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Abstract. UNO® is one of the world-wide well-known and popular card games.
We investigate UNO from the viewpoint of combinatorial algorithmic game the-
ory by giving some simple and concise mathematical models for it. They include
cooperative and uncooperative versions of UNO, for example. As a result of an-
alyzing their computational complexities, we prove that even a single-player ver-
sion of UNO is NP-complete, while it becomes in P in some restricted cases. We
also show that uncooperative two-player’s version is PSPACE-complete.

1 Introduction

Playing games and puzzles is a lot of fun for everybody, and analyzing games and
puzzles has long been attracted much interests of both mathematicians and computer
scientists [5, 8]. Among various interests and directions of researchers in mathematics
and computer science, one of the central issues is their computational complexities,
that is, how hard or easy to get an answer of puzzles or to decide the winner (loser) of
games [2, 4, 10]. Such games and puzzles of interests include Nim, Hex, Peg Solitaire,
Tetris, Geography, Amazons, Chess, Othello, Go, Poker, and so on. Recently, this field
is sometimes called ‘algorithmic combinatorial game theory’ [2] to distinguish it from
games arising from the other field, especially the classical economic game theory.

In this paper, we focus on one of the well-known and popular card games called
UNO' and investigate it from the viewpoint of algorithmic combinatorial game the-
ory to add it to the research list. More specifically, we propose mathematical models of
UNO, which is one of the main purposes of this paper, and then examine their computa-
tional complexities. As a result, even a single-player version of UNO is computationally
intractable, while we can show that the problem becomes rather easy under a certain re-
striction.

We organize this paper as follows: Section 2 introduces two mathematical models of
UNO and their variants, and also defines UNO graphs. Among those models, Section 3
focuses on a single-player version of UNO, and investigates its complexities. In Section

T UNOP is a registered trademark of Mattel Corporation.



4, we argue with two-players’ version of UNO, and show that it is PSPACE-complete.
Finally, Section 5 concludes the paper.

2 Preliminaries

Games are often categorized from several aspects of properties that they have when we
research it theoretically. Typical classifications are, for example, if it is multi-player or
single-player, imperfect-information or perfect-information, cooperative or uncooper-
ative, and so on [2, 8]. A single-player game is automatically perfect-information and
cooperative, and is sometimes called a puzzle.

2.1 Game settings

UNO is one of the world-wide well-known and popular card games. It can be played
by 2-10 players. Each player is dealt equal number of cards at the beginning of the
game, where each (normal) card has its color and number (except for some special
ones called ‘action cards’). The basic rule is that each player plays in turn, and one
can discard exactly one of Hier cards at hand in one’s turn by matching the card
with its color or number to the one discarded immediately before one. The objective
of a single game is to be the first player to discard all the cards in one’s hand before
one’s opponents. Thus, UNO is a (i) multi-player, (ii) imperfect-information, and (iii)
uncooperative combinatorial game (see [3] for detailed rules of UNO).

In the real game setting of UNO, it is quite true that action cards play important
roles to make this game complicated and interesting. However, in this paper, when
we model the game mathematically, we concentrate on the most important aspect of
the rules of UNO that a card has a color and a number and that one can discard a
card only if its color or number match the card discarded immediately before one’s
turn. In addition to obeying this fundamental property, for theoretical simplicity, we set
following assumptions on our mathematical models: (a) we do not take into account
either action cards nor draw pile, (b) all the cards dealt to and at hand of any player
are open during the game, i.e., perfect-information, (c) we do not necessarily assume
that all the players have a same number of cards at the beginning of a game (unless
otherwise stated), (d) any player acts rationally, e.g., any player is not allowed to skip
one’s turn intentionally, and (e) the first player can start a game by discarding any card
he/she likes at hand.

2.2 Definitions and Notations

An UNO card has two attributes calledlor andnumbey and in general, we define a
cardtobe atupleX,y) e XxY,whereX ={1,...,c}isasetof colorsand = {1,...,b}

is a set of numbers. Finite numbermhyersl,2,...,p (= 1) can join an UNO game.

At the beginning of a single game of UNO, each card of a sat cardsC is dealt

to one player among players, i.e., each playeiis initially given a setC; of cards;
Ci={tis,....tin}(=1,...,p). By definition,zjip:1 n; = n. Here, we assume th@tis a
multiple set, that is, there may be more than one card with the same color and the same



number. We denote a carg §) dealt to player by (x, y)i. When the number of players
is one, we omit the subscript without any confusion. Throughout the paper, we assume
without loss of generality that player 1 is the first to play, and playg2s.1., p play in
turn in this order.

