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SUMMARY
Achieving energy-efficient and high-speed dynamic walking
has become one of the main subjects of research in the area
of robotic biped locomotion, and passive dynamic walking
has attracted a great deal of attention as a solution to this. It
is empirically known that the convex curve of the foot, which
characterizes passive–dynamic walkers, has an important
effect on increasing the walking speed.

This paper mainly discusses our investigations into
the driving mechanism for compass-like biped robots and
the rolling effect of semicircular feet. We first analyze the
mechanism for a planar fully actuated compass-like biped
model to clarify the importance of ankle-joint torque by
introducing a generalized virtual-gravity concept. A planar
underactuated biped model with semicircular feet is then
introduced and we demonstrate that virtual passive dynamic
walking only by hip-joint torque can be accomplished based
on the rolling effect. We then compare the rolling effect
with a flat feet model through linear approximation, and
show that the rolling effect is equivalent to virtual ankle-joint
torque. Throughout this paper, we provide novel insights into
how zero-moment-point-free robots can generate a dynamic
bipedal gait.

KEYWORDS: Dynamic bipedal walking; Semicircular feet;
Gait generation; Efficiency, Mechanical energy.

1. Introduction
Passive dynamic walking (PDW)1 has been considered to
provide clues to elucidate the mechanism responsible for
energy-efficient dynamic walking. By imitating or modifying
the PDW mechanism, several energy-efficient dynamic
bipedal walking robots have been achieved thus far.3–5

Major PDW-inspired approaches to biped-robot control
have tended to actuate simple-legged machines gently with
small motors, and have successfully achieved efficient biped
locomotion. Convex curved feet, on the other hand, have
also characterized passive–dynamic walkers,1 but this has
not been a feature of recent biped humanoid robots whose
control has been based on the zero moment point (ZMP).2

The importance of foot shape or the rolling effect has

* Corresponding author. E-mail: fasano@jaist.ac.jp

been empirically recognized;5, 6 however, no theoretical
investigations had been done until now.

This paper discusses our studies on the rolling effect
of semicircular feet on dynamic bipedal walking based
on this observation using theoretical investigation and
numerical analysis. Semicircular feet have, as Tedrake et al.6

and Wisse et al.7 pointed out, some valuable effects on
legged locomotion; they increase the stable domain and
the efficiency of generated gait. In this paper, however,
we mainly investigated the rolling effect during the stance
phase. We considered the mechanism from the viewpoint of
a generalized virtual-gravity concept and clarified how the
rolling effect accelerates the robot’s center of mass (CoM)
during the stance phase.

We first introduce a fully actuated compass-like biped
robot with flat feet and analyze the relation between its
CoM and joint torques based on inverse transformation and
the generalized virtual-gravity concept. The importance of
the ankle-joint torque is clarified. Second, an underactuated
compass-like biped robot with semicircular feet and
underactuated virtual passive dynamic walking (VPDW)
only by hip-joint torque are introduced. It is then clarified
that the dynamics of the semicircular-feet model can be
transformed to that of a fully actuated model with flat
feet and the rolling-effect functions as ankle-joint torque
through the linearization of the two walking systems and
their comparisons. It is theoretically shown that the rolling
effect accelerates the robot’s CoM forward as virtual ankle-
joint torque together with the real hip-joint torque during the
stance phase. This paper provides novel insights on biped
walking control in ZMP-free robots throughout this paper.

The remainder of the paper is organized as follows. In
Section 2, a planar fully actuated biped model is introduced
and its driving mechanism is analyzed. In Section 3, it is
investigate how the joint torques drive the robot’s CoM
via VPDW. Throughout these two sections, we clarify why
the ankle-joint torque is important for efficient walking.
In Section 4, a planar underactuated biped model with
semicircular feet is introduced, and underactuated virtual
passive dynamic walking (UVPDW) is applied to its level gait
generation. In Section 5, the rolling effects of semicircular
feet as ankle-joint torque is clarified via comparison with a
flat-feet model. Also in this section, the effect of semicircular
feet on heel-strike collision is discussed. In the subsequent
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Fig. 1. Model of planar fully actuated compass-like biped robot
with flat feet.

sections, efficiency of the obtained gait is numerically
analyzed in detail. Finally, Section 8 concludes the paper.

2. Model and Mechanism for Planar Fully actuated
Compass-like Biped Robot
This paper first presents a planar fully actuated compass-like
biped robot as shown in Fig. 1. The details of a biped model
are described and the relation between CoM and joint torque
is investigated.

