. SecVisor has small code size,
only 1112 LOC (Lines of code), for the run-time portion us-
ing CPU-supported virtualization. Lei et al. shows a small
hypervisor called Palacious VMM [13]. Palacious VMM
hooks I/O operations between device drivers on a guest OS
and physical hardware. The core of Palacious VMM has 20
KLOC and the additional part to hook I/O operations has 10
KLOC. As described above, the code size of a TCB is one of
the important aspects to evaluate whether reliable security
mechanisms or not.

Although tiny hypervisors described above [12][13] pro-
vide basic security functions, they do not provide enough
functions to enfoece security policies in end-point comput-
ers. To increase the security of end-users’ computers in
governmental and commercial organizations, we have de-
veloped a novel thin hypervisor called BitVisor specialized
for I/O device security [14]. BitVisor provides transparent
security services like storage encryption, encrypted com-
munication channel and ID management framework in the
VMM layer. For example, BitVisor can authenticate a user
using her or his smart card and the authenticated ID can be
used to enforce security policies like storage encryption for
USB thumb drives to prevent information leak cases. The
core run-time portion of BitVisor (version 0.7) has approx-
imately 27 KLOC only. However, these optional security
services increase the code size of the entire VMM-based
TCB.

This paper proposes a two-step execution mechanism to
reduce the run-time codes of a hypervisor. Althogh some
researchers propose a design of a thin hypervisor with a sin-
gle security function [12] [13], we propose thin hypervisor
with multiple and complex security functions like user au-
thentication using PKI-based smart cards, VPN and storage
encryption. Our proposal intends to reduce the complexity
of such advanced security services in a VMM layer. The
basic concept of our proposal will help to construct more
reliable VMM-based TCBs to enforce security policies for
end-users’ computers in organizations.

2 Challenges to a Thin Secure Hypervisor

This section first shows basic architecture and security
services of BitVisor. Then, we show a problem in the com-
plexity of its ID management framework.

Guest OS

I/O data
Security
services

BitVisor
as TCB

Hardware

Device drivers

Applications

Hardware devices

Parapass-through
drivers

Figure 1. Basic architecture of BitVisor

2.1 Overview of BitVisor Architecture

Figure 1 shows basic architecture of BitVisor. BitVisor
is a thin hypervisor to provide I/O device security [14]. Spe-
cial drivers called parapass-through driver in BitVisor work
as reference monitors. Parapass-through drivers intercept
the data I/Os and they can apply transparent security ser-
vices to them. These security services are executed in the
VMM layer. Even if an attacker compromises a guest oper-
ating system worked on a VM, the VMM layer of BitVisor
can enforce these security services certainly. In addition,
parapass-through drivers check the control I/Os to prevent
attacks to the hypervisor itself. Users can choice the bare
minimum set of parapass-through drivers to reduce the size
of the entire TCB.

Figure 2 shows security components of BitVisor archi-
tecture. BitVisor consits of core hypervisor, parapass-
through drivers and optional security services. For ex-
ample, a parapass-through driver for Intel Pro/1000 NIC
can enforce an IPsec-VPN (Virtual Private Network) ser-
vice to communication channels. A parapass-through driver
for a USB UHCI (Universal Host Controller Interface) and
a MSD (Mass-storage class device) can enforce an XTS-
AES based storage encryption service to USB thumb drives.
BitVisor can link these optional security services as needed
onto the run-time portion. Therefore, BitVisor architecture
can keep the minimum code size of the entire TCB.

2.2 The Complexity of the ID Manage-
ment Framework

BitVisor also supports ID management framework [15].
The ID management framework is a key component of
BitVisor that offers user authentication and authorization
services using PKI-based smart cards. The ID manage-
ment framework provides a user authentication function to
VPN, secret key management to storage encryption, a user
ID based access control mechanism to boot guest OSs and
a user ID based security policy enforcement mechanism for
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Figure 2. Security components of BitVisor

each security hook. Moreover, we have proposed a Role-
based Access Control (RBAC) extension [16]. As described
above, the ID management framework of BitVisor provides
useful security functions in the VMM layer. However, it
must support smart card drivers, PKCS#11 and other pub-
lic key cryptographic libraries, therefore it has a complex
structure. As shown in Figure 2, a security service of ID
management also linked in the run-time of BitVisor. There-
fore, we have to reduce the code size of the ID management
framework to ensure the reliability of BitVisor as a VMM-
based TCB.

3 A Two-step Execution Mechanism for Thin
Secure Hypervisors

We assume that a VMM-based TCB like BitVisor is
used for foundation of security policy enforcement for dis-
tributed end-point computers in organizations. Therefore,
the TCB must be small code size to achieve high testability
and reliability. To reduce the code size of the TCB, this pa-
per presents a separation method of security processes. Fig-
ure 3 shows a basic concept of the proposed two-step execu-
tion mechanism. We separate a conventional VMM-based
TCB into the following two parts: (1) A thin hypervisor
with security services and (2) A special guest OS for secu-
rity preprocessing. A special guest OS performing security
tasks can be executed in advance, then a thin hypervisor ob-
tains preprocessing security data. Finally, a thin hypervisor
with run-time security services boots a target guest OS to
be protected.