Playeri candiscard(or play) exactly one card currently at hand in fier turn if the
color or the number of the card is equal to each of the card discarded immediately before
playeri. In other words, we say that a card= (X, y')ir can be discarded immediately
afteracard = (x,y); ifand only if (X' = xvy = y)Al’ =i + 1 (modp). We also say that
a cardt’ matches cardt whent’ can be discarded aftérA discarded card is removed
from a set of cards at hand of the playerd&carding(or playing sequencéof card9
of a card seC is a sequence of cardg(...,ts) such thats € C andts # ts (i # ).
A discarding sequence(, ..., ts) is feasibleif t5 , matcheds for j=1,...,k- 1.

In our mathematical models of UNO, we specify the problems by four parameters:
number of playerg, number of total cards, number of colors and the number of
numbers. Two valuesc andb are assumed to be unbounded unless otherwise stated.

2.3 Models

We now define two dierent versions of UNO, one is cooperative and the other is un-
cooperative.

UNcoOPERATIVE UNO

Instance: the number of playeps and playei’s card setC; with c colors and

b numbers.

Question: determine the first player that cannot discard one’s card any more.

We refer to this Wcooperative UNO with p players as Wcooperarive Uno-p. This
problem setting makes sense onlypif> 2 since UNO played by a single player be-
comes automatically cooperative.

CoopPerATIVE UNO

Instance: the number of playeps playeri’s card setC; with ¢ colors andb
numbers.

Question: can all the players make player 1 win, i.e., make player 1's card set
empty before any of the other players become finished.

We abbreviate Gorerarive Uno played byp players as Goperarive Uno-p, or simply
as Wo-p. This problem setting makes sense if the number of playergreater than or
equal to 1. In WicooreraTive/CooperATIVE UNo, When the number of players is given by
a constant, such asvd-2, it implies thatp is no longer a part of the input of the prob-
lem. In addition to the assumptions (a)—(e) on game settings described in Subsec. 2.1,
we set one additional assumption which changes depending on whether the game is
cooperative or uncooperative: any player that cannot discard any card at hand (f1) skips
one’s turn but still remains in the game and waits for the next turn in cooperative games,
and (f2) is a loser in uncooperative games.

We defineUNO-p graphas a directed graph to represent ‘match’ relationship be-
tween two cards in the entire card set. More precisely, a vertex corresponds to a card,
and there is a directed arc from vertexo v if and only if their corresponding cards



t, matches (can be discarded immediately after) et us consider UNO-1 graph, i.e.,
UNO-p graph in case that the number of players 1. In this case, a card matches

t if and only if t matches’, that is, the ‘match’ relation is symmetric. This implies
that UNO-1 graph becomes undirected. For UNO-2 graph, attardx’,y’), matches

t = (x,y); if and only if t matched’, and therefore, UNO-2 graph also becomes undi-
rected. Furthremore, since a player cannot play consecutively when the number of play-
ersp > 2, UNO-2 graph becomes bipartite. In general, sincards of a card st is

dealt top players at the beginning of a single UNO game, i&is partitioned into

Ci = {(x,¥)i}, UNO-p graph becomes a (restrictephpartite graph whose partite sets
correspond t@;.

3 Cooperative UNO

In this section, we focus on the cooperative version of UNO, and discuss its complexity
when the number of players is two or one.

3.1 Two-players’ case
We first show that Wo-2 is intractable.
Theorem 1. Uno-2 is NP-complete.

Proof. Reduction from Hwmicronian Pata (HP).

An instance of HP is given by an undirected gr&Htrhe problem asks if there is a
Hamiltonian path irG, and it is known to be NP-complete [7]. Here, we assume without
loss of generality thab is connected and is not a tree, and hence[\Wg@)| < |E(G)].