2.1. Mathematical model
This subsection describes the mathematical model for a
planar fully actuated compass-like biped robot as shown in
Fig. 1, which consists of two leg links and three point masses
and has flat feet whose mass and thickness can be neglected.
The dynamic equation is given by

M(θ)θ̈ + C(θ , θ̇)θ̇ + g(θ) = Su =
[

1 1

0 −1

] [
u1

u2

]
, (1)

where θ = [ θ1 θ2 ]T is the generalized coordinate vector, Su
is the control input; u1 is the ankle-joint torque and u2 is
that for the hip-joint. We assumed that the stance foot would
always be in contact with the ground without slipping and
would have sufficient length according to the ZMP range.

If we assume inelastic collisions for the stance-leg
exchange and set suitable values for the physical parameters,
the robot can exhibit passive dynamic walking on a gentle
slope. In the following, we assumed that the heel-strike
collision is perfectly inelastic.

The total mechanical energy of the robot, E [J], is
determined as the sum of kinetic and potential energy and

given by

E(θ , θ̇) = 1

2
θ̇

T
M(θ )θ̇ + P (θ ). (2)

Its time derivative satisfies the relation

Ė = θ̇
T

Su. (3)

2.2. Relation between center of mass and joint torques
Let rg = [Xg Zg ]T be the positional vector of CoM, and its
time derivative yields ṙg = Jg(θ )θ̇ , where Jg(θ ) ∈ R

2×2 is
the corresponding Jacobian matrix detailed as

Jg(θ ) = M−1

[
(mHl + ma + ml) cos θ1 −mb cos θ2

−(mHl + ma + ml) sin θ1 mb sin θ2

]

=
[

JX(θ )

JZ(θ )

]
, (4)

where M: = mH + 2m [kg] is the robot’s total mass. Jg(θ )
has singularity at θ1 = θ2, and except for this condition, the
following inverse transformation from joint torques to the
translation force at the CoM is possible.

f g = Jg(θ )−T Su (5)

We call the translation force, f g ∈ R
2, generalized virtual

gravity, which represents a two-dimensional driving force
being exerted at the robot’s CoM. Equation (5) can be
rearranged as

f g = Jg(θ)−T

([
1

0

]
u1 +

[
1

−1

]
u2

)

= mbu1

M�g

[
sin θ2

cos θ2

]
− rgu2

�g

rg

rg

=: f 1 + f 2, (6)

where rg: = |rg|, M: = mH + 2m is the robot’s total mass
and

�g: = det( Jg) = −mb(mHl + ma + ml) sin θH

M2
, (7)

where θH : = θ1 − θ2 is the relative hip-joint angle. Note that
Eq. (6) is written in the form of two unit vectors. Equation (6)
shows that the effect of ankle-joint torque, f 1, yields parallel
to the swing leg and the effect of hip-joint torque, f 2, yields
central force, as shown in Fig. 2. Since f g has singularity
at θ1 = θ2, both vectors f 1 and f 2 diverge at this point and
it is ineffective to examine the effect of torque distribution
based on this approach. The ratio of | f 1| to | f 2|, however,
remains finite regardless of singularity as long as u2 is not
zero, which yields ∣∣ f 1

∣∣∣∣ f 2

∣∣ = mbu1

Mrgu2
. (8)
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Fig. 2. Relations between generalized virtual gravity vectors at
CoM and joint torques.

We now consider the reason why ankle-joint torque is more
important than hip-joint torque to drive the CoM forward. In
order to prove this question, let us consider the following
condition:

| f 1|
| f 2|

= mb|u1|
Mrg|u2| = 1, (9)

which means that the effect of ankle-joint torque, f 1, is the
same as that of hip-joint torque. The torque ratio is then
arranged as

|u1|
|u2| = Mrg

mb
= (mb)−1((mHl + ma + ml)2 + m2b2

−2mb(mHl + ma + ml) cos θH )1/2

≥ mHl + 2ma

mb
= Ml

mb
− 2. (10)

Note that the value of Eq. (10) is positive because of M ≥ 2m

and l ≥ b. The equality in Eq. (10) holds when θH = 0. In
the case with physical parameters of Table I, for example,
the torque ratio yields

|u1|
|u2| ≥ 20.0 × 1.0

5.0 × 0.5
− 2.0 = 6.0, (11)

thus u1 is required at least six times of u2. For this reason,
magnitude of u1 is much more required to generate the same
forward-propelling effect as that of u2. In other words, u2 is
more sensitive to f g than u1 in the meaning of vector norm.
In this sense, u2 seems to be more advantageous than u1 for
propelling the CoM forward; however, excessive use of u2

increases gravity during the first half of the cycle and disrupts
overcoming the potential barrier at mid-stance.

