
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Type-directed Compilation of ML Supporting

Interoperable Memory Management System

Author(s) Huu-Duc, Nguyen

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/987

Rights

Description Supervisor:Atsushi Ohori, 情報科学研究科, 博士

Type-directed Compilation of ML Supporting

Interoperable Memory Management System

by

Nguyen Huu Duc

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Atsushi Ohori

School of Information Science

Japan Advanced Institute of Science and Technology

February 15, 2006

Abstract

The major weakness due to that functional languages such as ML become less popular
than other imperative languages such as C is the inefficiency in senses of performance and
memory usage. Developing a function language that can seamlessly interoperate with
C (and other imperative languages) would help programmers to take advantage of both
programming styles.

In this thesis1, I present a type-directed compilation method of ML for achieving a
high level of interoperability. This compilation method supports a memory management
system, where integers, floating point values and other atomic data have the same nat-
ural representations as in other language implementations. This allows ML and other
languages sharing the same heap space without any additional performance cost. An-
other advantage of this memory management model is that run-time system can have a
better performance by eliminating all “boxing” and “tagging” operations that appear in
most of conventional implementations.

In order to achieve this, I first consider an “unboxed”, “non-tag” data representation
model in which

• integers, floating point values and other atomic values are naturally represented;

• each a heap block or run-time environment (stack frame) has a “bitmap” that
describes the pointer positions in the block;

then develop a compilation algorithm to support this model.
Since a polymorphic function may produce runtime objects of different types with

different sizes, the compiler should be able to generate a function’s code so that it has the
same behavior for all instance types and it can compute a correct bitmap for each memory
block. This would require us to insert extra lambda abstractions and applications to pass
the bit tags required in bitmap computation and the sizes required in manipulation on
unboxed values.

This compilation process should be done for both stack frames and heap-allocated
objects including functions’ closures and their environment records. I solve the problem
of mutual dependency between this compilation method and closure conversion by de-
veloping a combined algorithm that plays both of the roles. The resulting compilation
process is shown to be sound with respect to an untyped operational semantics with
bitmap-inspecting garbage collection.

I also consider several optimization techniques for reducing run-time overhead arising
from bitmap computation and unboxed manipulation. This compilation method, together
with the proposed optimizations, has been implemented in our SML# compiler for the
full set of Standard ML language, demonstrating its practical feasibility.

1This research is conducted as a program for the ”Fostering Talent in Emergent Research Fields” in
Special Coordination Funds for promoting Science and Technology by Ministry of Education, Culture,
Sports, Science and Technology.

i

Acknowledgments

I would like to extend my sincere gratitude and appreciation to many people who made
this thesis possible. Special thanks are due to my principal advisor Professor Atsushi Ohori
from Tohoku University whose help, stimulating suggestions and encouragement helped
me in all the time of research for and writing of this thesis. Thanks also to Yamatodani
Kyoshi, Liu Bochao and other members of the SML# project for interesting discussions
and e-mail exchanges that directly or indirectly pertain to the present work.

I greatefully acknowledge the finalcial support of the Graduate Research Program. I
am also grateful to the School of Information Science, Japan Advanced Institute of Science
and Technology for providing me an excellent work environment during the past years.

I would like to thank the members of my PhD committee who monitored my work
and took effort in reading and providing me with valuable comments on earlier versions of
this thesis: Professor Takuya Katayama, Professor Kokichi Futatsugi, Professor Yasushi
Hibino, Professor Mizuhito Ogawa, and Professor Yasuhiko Minamide. I thank you all.

I wish to express my warm and sincere thanks to Professor Nguyen Thanh Thuy, Head
of the Department of Information Systems, Hanoi University of Technology, who gave me
important guidance during my first steps into computer science studies.

Many thanks go to professor Ho Tu Bao and all vietnamese people at JAIST for giving
me the feeling of being at home.

I feel a deep sense of gratitude for my father and mother who formed part of my vision
and taught me the good things that really matter in life. I am grateful to my sisters Minh
and Mai, for rendering me the sense and the value of blood relative. I am happy to be
one of them.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Method Outline . 4

1.1.1 Bitmap-passing Compilation . 5
1.1.2 Unboxed Compilation . 6
1.1.3 Implementation Issues . 7

1.2 Related Work . 10
1.3 Organization of Thesis . 12

2 The Source Calculus – λML 13
2.1 Conventional ML Type System . 13

2.1.1 ML type system at a glance . 13
2.1.2 Problem with value polymorphism 14
2.1.3 Problem with type-directed compilation 15

2.2 Rank-1 Polymorphism . 16
2.3 The Source Calculus – λML . 17

2.3.1 Types . 17
2.3.2 Syntax . 18
2.3.3 Typing Environment . 19
2.3.4 Typing Rules . 21

3 Bitmap-passing Compilation 22
3.1 The Target Calculus – ΛB . 22

3.1.1 Types . 22
3.1.2 Syntax . 23
3.1.3 Typing Environment . 24
3.1.4 Typing Rules . 25
3.1.5 Semantics . 29

3.2 The Compilation Algorithm . 35
3.2.1 The Explicitly Typed Bitmap-passing Calculus – λB 35
3.2.2 Compilation from λML to λB . 35
3.2.3 Transformation from λB terms to ΛB terms 41

iii

4 Unboxed Compilation 44
4.1 The Target Calculus – ΛU . 44

4.1.1 Types . 45
4.1.2 Syntax . 46
4.1.3 Typing Environment . 47
4.1.4 Typing Rules . 47
4.1.5 Semantics . 52

4.2 The Compilation Algorithm . 58
4.2.1 The Explicitly Typed Unboxed Calculus – λU 58
4.2.2 Compilation from λML to λU . 60
4.2.3 Transformation from λU terms to ΛU terms 64