We transform an instance of HP into an instance 8642 as follows. LetC; andC,

be the card set of players 1 and 2, respectively. We d€fine {(i,i) | vi € V(G)} and

Co = {(i, ) | {vi,vj} € E(G)}. Then, notice that the resulting UNO-2 gra@h which

is bipartite, has partite se¥sandY (XU Y = V(G’)) corresponding t&(G) andE(G),
respectively, and represents vertex-edge incidence relations@gfef. 1). Now we

show that the answer of an instance of HP is yes if and only if the answer of an instance
of Uno-2 is yes. If there is a Hamiltonian path, sBy= (vi,, Vi,, . .., Vi), in the instance
graph of HP, then there is a feasible discarding sequence alternatively by player 1's
and 2's as (., i1)1, (i1,i2)2, (i2,i2)1, - . ., (in-1,in-1)1, (in-1, in)2, (in, in)1), which ends up
player 1's card before player 2's. Conversely, if there is a feasible discarding sequence
((i1,11)1, (i1,12)2, (i2502)15 - -+ 5 (in=1,1n-1)1» (in-1,1n)2, (in, in)1), it visits all the vertices in

X of G’ exactly once, and thus the corresponding sequence of venices( ..., vi,)

is a simple path visiting all the vertices\(G) exactly once, that is, a Hamiltonian path
inG.

The size of an instance ofNd-2 is proportional tdC,| + |C;|. Since|C,| = [V(G)|
and|C;| = |E(G)|, the reduction is done in polynomial size\WG)| + |E(G)|, which is
the input size of an instance of HP. This completes the proof. O

Corollary 1. Uwno-2is NP-complete even when the number of cards of two players are
equal.
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Fig. 1. Reduction fromHP to Uno-2.

Proof. Reduction from Hwmicronian Pata with specified starting vertex, which is known
to be NP-complete [7].

We consider the same reduction in the proof of Theorem 1. As in that proof, we
can assumgC,| < |C,| without loss of generality. WhelC1| = |C;|, we are done. If
IC4] < |Cy|, @add|Cy| — |Cq| cards 6+ 2,n + 2) and a single carch(+ 2,n + 1) to Cy, a
single cardi,n+1) (i € {1,...,n}) to C,, and player 1 starts with card€ 2, n+2). This
forces the original grap® to specify a starting (or an ending) vertex of a Hamiltonian
path to bey;. O

3.2 Single-player’s intractable case

In single-player’s case, two filerent versions of UNO, cooperative and uncooperative
ones, become equivalent. We redefine this setting as the following:
Uno-1 (Sorrraire Uno)
Instance: a se€ of n cards &,y;) (i = 1,...,n), wherex € {1,...,b} and
yi€{1,...,c}.
Question: determine if the player can discard all the cards.

Example 1.Let the card se€ for player 1 is give byC = {(1,3), (2 2), (2 3), (2 3),
(2,4),(32),(34),(41), (4 3)}. Then, afeasible discarding sequence using all the cards
is((13),(23),(24),(34),(32),(22),(23),(43), (41)) in this order, for example,
and the answer is yes. The corresponding UNO-1 graph is depicted in Fig. 2.

Fig. 2. An example of UNO-1 graph.

We here investigate some basic properties of UNO-1 graphs. In UNO-1 graphs, all
the vertices whose corresponding cards have either the same color or number form a
cliqgue. Aline graph L(G) of a given graplG is a graph whose vertices are edges&of
and{e €} € E(L(G)) for e, € € V(L(G)) if and only if e ande’ share endpoints iG. A
graph that contains no inducéd 3 is calledclaw-free and line graphs are claw-free.



It is not so dificult to see that UNO-1 graphs are claw-free since at least two of the
three cards that match a card must have the same color or number. Furthermore, we can
observe the following fact.

Observation 1.A graph is UNO-1 if and only if it is a line graph of a bipartite graph.

Now we can easily understand thakdJ1 is essentially equivalent to finding a
Hamiltonian path in UNO-1 graph. However, the following fact is known.

Theorem 2. [9] Hamicronian Para for line graphs of bipartite graphs is NP-complete.

Therefore, as a corollary of this theorem, we unfortunately know that UNO is hard even
for a single player.

Theorem 3. Uno-1is NP-complete.

Here, we give a direct and concise proof of Theorem 3 for self-containedness and com-
pleteness instead of the one in [9], which further depends on [1].