Table I. Physical parameters of robot.

mH 10.0 kg
m 5.0 kg
l = a + b 1.0 m
a 0.5 m
b 0.5 m

We propose an approach based on the orthogonal
projection of f i on ṙg in the next section to avoid singul-
arity.

3. Analysis of Virtual Passive Dynamic Walking
We clarified that ankle-joint torque is relatively important and
effective in driving a robot’s CoM forward. This section then
investigates the mechanism responsible for the effect of joint
torque and clarifies the importance of ankle-joint torque more
deeply from the generalized virtual-gravity point of view.

3.1. Virtual passive dynamic walking
Let i be the link number (1, 2, . . .) or the hip position (H ) in
the following, and their corresponding X-positions at each
link’s CoM are denoted as Xi . The time derivative of Xi

is further denoted as Ẋi = JXi
(θ)θ̇ , where JXi

(θ ) ∈ R
1×2

is the Jacobian matrix corresponding to Xi . If we assume
uniform virtual gravity whose magnitude is g tan φ in the
X-direction, where φ [rad] represents the angle of the virtual
slope,4 the equivalent transformed torque for the total effect
of virtual gravity, Suvg, can be expressed as

Suvg =
∑

i

mig tan φ JXi
(θ )T, (12)

and the time derivative of E is then derived as

Ė = θ̇
T

Suvg = g tan φ
∑

i

mi θ̇
T

JXi
(θ)T = g tan φ

∑
i

miẊi

= Mg tan φ
d

dt

∑
i

miXi

M
= Mg tan φẊg. (13)

This leads to the following:

∂E

∂Xg

= Mg tan φ, (14)

which is a unified property of passive dynamic walking.
Following Eqs. (3) and (13), we obtain

Ė = θ̇
T

Su = Mg tan φẊg, (15)

which specifies the relation between the robot’s total
mechanical energy and the X-position for CoM. Since this
equation has redundant control inputs, we have to introduce
another constraint. Let us then consider a solution yielded
by the constant torque ratio, μ, which gives the condition of
u1 = μu2. By substituting this into Eq. (15), the solution is
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Fig. 3. Generalized virtual gravity vectors in VPDW with CTR
formula.

determined as

Su =
[

μ + 1

−1

]
Mg tan φẊg

(μ + 1)θ̇1 − θ̇2
. (16)

We call this the CTR (constant torque ratio) formula.8 Note
that this solution no longer has the meaning of uniform virtual
gravity in the X-direction. The inverse transformation of this
Su should yield the generalized virtual gravity vector.

3.2. Typical behaviors of generalized virtual gravity
Figure 3 plots the generalized virtual gravity vector along
the CoM orbit with VPDW where φ = 0.02 [rad]; μ = 2.5

(Fig. 3(a)), (b) μ = 8.0 (Fig. 3(b)). The robot’s physical
parameters were chosen as listed Table I. As can be seen
from the results, the vectors are going to diverge as the
system closes with the singular point of θ1 = θ2. As reported
by Asano et al.,8 the walking system’s effectiveness where
μ = 8.0 is better or its walking speed is faster than that where
μ = 2.5. The results strongly indicate that generalized virtual
gravity where μ = 8.0 accelerates CoM more effectively
than that where μ = 2.5, and this supports the results of
Asano et al.8 As plotted in Fig. 3, the generalized virtual
gravity of μ = 2.5 has an unnecessary element perpendicular
to ṙg greater than that of μ = 8.0, and this force element
disrupts the forward acceleration of CoM as will be described
later.

3.3. Analysis based on orthogonal projection on ṙg

The following relation is easily derived where θ1 �= θ2.

Ė = θ̇
T

Su = θ̇
T

JT
g J−T

g Su = ṙT
g f g. (17)

Hence, Eq. (15) can be interpreted as a special case of Eq.
(17) with the generalized virtual gravity vector in the form

f g =
[

Mg tan φ

0

]
. (18)

In other words, Eq. (17) is a two-dimensional case or a
generalized case of Eq. (15). Let p f g be the orthogonal
projection vector of f g on ṙg . Considering Eq. (17), this is
given by

p f g = ṙT
g f g

ṙ2
g

ṙg = Ė

ṙ2
g

ṙg, (19)

and can be divided into two parts, i.e., f 1 due to the ankle-
joint effect and f 2 due to the hip-joint effect, as

p f g = θ̇1u1 + (
θ̇1 − θ̇2

)
u2

ṙ2
g

ṙg

= θ̇1u1

ṙg

ṙg

ṙg

+
(
θ̇1 − θ̇2

)
u2

ṙg

ṙg

ṙg

=: p f 1 + p f 2. (20)

This projection enables us to avoid divergence at θ1 = θ2,
and the generalized virtual gravity vector then becomes
continuously visible unlike the results in Fig. 3. The norm
ratio yields the power ratio as∣∣p f 1