To apply the proposed two-step execution mechanism,
we have to distinguish whether security processes can be
executed before or not. This paper shows an example to
distinguish such security processes in the case of BitVisor
and its ID management framework described in Section 2.2.
Table 1 shows functions of the ID management framework
used in BitVisor. BitVisor as a TCB can authenticate users

Timeline

Conventional VMM-based TCB

Hardware

Target guest OS

A special guest 
OS for security 
preprocessing

Target 
guest OS

Hardware

Thin hypervisor with security services
launches exits launches

Timeline

launches

We move some security services from the 
parts of a hypervisor to the special guest OS

BIOS Boot loader

BIOS Boot loader

Figure 3. Basic concept of a two-step execu-
tion mechanism

Table 1. Functions of ID management frame-
work

Security function Target service Preprocessing
User authentication VM boot management OK
(ID/Password, PKI)
User authentication IKEv1 (IPsec-VPN) Partial
(PKI)
Key management Storage encryption Partial
Checking smart card Core hypervisor NO
connection

based on PKI-based smart cards to control VM boot oper-
ations. Each user’s smart card can manage storage encryp-
tion keys securely. BitVisor also provides a user authenti-
cation function based on her or his smart card for an IPsec-
VPN service. Moreover, BitVisor checks status of smart
card connections periodically to verify the presence of an
authenticated user. This mechanism prevents unauthorized
accesses to the computer system physically. As shown in
Table 1, we can move some parts of security services, both
preprocessing is “OK” and “Partial”, from the parts of a
hypervisor to a special guest OS. As a result, the run-time
codes of a hypervisor become small, lightweight and more
reliable.

4 Design

Figure 4 shows the process flow of a special guest OS
for security preprocessing. BitVisor first boots this special
guest OS, which performs prior tasks for future security ser-
vices in a hypervisor. An initial program on the guest OS
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Figure 4. Process flow of a special guest OS
for security preprocessing

first parses configuration files of BitVisor. In general, pars-
ing processes of text-based configuration files are complex.
Thus, we can remove these unnecessary codes from the
run-time portion of a hypervisor. Then, the initial program
executes PKI-based user authentication using user’s smart
cards. If the authentication is failed then the special guest
OS shuts down. The initial program next loads a user’s se-
cret key and a user’s certificate from her or his smart card.
They are used in a storage encryption service and user au-
thentication of an IPsec-VPN service after the hypervisor
boots a target guest OS. The initial program on the special
guest OS has to pass these prior data to BitVisor. Because a
guest OS on a VM cannot access to the hypervisor directly,
the initial program executes a special instruction to access
a hypervisor. We discuss this passing method in Section 5.
Finally, BitVisor shuts down the special guest OS and boots
a target guest OS to be protected.

Although this paper especially shows an example to re-
duce the code size of BitVisor and its ID management
framework, a basic concept that separates a conventional
VMM-based TCB into two parts is useful for many existing
VMM-based TCB mechanisms.

5 Prototype Implementation

This section describes a prototype implementation of
the proposed two-step execution mechanism using BitVisor.
Table 2 shows hardware specification and Table 3 shows
software used in the prototype implementation.

Table 2. Hardware specification
Client PC Intel Core 2 Duo 1.86GHz

512 MB RAM
Smart card eLWISE TYPE-B

ISO/IEC14443, 7816
(NTT Communications)

Smart card reader ASE drive IIIe
ISO/IEC7816
(Athena Smartcard Solutions)

Table 3. Software used in the prototype im-
plementation

VMM-based TCB BitVisor 0.7
Special guest OS for Linux kernel 2.6.25.3
security preprocessing Libusb 0.1

OpenSSL 0.9.8g
Target guest OS Windows XP Professional SP2

5.1 Detailed Flow

Figure 5 shows the detailed flow of the prototype imple-
mentation. Our prototype implementation first launches a
boot loader (Grub). The target OS image is encrypted by a
user’s secret key. Therefore, a user has to launch the spe-
cial guest OS for security preprocessing before executing
the target guest OS. The special guest OS provides execu-
tion environment with least privilege, therefore it consists
of the minimum Linux kernel, the initial RAM disk called
initrd, the minimum set of libraries and device drivers for
smart card readers. The Linux kernel and the RAM disk im-
age are executed on BitVisor. Our proposal assumes that the
entire TCB includes both the special guest OS and BitVisor.
Therefore, we have to ensure the reliability and authenticity
of the special guest OS environment before. The initial pro-
cess (init program) of the RAM disk executes operations
shown in Figure 4. The init program next performs data
passing to BitVisor and finally shuts down the special guest
OS without mounting an ultimate file system. After this, a
user can execute a target guest OS on BitVisor. BitVisor ob-
tains the user’s encryption key from the preprocessing data,
decrypts the target guest OS image and boots it.