Proof. A cubic graph is a graph each of whose vertex has degree 3. We reduae H
toNIAN Para for cubic graphs (HP-C), which is known to be NP-complete [6], to-d.
Let an instance of HP-C b®. We transfornG into a graphG’, where

V(@) = (x| xe V(G),e={xy} € E(G)},
E(G’) = {((X7 e)»(y’ e)) le=({x, y} € E(G)} U {((Xa e,),(X, ej)) e # ej}

This transformation implies that any vertexe V(G) is split into three new vertices
(x,&) (i = 1,2,3) to form a clique (triangle), while each incident edgéi = 1,2,3)

to x becomes incident to a new vertex ¢). (We call it a “node gadget” as shown in
Fig. 3.) Then we prepare the card €atf the player of Wo-1 to be the se¥(G’), where
the color and the number ox,(€) are x ande, respectively. We can easily confirm that
there is an edge = (t,t’) in G’ if and only ift andt’ match, i.e.G’ is the corresponding
UNO-1 graph for card s&Z. Now it sufices to show that there is a Hamiltonian path in
G of an instance of HP-C if and only if there is a Hamiltonian patfsin

Suppose there is a Hamiltonian path, $ay= (vi,,...,V;,), in G. We construct a
Hamiltonian pathP’ in G’ from P as follows. Letv;_,,vi;,Vi,,, be three consecutive
vertices inP in this order, and leg; = {vi_,,Vi;}, & = {vi;,Vi,,,} andes = {vi;,V;}

(k # j - 1,j + 1). Then we replace these three vertices by the sequence of vertices
(Vi,;»€1), (Vij,€1), (Vij,€3), (Vi;,€), (Vi,,,»€) in G’ to form a subpath irP’". For the
starting two vertices;, andv;,, we replace them by the sequence of verticgse;)

(el * {Vipviz})’ (Vil’ e2) (e2 * {Vilaviz})1 (Vi17 {Vi17viz})1 (Viza {Vil’viz}) (Same for the ending

two vertices). We can now confirm that the resulting sequence of veRldags’ form

a Hamiltonian path.

For the converse, we have to show that if there is a HamiltonianathUNO-1
graphG’, then there is irG. If P’ visits (v,g) (i = 1,2, 3) consecutively in any order
(call it “consecutiveness”) for any (as shown in Fig. 4 (al) or (a2)), théh can be
transformed into a Hamiltonian pathin G in an obvious way. Suppose not, that is, a
Hamiltonian path?’ in G’ does not visity, ) (i = 1,2, 3) consecutively. It sices to
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Fig. 3. A node gadget splits a vertex into three vertices to form a triangle.

show that suchP’ can be transformed into another path to satisfy the consecutiveness.
There are two possible cases as shown in Fig. 4 (b") and (c’), both of which contain at
least one end point d¥ in (v,&). In case (b’), we can resolve this inconsecutiveness
in (v, ) as shown in (b), which may result in case () in adjacent set of three vertices.
In case (c’), in order to resolve it, we can transform it into (c), which does not contain
inconsecutiveness any more.

Fig. 4. Possible tours passing through a node gadget.

The reduction can be done in the size proportional to the size of an instance of HP-
C. Thus, the proof is completed. O

3.3 Single-player’s tractable case

In the remaining part of this section, we will show that such an intractable problem
Uno-1 becomes tractable if the number of coloris bounded by a constant. It will be
solved by dynamic programming (DP) approach. To illustrate the DP for1) we

first introduce a geometric view of UNO-1 graphs.

Since an UNO cardxXy) is an ordered pair of integer values standing for its color
and number, it can be viewed as a (integer) lattice point in the 2-dimensional lattice
plane. Then an UNO-1 graph is a set of points in that plane, where all the points with
the samex- or y-coordinate form a clique. We call this way of interpretatiayeametric
view of UNO-1 graphs. The geometric view of an instance in Example 1 is shown in
Fig. 5 (a). Now the problem ib-1, which is equivalent to finding a Hamiltonian path in
UNO-1 graphs, asks if, for a given set of points in the plane and starting and ending at
appropriate dterent points, one can visit all the points exactly once under the condition
that only axis-parallel moves are allowed at each point (Fig. 5 (b)).



y (number) @) y (b) y ©

3etg e 3|
- x(color) X
1 2 3 4 1 2 3 4

Fig. 5. (a) Geometric view of a UNO-1 graph, where all the edges are omitted, (b) a Hamiltonian
path in the UNO-1 graph, and (c) a set of subpaths in the subgraph of the UNO-1 graph induced
by the first 6 points; it showls1 5 = 1, V(23 = 1 andd 4 = 1.