∣∣∣∣p f 2

∣∣ =
∣∣θ̇1u1

∣∣∣∣(θ̇1 − θ̇2
)
u2

∣∣ . (21)

We further define the coefficients of p f 1, p f 2, and p f g as

pf1: = θ̇1u1

ṙg

, pf2: =
(
θ̇1 − θ̇2

)
u2

ṙg

, pfg: = Ė

ṙg

. (22)

Figure 4 shows the time evolutions of pf1, pf2, and pfg

in VPDW with the CTR formula where μ = 2.5 and 8.0.
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Fig. 4. Time evolutions of coefficients of orthogonal projective vectors pf1, pf2, and pfg .

Considering Ẋg > 0 in the VPDW, the following inequality
holds:

pfg = Mg tan φẊg√
Ẋ2

g + Ż2
g

≤ Mg tan φẊg

Ẋg

= Mg tan φ. (23)

The equality in Eq. (23) holds if Żg is 0 or sufficiently
small. In general, pfg ≈ Mg tan φ regardless of the system’s
chosen parameters as shown in Fig. 3 because the change
of Żg is sufficiently small. We therefore conclude that,
regardless of μ, vector f g has a magnitude of about Mg tan φ

in the ṙg-direction, and the reason the walking speed is
decreased when μ is small cannot be explained by these
results.

Let us now define the orthogonal vector of pfg as

p f ⊥
g : = f g − p f g, (24)

and compare this magnitude with that of p f g . Note that
p f ⊥

g does not contribute to restoring mechanical energy, i.e.,

ṙT
g

p f ⊥
g = 0. Figure 5 shows the time evolutions of |p f ⊥

g |,

where μ = 2.5 and 8.0, and this clearly indicates that the
magnitude where μ = 2.5 is larger than that where μ = 8.0.
This means that the walking speed decrease when μ is small
does not occur because it is impossible to drive CoM in
the direction of ṙg but because there is a large unnecessary
force perpendicular to ṙg . Figure 6 shows the conditions
for f g and its projection vectors for small and large μ.
The magnitudes of p f g in both cases are almost equal to
Mg tan φ, whereas those of p f ⊥

g are different. When μ is

small, it is clear that p f ⊥
g increases gravity or drives the CoM

downwards, which results in generating a counterclockwise
torque around the foot contact point, and disrupts CoM from
propelling forward to overcome the potential barrier at mid-
stance.

4. Biped Model with Semicircular Feet and
Underactuated Virtual Passive Dynamic Walking
Now that we have discussed the mechanism for the flat-feet
model, let us investigate that for the semicircular-feet model
in this section.

 0

 10

 20

 30

 40

 50

 0  0.5  1  1.5  2

N
o

rm
s 

o
f 

p f g
-p

e
rp

 [
N

]

Time [s]

μ = 2.5
μ = 8.0

Fig. 5. Time evolution of norms of p f ⊥
g for μ = 2.5 and 8.0 in VPDW with CTR formula.
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Fig. 7. Model of planar underactuated biped robot with semicircular
feet.

4.1. Model with semicircular feet
In the following, we will consider the model shown in Fig. 7
whose foot mass is included in the leg mass. Let θ = [ θ1 θ2 ]T

be the generalized coordinate vector and uH be the hip-joint
torque. The dynamic equation for the robot is then given by

M(θ)θ̈ + C(θ , θ̇)θ̇ + g(θ) = SuH =
[

1

−1

]
uH . (25)

The details of the terms are as follows:

M(θ) =
[

M11 M12

M21 M22

]
, C(θ , θ̇) =

[
C11 C12

C21 0

]
,

M11 = m
(
R2 + (a − R)2 + 2R(a − R) cos θ1

)
+(mH + m)

(
R2 + (l − R)2 + 2R(l − R) cos θ1

)
,

M12 = M21 = −mb (R cos θ2 + (l − R) cos θH ) ,

M22 = mb2,

C11 = −mR(a−R)θ̇1 sin θ1−(mH +m)R(l − R)θ̇1 sin θ1,

C12 = mbθ̇2(R sin θ2 − (l − R) sin θH ),

C21 = mb(l − R)θ̇1 sin θH ,

g(θ) =
[

− (mHl + ml + ma − MR) g sin θ1

mbg sin θ2

]
.

We denote the hip-joint torque as uH and as the relative hip-
joint angle θH : = θ1 − θ2 to distinguish the underactuated
model from the fully actuated one.