5.2 Data Passing Between the Separated
TCBs

As shown in Figure 5, the init program on the special
guest OS has to pass data to the BitVisor. However, a guest
OS on a VM cannot access VMM functions directly. To
invoke a special VMM function for data passing, the init
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Figure 5. The detailed flow of the prototype
implementation

0x00100000    MOV (VMM call number for data passing ), %eax
0x00100005    MOV $0x00100010, %ebx
0x0010000A   (VMCALL for Intel-VT or AMD-V)
0x0010000D   INT3     ; The following lines are not executed  
0x0010000F   JMP $    ; Infinite loop
0x00000010   (Data to be passed)  ; The following lines are data

Figure 6. The codes for kexec system call

program executes VMCALL instruction supported by Intel
VT [17]. In the prototype implementation, the init program
also executes kexec system call [18] to shut down devices
before booting the target guest OS. The init program sets up
VMCALL instruction and the preprocessing data itself using
kexec load system call. Figure 6 shows the program codes
for the kexec load system call. We use physical memory
address from 0x00100000 for the data passing. After set-
ting up the kexec load parameters, the init program reboots
the special guest OS itself. When the special guest OS is
shut down, kexec performs codes including VMCALL shown
in Figure 6. As a result, BitVisor can execute a function
to obtain the prior data from physical memory area from
0x00100010. Finally, BitVisor wipes out the memory
area for the data passing and the special guest OS to pre-
vent data stealing.

5.3 Measurement Result of LOC

We have measured lines of code of the ID management
framework libraries using SLOCCount program [19]. Table
4 shows the measurement results before and after applying
the proposed two-step execution mechanism. Application-
level libraries like standard I/O API, ID management API

Table 4. Measurement result: the code sizes
of the improved ID management framework
libraries

API name Before After Rate of re-
[LOC] [LOC] duction [%]

Standard I/O 1,072 352 67.1
ID Management 3,219 657 79.5
PKCS#11 5,520 4,604 16.5
PC/SC 1,965 1,965 0.0
CCID smart card driver 2,467 2,467 0.0

Total 14,243 10,045 29.5

[15] and PKCS#11 API [20] become reduced in size. How-
ever, lower-level libraries like PC/SC [21] and CCID smart
card driver do not become reduced.

The core run-time portion of BitVisor (version 0.7) has
27,214 LOC. The original code size of ID management li-
braries is 14,243 LOC. As shown in Table 4, by applying the
proposed two-step execution mechanism, we have reduced
4,198 LOC (29.5 %) from the original ID management li-
braries. The code size of the core run-time portion of BitVi-
sor with the original ID management libraries was 41,457
LOC. The code size of the core run-time portion of BitVi-
sor with the ID management libraries applying the proposed
two-step execution mechanism has become 37,259 LOC.
Thus, we have been able to reduced 10.1 % of LOC in the
total run-time portion of BitVisor.

6 Discussion

The basic concept of the proposed two-step execution
mechanism that separates preprocessing tasks is simple.
Therefore, we will be able to apply the proposal to other
hypervisors with complex security functions like ID man-
agement libraries of BitVisor. When we implement the pro-
posal to other hypervisors, we have to consider the follow-
ing issues: (1) secure data passing method between a special
guest OS and a hypervisor, (2) a run-time protection for a
special guest OS and a hypervisor, (3) a protection for the
boot sequence like the measured launch mechanism, and
(4) a mechanism to guarantee the authenticity of each TCB
component.

In particular, the proposed mechanism has to guarantee
the boot sequence of a boot loader, a hypervisor, a spe-
cial guest OS for security preprocessing and a target OS
as shown in Figure 5. Moreover, we have to verify the au-
thenticity of a boot loader, a hypervisor and a special guest
OS we have proposed. We can employ Intel Trusted Execu-
tion Technology (TXT) [22] to guarantee a boot sequence
and authenticity of each software. In future work, we will
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apply the proposed two-step execution mechanism to other
VMM-based TCBs to show the usability.

The data passing part is the most important process of the
proposed two-step execution mechanism. If an attacker can
compromise the data passing part, the attacker can executes
a user’s guest OS and they can steal its data. Especially, it
is important to protect encryption key of users’ guest OS
images. Therefore, the memory area of the data passing
has to be zero-cleared after booting the target guest OS or
resetting the hardware.

7 Conclusion

This paper has shown a two-step execution mechanism to
reduce the code size of a VMM-based TCB. The proposed
mechanism separates a conventional VMM-based TCB into
the two parts: (1) A thin hypervisor with security services
and (2) A special guest OS for security preprocessing. This
paper has introduced an additional TCB domain for security
preprocessing as the special guest OS works on a hypervi-
sor. This paper also presented a design, a prototype im-
plementation and measurement results of lines of code us-
ing BitVisor we have developed. The measurement results
of the prototype implementation indicate that the proposed
mechanism can reduce approximately 10.1 % of LOC in the
total run-time portion of BitVisor. Although this paper has
shown an example to reduce the code size of BitVisor and
its ID management framework, a basic concept that sep-
arates a conventional VMM-based TCB into two parts is
useful for many existing VMM-based TCB mechanisms. In
future work, we should consider the detailed security of the
data passing mechanism between a special guest OS and a
hypervisor.
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