Strategy.Let C be a set oh points andG be an UNO-1 graph defined l§y. Then a
subgraphP forms a Hamiltonian path if and only if it is a single path that sp@ns
Suppose a subgraghis a spanning path db. If we consider a subs&’ of the point
setC, thenP[C’] (the subgraph oP induced byC’) is a set of subpaths that spans
G[C’] (Fig. 5 (c)). We count and maintain the number of sets of subpaths by classifying
subpaths into three disjoint subsets according to the types of their two endpoints.
Starting with the empty set of points, the DP proceeds by adding a new point ac-
cording to a fixed order by updating the number of sets of subpaths iteratively. Finally
when the set of points grows @ we can confirm the existence of a Hamiltonian path
in G by checking the number of sets of subpaths consisting of a single subpath (without
isolated vertices). Remark that, throughout this DP, we regard for convenience that an
isolated vertex by itself contains a (virtual) path starting and ending at itself that spans
it.

MechanismTo specify a point to be added in an iteration of the DP, we define a re-
lation < on the point seCC, wherex(t) andy(t) are x- and y-coordinates of a point
t, respectively: Let andt’ be two points inC, thent < t' < y(t) < y(t’) or
(y(t) = y(t") A x(t) < x(t)). Whent = t’, a tie breaks arbitrary. This relatiendefines
a total order orC, and we refen points inC to ty, ..., t, according to the increasing
order of<. We also defin€, = {tj | 1 < i < £}. Now points are added from to t,, and
consider when a new poitit= (X(t,), y(t;)) is added taC,_;. It must be added either to
two, one or zero endpoints offtirent subpaths to form a new set of subpaths.

Now letP(¢) be a family of sets of subpaths spann@®ig,]. (Recall that we regard
that an isolated vertex contains a path spanning itself.) Then we classify subpaths in
a set of subpath® € #(¢) in the following manner: for any subpathe # and the
y-coordinates of its two endpoints, either (i) both eq&l) (type-h), (ii) exactly one of
two equalsy(t,) (type-v), or (iii) none equalg(t,) (type-d) holds. We count the number
of such three types of subpaths#nfurther by classifying them by the-coordinates
of their endpoints. (Notice that types-h, -d are symmetric but type-v is not with respect
to x-coordinate.) For this purpose, we prepare some subscript sets: a set of subscripts
K ={1,...,c}, sets of unordered pair of subscripts ';) andlt =1 U{{i,i} i€ K},
and sets of ordered pair of subscrigts K x K andJ™ = J - {(i,i) | i € K}.



We now introduce the following parametdrsv andd to count the number of sub-
paths in® (e P(¢)) (see Fig. 5 (c)):

h; iy - #subpaths iP with endpoints X, y(t,)) and &, y(t;)) for {i,i’}el*,
Vii,iy - #subpaths iP with endpoints X, y(t,)) and ., y’) for (i,i)e J andy’'<y(t,),
d;ii-y: #subpaths iP with endpoints X, y') and ., y”) for {i,i’}e 1™ andy’, y"<y(t).

Then we define a (2| + |J|)-dimensional vector(®) for a set of subpath® (e P(¢))
asz(P) = (h;v; d) = Khiryy, - -, hags b2y ..o hiag haap L Bieg)s (VL. - - -5 Vv,
Vi2 1y, Vi2,2)s - - - Ve Via s - - > Vieg)s (A - - -5 diags dizzys - - -, dizgy, Az, - - -5 Aieg))-
Finally, for a given vector If; v; d), we define the number of sef? satisfyingz(P)

= (h;v; d) in a family P(¢) by f(¢, (h;v; d)), i.e., f(¢, (h;v;d)) = |{SD | P € P(6),
Z(P) = (h;v; d) }|. Now the objective of the DP is to determine if there exists a vector
(h;v; d) such thatf (n, (h;v; d)) > 1, where all the elements im, v andd are 0 except
for exactly one elementis 1.

RecursionAs we explained, the DP proceeds by adding a new pptotC,_;. Whent,

is added, it is connected to either 0, 1 or 2 endpoints of existifigrdnt paths, where

each endpoint hagt,) or x(t,) in its coordinate. The recursion of the DP is described

just by summing up all possible combinations of these patterns. We treat it by dividing
them into three cases, one of which has two subcases: (a) a set of base cases; (b) a case
in whicht, is added as the first point whogeoordinate ig/(t;), and (b1) as an isolated

vertex, or (b2) as to be connected to an existing path; (c) all the other cases.