4.2. Underactuated virtual passive dynamic walking
The time derivative of mechanical energy in this case satisfies
the relation Ė = θ̇HuH . Virtual passive dynamic walking is
then formulated as

Ė = θ̇HuH = Mg tan φẊg, (26)

and hip-joint torque uH is uniquely determined as

uH = Mg tan φẊg

θ̇H

. (27)

We call the walking style driven only by the hip-joint
torque of Eq. (27) underactuated virtual passive dynamic
walking (UVPDW). Equation (27) has singularity at θ̇H = 0,
but this does not matter because the system automatically
avoids the singular point. Limit cycle walkers often exhibit
swing-leg retraction,9 which is the motion of the swing
leg; it moves backward just prior to heel strike. UVPDW
systems, however, do not exhibit this motion regardless
of system parameter choices. See the Appendix for the
detailed analysis. Figure 8 shows the simulation results for
UVPDW where R = 0.5 [m] and φ = 0.01 [rad]. Other
system parameters where chosen as listed in Table I. We
can see from Fig. 8(b) that condition θ̇1 > θ̇2 always holds,
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Fig. 8. Simulation results for underactuated VPDW with semicircular feet where φ = 0.01 [rad].

and from (d) that control input uH does not diverge during
a cycle. Figure 9 has stick diagrams of UVPDW where
(a) φ = 0.02 and (b) φ = 0.03 [rad]. Swing-leg retraction
does not occur in either case and singularity is automatically
avoided.

If condition θ̇H > 0 holds, the maximum efficiency
condition also holds. Energy efficiency is evaluated by

specific resistance defined as

specific resistance = p

Mgv
, (28)

which means the energy consumption per distance traveled
per kilogram mass per gravity. p is the consumed input power
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Fig. 9. Stick diagrams for underactuated VPDW with semicircular feet.

and v is the walking speed, and are defined as

p := 1

T

∫ T −

0+

∣∣θ̇HuH

∣∣ dt, (29)

v := 1

T

∫ T −

0+
Ẋg dt = �Xg

T
. (30)

Using these equations, the maximum efficiency condition is
derived as

p

Mgv
=

∫ T −

0+
∣∣θ̇HuH

∣∣ dt

Mg�Xg

≥
∫ T −

0+ θ̇HuH dt

Mg�Xg

= �E

Mg�Xg

,

(31)

where �E : =E(T −) − E(0+). Because θ̇H > 0 and
uH > 0, the equality in Eq. (31) holds and maximum
efficiency is achieved. Since �E=Mg tan φ�Xg holds in
the case of VPDW, minimum specific resistance yields tan φ,
and UVPDW always achieves this.

4.3. Generalized virtual gravity
Let the contact point of the sole with the ground when θ1 = 0
be the central point of the X–Z coordinate. Then, the general
X-position of the contact point yields Rθ1. The point in this
model is equivalent to ZMP. The generalized virtual gravity
vector of uH yields

f g = Jg(θ)−T

[
1

−1

]
uH = uH

�g

([
Rθ1

0

]
− rg

)
, (32)

and is found to be the vector from the contact point to the
CoM. As shown in Fig. 10, it acts as centripetal force (left)
or centrifugal (right).

Although there is unreasonableness that the robot must
only be driven by central force during the cycle, the
rolling effect overcomes this. The next section discusses our
extensive investigations into finding the mechanism.

(b) φ = 0.03 [rad]

(a) φ = 0.02 [rad]

Fig. 10. Generalized virtual gravity in underactuated VPDW with
semicircular feet.

5. Investigating Rolling Effect through Comparison
with Virtual Flat-feet Model
This section investigates the rolling effect through
linearization and compares the semicircular-feet model with
the one for flat feet.

5.1. Linearization and comparison of two models
Linearizing the semicircular-feet model around the
equilibrium point, θ = θ̇ = 02×1, the inertia matrix yields

M0 =
[

mHl2 + ma2 + ml2 −mbl

−mbl mb2

]
, (33)

and this does not have any terms concerning the foot radius,
R. The linearization of the nonlinear vector, C θ̇ , on the other
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Fig. 11. Equivalent geometric relation of generalized virtual gravity vectors in Fig. 9.

hand, yields 02×1, and is equivalent to the flat-feet model’s
results. Matrix M and vector C θ̇ of the two models are
equivalent in the sense of a linearized system. Gravity term
g(θ ) has differences. That of the semicircular-feet model can
be divided into the following two terms:

g(θ ) =
[
− (mHl + ml + ma) g sin θ1

mbg sin θ2

]
+

[
MRg sin θ1

0

]
.

(34)

The first term at the right-hand side is the same as the gravity
term for the flat-feet model. The semicircular-feet model
is therefore equivalent to that of the flat feet with ankle-joint
torque, which is given as −MRg sin θ1 in the context of a
linearized system. The virtual ankle-joint torque accelerates
CoM forward when θ1 < 0, whereas it decelerates in
the case of θ1 > 0. Real hip-joint torque then effectively
accelerates CoM forward together with virtual ankle-joint
torque or the rolling effect. This driving mechanism is
outlined in Fig. 11; the CoM of the virtual flat-feet
model is properly accelerated forward by hip-joint torque
reproducing virtual gravity effect and the virtual ankle-joint
torque.

This can be explained from the angular momentum point
of view. The time derivative of angular momentum, L, in
the case of a free ankle joint, should satisfy L̇ = MgXg .
The effect of gravity then decreases the angular momentum
when Xg < 0 and increases it when Xg > 0. The robot is
accelerated automatically when Xg > 0 without any joint
actuation after overcoming the potential barrier in this phase,
the external driving force is not necessary. We thus need
to exert some torque to drive CoM forward during the first
half of the cycle to overcome the potential barrier at mid-
stance.

Note that the change in mechanical energy change created
by virtual ankle-joint torque is 0 because the following

relation holds:

∫ T −

0+
θ̇1 (−MRg sin θ1) dt = MRg

∫ T −

0+

d cos θ1

dt
dt

= MRg
(
cos

(
θ1(T −)

) − cos
(
θ1(0+)

)) = 0. (35)

Thus, the restoration of mechanical energy during the stance
phase is only accomplished by real hip-joint torque. Note that
we used relation θ1(0+) = −θ1(T −) in the above calculation.

5.2. Typical gait of virtual flat-feet model
We conducted numerical simulations of UVPDW using a
virtual flat-feet model with virtual ankle-joint torque to
confirm these results. We used the nonlinear fully actuated
flat-feet model of Eq. (1) with the hip-joint torque of Eq. (27)
and the virtual ankle-joint torque of −MRg sin θ1. Note that
we used an inelastic collision model of heel strike not for the
flat-feet model but that for semicircular feet because there is
a major difference in the dissipation of mechanical energy.
Semicircular feet decrease energy dissipation but this paper
does not discuss the detailed mechanism responsible. See
refs. [10, 11] for the detail. Figure 12 shows the simulation
results. The conditions are the same as those in Fig. 8, and
we can see that a similar gait is generated.

The total mechanical energy at t = t1 (0+ ≤ t1 ≤ T −) in
Fig. 12(c) is virtually calculated by

E(t1) = E(0+) +
∫ t1

0+
θ̇HuH dt, (36)

taking only the power input by hip-joint torque into account.
We can see that the mechanical energy produces the same
orbit as normal VPDW. Figure 12(e) shows virtual ankle-
joint torque, which changes from positive to negative; this
leads us to conclude that virtual ZMP travels monotonically
forward in the virtual sole.
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Fig. 12. Simulation results for equivalent underactuated VPDW of virtual flat-feet model where φ = 0.01 [rad].
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Fig. 13. Gait descriptors of underactuated VPDW for three values of φ with respect to foot radius R.

5.3. Effect of foot radius on walking speed
The X-position at CoM is given by

Xg = R(θ1 − sin θ1)

+ (mHl + ma + ml) sin θ1 − mb sin θ2

M
, (37)

and its time derivative yields

Ẋg = Rθ̇1(1 − cos θ1)

+ (mHl + ma + ml)θ̇1 cos θ1 − mbθ̇2 cos θ2

M
. (38)

Note that cos θ1 ≈ 1 when θ1 is sufficiently small and thus
the first term at the right-hand side of Eq. (38) is almost 0.
We then find Ẋg is not directly affected by R. Although foot
radius R appears as virtual ankle-joint torque to drive CoM,
it does not increase the CoM velocity, Ẋg , directly. As shown
by Asano and Luo,10, 11 the reason semicircular feet increase
the walking speed lies in the heel-strike mechanism. It should
be noticed that the rolling effect contributes to overcome
the potential barrier, but does not increase the walking
speed.

Here, we briefly describe the effect of semicircular feet
on mechanical energy dissipation caused by heel strikes. Let
θ̇

− ∈ R
2 be the angular velocity vector just before impact,

then the dissipated mechanical energy is given by

�Ehs = −1

2
(θ̇

−
)T N θ̇

− ≤ 0, (39)

where matrix N ∈ R
2×2 is positive semidefinite and a

function of the angular positions and physical parameters
including the foot radius. Through analysis based on
singular value of matrix N , we found that there was a
tendency for mechanical energy dissipation to decrease
with the increase in foot radius.10 If R < l, mechanical
energy dissipation always occurs. Where R = l, however,
the dissipated mechanical energy yields

�Ehs = −σ1

4

(
θ̇

−
H

)2
, (40)

where σ1 is the maximum singular value of matrix N . We can
conclude that the mechanical energy dissipation caused by

heel strikes can be reduced to zero by achieving θ̇
−
H = 0

regardless of the choice of physical parameters for the
walking system. These results supports McGeer’s original
study on a synthetic wheel.1

We can summarize the effects semicircular feet had on
dynamic bipedal walking as follows:

� Semicircular feet provide a rolling effect that is equivalent
to ankle-joint torque during the stance phase.