Now we can give the DP formula for computirfg¢; (h; v; d)), however, we just
explain the idea of the DP in Fig. 6 by illustrating one of the cases appearing in the DP
(see [3] for full description of this recursion). In this example, consider a subpath in a
graph induced b, whose two endpoints have andx; in their x-coordinates. It will
be counted ity j;. Then this subpath can be generated by adding poiatconnect to
two paths in a graph induced I8¢_;, the one whose one endpoint is, §/(t;)) (counted
in V(i i), and the other whose one endpointksyj (y < y(t;)) (counted indy;). The
number of such paths is the sum of those for all the combinations’and j.

b= (K y(tr))
’,,,

Fig. 6. An example case of the DP.

Timing analysisWe first count possible combinations of argumentsfiddincel varies
from O to n, there are®(n) possible values. All oh, v and d have ©(c?) elements,
each of which can hav®(n) possible values, and therefoB¥n) possible values in



all. To compute a single value df, it requiresO(n*) lookups of previously computed
values off in case (c), WhiIeO(n3°2) x O(n?) lookups and check-sums in cases (b1)
and (b2), which is greater tha®(n*). Therefore, the total running time for this DP is
6(n) x O(N*") x O(N¥*+2) = O(nt*+3) = N which is polynomial inn whenc is a
constant.

Since the role of colors and numbers are symmetric in UNO games, we have the
following results.

Theorem 4. Uno-1is in P if b (the number of numbers) or c (the number of colors) is
a constant.

4 Uncooperative UNO

In this section, we deal with the uncooperative version of UNO. Especially, we show
that it is intractable even for two player’s case. For this purpose, we consider the fol-
lowing version of GneraLizep GEoGraPHY, Which is played by two players.

GENERALIZED GEOGRAPHY

Instance: a directed graph, and a token placed on an initial vertex.

Question: a turn is to move the token to an adjacent vertex, and then to remove
the vertex moved from from the graph. Player 1 and 2 take turns, and the first
player unable to move loses. Determine the loser.

It is well-known that GneraLizep GeograrHY IS PSPACE-complete [10], and a stronger
result is presented.

Theorem 5. [10] Generarizep GeoGraphy for bipartite graphs is PSPACE-complete.
Now we show the hardness result forddoperaTive Uno-2.
Theorem 6. Uncoorerative Uno-2 is PSPACE-complete.

Proof. Reduction from GneraLizep GEograPHY fOr bipartite graphs (GG-B).

Let (directed) bipartite grapB with V(G) = X U Y be an instance of GG-B, where
X andY are two partite sets, and let(e X) be an initial vertex. To construct a cor-
responding bicoorerative Uno-2 instance, we first transfor@ into another grapls’

where
V(@) = {us, U, Uc | u € V(G)},
E(G") = {(Ut, Ug), (Uc, Us) | U € V(G)} U {(us, ) | (U,V) € E(G)}

(Fig. 7). By construction, we can confirm th@t is a bipartite graph with/(G") =

X' UY,whereX ={us, b Jue X}U{u. |ue Y}andY ={us, by |Uu€ Y}U{uc | ue XJ.

We letr’ = ry (€ X’) be an initial vertex. It is easy to confirm that player 1 can win the
game GG-B ort if and only if the player wins o&’. Then we prepare card sésfor
playersi (= 1, 2) by

Cl = {(X’ 8), (Qy) | €= (X’ y) € E(G,)’ Xe X/’y € Y’}
U{(ee) le=(y,x) € E(G),xe X',ye Y},

C2 = {(y’ e)’ (e’ X) | €= (y7 X) € E(G,)’ Xe X/’y € Y/}
Uf(e,e) | e=(xy) € E(G),xe X',ye Y'}.



This means that we prepare three cards for eachiar&(G’), one for player and two
for player 3—i (Fig. 8).

U :u[ U Us e v ke ey
) ﬂ - ._'<’ (x. €)1 (eyh X (&€ y

Fig. 8. Prepare three cards, €)1, (e, €), and € Y)1
for an arce = (x,y), and three card(y),, (e, €)1
and , e), for an arce = (y, x).

Fig. 7. Split a vertex into two edges so
that edges correspond to cards.

Now we show that player 1 can win in arntboreraTive Uno-2 instance if and
only if player 1 can win in an GG-B instan€ ands'. To show this, it sffices to show
that any feasible playing sequence by players 1 and 2 in an GG-B instance corresponds
to a feasible discarding sequence alternatively by players 1 and 2 in the corresponding
UncooperATIVE UNo-2 instance, and vice versa.