� Semicircular feet reduce the dissipation of mechanical
energy at the instant of inelastic heel-strike collisions.

6. Parameter Study
This section discusses our analysis of changes in gait
according to the foot radius and mass ratio.

6.1. Effect of foot radius
Let us first examine the effect of the foot radius, R. Figure 13
shows the analysis results of the gait descriptors for three
values of φ. Here, Fig. 13(a) shows the step period, Fig. 13(b)
the walking speed, Fig. 13(c) the specific resistance, and
Fig. 13(d) the restored mechanical energy. We can see that the
walking speed and specific resistance monotonically improve
with the increase in R. This is because the rolling effect of
larger foot radius causes excessive acceleration of CoM. With
large foot radius, as seen in Fig 13(d), there is a great deal
of acceleration and consequently much mechanical energy
is restored. In addition, it is also seen that larger φ provides
faster gait.

Next, the nominal leg-mass position, a, or the length from
the tiptoe to CoM, is chosen as three values while maintaining
a + b = l = 1.0 [m]. Figure 14 shows the analysis results
of the gait descriptors where φ = 0.02 [rad]. For all a, the
descriptors show almost the same tendency with the increase
in R as the above result. It should be remarked that, as seen in
the results, small R has less effect in propelling the walking
robot forward, and the stable gait cannot be generated. If
R = 0 or without semicircular feet nor ankle-joint actuation,
so-called stilt-type walkers,12 are thus disadvantageous in
generating a high-speed gait. The related results are reported
in Asano et al.8

Large R virtually provides large ankle-joint torque and has
shock-absorbing effect for impact as previously mentioned.
The walking speeds thus obtained are remarkably faster than
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Fig. 14. Gait descriptors of underactuated VPDW for three values of a with respect to foot radius R where φ = 0.02 [rad].

those with previous major approaches inspired by passive
dynamic walking with ankle-joint actuation using flat footed
models.3, 8 If R is chosen as too large, however, the gait
diverges due to the excessive acceleration.

6.2. Effect of mass ratio
McGeer studied dynamics of a synthetic wheel that is a
compass-like biped robot with semicircular feet and a large
point mass at the hip, and pointed out that the robot can also
walk on level ground without energy supply if R = l and
mH 	 m. As mentioned above, however, R cannot be chosen
as so large because the steady motion is disturbed. We now
investigate the effect of mass ratio of hip mass to leg mass on
the gait efficiency. Let us define γ : = mH/m [-] and analyze
the gait descriptors. Figure 15 shows the analysis results for
three values of φ. We can see that the gait efficiency, walking
speed, and specific resistance, monotonically worsen with
the increase in γ . This is because hip-joint actuation cannot
cause restoration of mechanical energy by actuating mass-
less swing-leg.

Considering these results, we must conclude that it
is hard to reproduce the motion as a synthetic wheel
by realistic dynamic walkers. In addition, we can state
that dynamic walkers with massless legs, such as the
simplest walking model,13 always need to ankle-joint
actuation. Synthetic wheel is an ideal model and is available
only in the case without actuation nor external energy
supply.

7. Conclusion and Future Work
This paper investigated the mechanisms of planar compass-
like biped robots with flat or semicircular feet based on
the concept of a generalized virtual gravity. The relation
of a flat-feet model between CoM and joint torque was
first investigated and the importance of ankle-joint torque
was theoretically clarified. It was numerically shown that
UVPDW can be accomplished in the case with semicircular
feet, and the relation between the rolling effect and the ankle-
joint torque was clarified.

Second, a virtual flat-feet model was introduced and its
feasibility was evaluated. The authors believe that walkers
with semicircular feet should be treated not as the “synthetic
wheel” McGeer considered but as a virtual fully actuated
system whose ankle-joint torque is uniquely determined by
the foot radius R, the robot’s total mass M , and the stance-
leg angle θ1. This further implies that the optimal convex
curve for feet can be designed if the optimal ankle-joint
torque is determined. Further investigations are therefore
necessary.

Optimizing the convex curve of the foot is a subject left
for future work. The mechanism responsible for increasing
the stable domain of limit cycles is also a critical problem
that needs to be theoretically clarified.