Suppose a situation that player 2 has just discarded a card. The discarded card be-
longs to either one of the following five cases: @ X) for e = (y, X), (ii) (y,€) for
e = (v, X), (iii) (e e) for e = (x,¥). Among those, for cases (ii) and (iii), since player
1 starts the game (player 1 always played before player 2's turn), there exists exactly
one card (outgoing arc) that matches the one discarded by player 2 from the end vertex
of the arc corresponding to the card. This forces to trav&fsalong the directed arc
(in forward direction), which implies to remove corresponding end vertex {Borithe
only case we have to care about is case (i), where there may be multiple choices for
player 1. In this case, once player 1 discarded one of match cards, the player will never
play another match card afterwards, since the only card that can be discarded immedi-
ately before it has played and used up. This implies that veriexemoved fromG’.

(The argument is symmetric for player 1 except that the initial card is specified.)

Now we verify that Uicoorerative Uno-2 is in PSPACE. For this, consider a search
tree for Wvcooperative Uno-2, whose root is for player 1 and every node has outgoing
arcs corresponding to each player’'s possible choices. Since the number of total cards
for the two players i®, the number of choices at any turndgn) and since at least one
card is removed from either of the player’s card set, the number of depth of the search
tree is bounded bp(n). Therefore, it requires polynomial space with respect to the
input size. Thus the proof is completed. O

5 Concluding Remarks

In this paper, we focused on UNO, the well-known card game, and gave two mathe-
matical models for it; one is cooperative (to make a specified player win), and the other
is uncooperative (to decide the player not to be able to play). As a result of analyzing
their complexities, we showed that these problems dfedit in many cases, however,

we also showed that a single-player’s version is solvable in polynomial time under a
certain restriction.



As for an obvious future work, we can try gaining speedup in dynamic programming
for Uno-1 with constant number of colors by better utilizing its geometric properties.
In this direction, it may be quite natural to ask ik&}1 is fixed-parameter tractable.
Another probable direction is to investigate UNO-1 graphs from the structural point
of view, since they form a subclass of claw-free graphs and seem to have interesting
properties by themselves. It is also quite probable to modify our models more realistic,
e.g., to take draw pile into account (as an additional player), to make all players’ cards
not open, and so on.

Based on our mathematical models, it is not dGdilt to invent several variations
or generalizations of UNO games, even foxdJl (single-player’s version). Among
them, we can generalize an UNO card from 2-tuple (2-dimensional}ttple, that
is, D-piMensioNaL Uno-1 with appropriate modifications to ‘match’ relation of cards.
Another one is Mvimum Carp FiLL-Iv, that is, given a no instance forno-1, find a
minimum number of cards to be added to make it to be a yes instance.

Acknowledgments We deeply appreciate Nicholas J. A. Harvey at University of Wa-
terloo, Canada, for fruitful discussions with his deep insight at the early stage of this
manuscript. We also thank for the anonymous referees for their valuable comments.

References

1. A. A. Bertossi. The edge Hamiltonian path problem is NP-complefermation
Processing Letter$3, 157-159 (1981).

2. E. D. Demaine. Playing games with algorithms: Algorithmic combinatorial game
theory.Lecture Notes in Computer Sciens®l. 2136, 18-32, Springer (2001).

3. E. D. Demaine, M. L. Demaine, R. Uehara, T. Uno and Y. Uno. The complexity of
UNO. CoRR ab4.003.2851 (2010).

4. S.EvenandR. E. Tarjan. A combinatorial problem which is complete in polynomial
space.J. ACM23, 710-719 (1976).

5. M. GardnerMathematical Games: The Entire Collection of his Scientific American
Columns The Mathematical Association of America (2005).

6. M. R. Garey, D. S. Johnson and R. E. Tarjan. The planar Hamiltonian circuit is
NP-complete SIAM Journal of Computing, 704—714 (1976).

7. M. R. Garey, D. S. Johnso@omputers and Intractability: A Guide to the Theory
of NP-Completenes¥V. H. Freeman and Company (1979).

8. R. A. Hearn and E. D. Demainé&ames, Puzzles, and Computatigh K. Peters
(2009).

9. T.-H. Lai and S.-S. Wei. The edge Hamiltonian path problem is NP-complete for
bipartite graphsinformation Processing Lette#6, 21-26 (1993).

10. D. Lichtenstein and M. Sipser. GO is polynomial-space hardCM27, 393-401
(1980).