There has been a tendency to adopt flat feet in conventional
biped humanoid robot design. A semicircular foot attached
to the stance leg, however, virtually functions as ankle-joint
torque during the stance phase and as a shock absorber in heel
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Fig. 15. Gait descriptors of underactuated VPDW for three values of φ with respect to mass ratio γ .
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Fig. 16. Simulation results for linearized underactuated VPDW where φ = 0.01 [rad].

strikes. The walking system’s efficiency was improved as a
result and the difficulties arising from the ZMP constraint
were also eliminated. This suggests that it is necessary to
reconsider the biped-robot mechanism with flat feet or the
ZMP-based approach.
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Appendix: On automatic singularity avoidance
In this Appendix, we outline the proof of automatic
singularity avoidance. The phenomenon θ̇H = 0 can be

mathematically explained via linearization of the walking
system.

The linearized model of Eq. (25) around the equilibrium
point θ = 02×1 and θ̇ = 02×1 is given by

M0θ̈ + G0θ = SuH , (41)

where matrix M0 is the same as in Eq. (33), and matrix G0

is given by

G0 =
[

−(mHl + ma + ml − MR)g 0

0 mbg

]
. (42)

Here we introduce a new coordinate θ̄ : = [ θ1 θH ]T to discuss
the dynamics more clearly. The following relation,

θ = T θ̄ , T =
[

1 0

1 −1

]
, (43)
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Fig. 17. Time evolution of angular velocities in linearized underactuated VPDW where φ = 0.03 [rad].

holds and by multiplying both sides of Eq. (41) by T T from
left-hand side, we obtain

T T M0T ¨̄θ + T TG0T θ̄ = T T SuH =
[

0

1

]
uH . (44)

We denote this as

M̄0
¨̄θ + Ḡ0θ̄ =

[
0

1

]
uH . (45)

We further arrange this as the following canonical form:

d

dt

[
θ̄

˙̄θ

]
=

[
02×2 I2

−M̄−1
0 Ḡ0 02×2

][
θ̄

˙̄θ

]
+

⎡
⎢⎣

02×1

M̄−1
0

[
0

1

]⎤
⎥⎦ uH .

(46)

This has a form of a linear system with a nonlinear feedback
of uH .

In calculating uH , we also linearized Xg in Eq. (37) as

X̄g = (mHl + 2ma)θ1 + mbθH

M
, (47)

and used its time-derivative

˙̄Xg = (mHl + 2ma)θ̇1 + mbθ̇H

M

= [
(mHl + 2ma)/M mb/M

]
.

[
θ̇1

θ̇H

]
=: J̄X

˙̄θ .

(48)

Figure 16 shows the simulation results of linearized UVPDW
where φ = 0.01 [rad]. Note that, however, we applied the
collision model of original nonlinear model with semicircular
feet. The physical parameters were chosen as Table I.
Compared the results of Fig. 8 with those of 12, we can
see that the walking motion is almost the same. θ̇2 once
approaches to θ̇1 but then it repels. This result suggests that
the phenomenon comes not from the nonlinearity of dynamic
equation but from the peculiarity of the control input, uH . To
confirm the phenomenon close to the singularity, we further

conducted numerical simulation where φ = 0.03 [rad], and
Fig. 17 shows the result of time evolution of the angular
velocities. The result strongly indicate the phenomenon.

Using Eq. (48), the linearized control input is given by

uH = Mg tan φ

θ̇H

J̄X
˙̄θ , (49)

and the system of Eq. (46) can then be arranged as

d

dt

[
θ̄

˙̄θ

]
= A

[
θ̄

˙̄θ

]

:=

⎡
⎢⎣

02×2 I2

−M̄−1
0 Ḡ0

Mg tan φ

θ̇H

M̄−1
0

[
0

1

]
J̄X

⎤
⎥⎦

×
[

θ̄

˙̄θ

]
. (50)

Matrix A ∈ R
4×4, however, is not constant and includes the

singularity. By extracting the fourth row of Eq. (50) and
substituting the values of Table I, we get

θ̈H = fH (θ ) + 1.31
θ̇1

θ̇H

, (51)

fH (θ ) = 17.4θ1 − 24.0θH + 0.218. (52)

The function fH (θ ) is positive in the posture of Fig. 7. The
second term of the right-hand side in Eq. (51) is positive
at first because θ̇1 is always positive during the stance
phase, and θ̇H is also positive during swinging the swing leg
forward. In passive or semipassive gaits, however, θ̇H often
becomes negative just prior to impact. In other words, swing-
leg retraction occurs. In UVPDW, as θ̇H → 0, θ̈H increases
and thus repels the singular point.
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