5 The Combined Algorithm 66
5.1 Combination with Closure Conversion . 66

5.1.1 Bitmap-passing unboxed closure calculus – ΛBUC 67
5.1.2 Explicitly Typed BUC calculus – λBUC 72
5.1.3 λML to λBUC transformation . 73
5.1.4 λBUC to ΛBUC transformation . 77

5.2 Extension for Generating Stack Frame Layout 79

6 Separate Compilation and Module Language 83

7 Implementation and Optimizations 87
7.1 Mutually Recursive Function Definition . 87
7.2 Double-Word Alignment . 90
7.3 Optimizations . 91

7.3.1 Uncurrying optimization . 91
7.3.2 Sharing bitmap/offset computation 92
7.3.3 Arithmetic Optimization . 94

8 Conclusion and Future Directions 95

iv

Chapter 1

Introduction

In recent years, modern functional programming languages (FLs) such as ML, Haskell
become more and more attractive to programmers with many powerful features which are
not available in conventional imperative programming languages (ILs) such as C, Pascal:

• most of FLs are strongly typed, eliminating a huge class of easy-to-make errors at
compile time;

• higher order parametric polymorphic functions and powerful module system of FLs
allow programmers to “glue” their code together easily;

• symbolic data types provide a more abstract tool for programmers to describe their
developing systems for both rapid prototyping and stand-alone applications.

Despite of such considerable advantages, FLs are still less popular than ILs due to
several weaknesses they have. FLs run slower and consume much memory space. In de-
veloping a real-life application where user interests are put in the first place, programmers
are often unwilling to trade the efficiency for the advantages that FLs bring to.

Clearly, we want to have the best of both programming models. Since there does not
exist an all-in-one language, an alternative way for enjoying the benefits from ILs and
FLs is to make them interoperable, e.g. ML programmers can write code to call functions
from libraries implemented in C.

This is, however, not quite an easy task. The major obstacle preventing us from
achieving the desired interoperability is the mismatch between data representations in
FLs and ILs. Let’s consider a typical example of the interoperability between ML and
C. Taking advantage of a low-level, monomorphic language, compilers of C can produce
code which can run with natural data representation and efficient calling conventions.
ML compilers, in contrast, often sacrifice the natural representation of data for compiling
polymorphism and for supporting tracing garbage collection. More specifically, ML often
assumes “boxed” and “tagged” representations for run-time objects.

• Boxed representation. A boxed representation of a run-time object is a pointer
to a memory block where the actual content of the object resides. The point of this
representation is that objects of any types can have the same size, i.e. one word
data. ML compilers, therefore, can compile a polymorphic function into a simple
code which has the same behavior for for all possible instance types.

1

Figure 1.1: Example of boxed and tagged representation

• Tagged representation. A tagged representation is a word containing one bit
tag for indicating whether it is a pointer or not. This yields particularly simple
memory management: the compiler only needs to set one bit when emitting code,
and the tracing garbage collector can locate all the pointers in a heap block by
simply scanning the tag bit in each word in the block.

Figure 1.1 gives an example of a memory model with boxed and tagged representation.
In this example, the floating point number 1.1 and the string ‘‘Hello’’ are boxed, i.e.
they are allocated in a separated heap blocks and pointers to these block are used in place.
Tags (1 or 0) are included in each word in an ordinary block. Pointers to heap blocks have
tag 1. Non-pointers have tag 0. These bit tags are useful for tracing garbage collection
which traverses over the memory space to find out and eliminate “garbage” blocks (in the
example, there is a “garbage” block that contains a pointer to the string block ‘‘Hello’’

and an interger 2).
In the presence of data representation mismatch, ML and C run-time systems do

not accept direct function calls from one to other. In this case, to achieve the desired
interoperability, SML/NJ (a famous dialect of ML) integrates the so-call foreign function
interface. This allows ML users accessing to external libraries by performing conversion
of data every time they are passed through the language boundary. An obvious drawback
of this method is that the conversion may exhibit serious performance overhead when
exchanging a large amount of data. Another drawback, which comes from the nature
of boxed and tagged representations, is the inefficiency of runtime and memory usage in
maintaining boxed and tagged objects. OCaml, another well-known dialect of ML, also
allows to call C’s functions from ML programs. In order to access to values passed from
ML, C programmer must used a special accessing tools provided in the OCaml’s compiler
package. This would be a more efficient solution in sense of performance. However, the
called C programs must be written with a specialized code for ML. This implies that we

2

Figure 1.2: Example of a natuaral representation memory model

can not achieve a real interoperability where ML programs can call any C function.
The goal of my thesis is to develop a compilation method of ML so that we can achieve

a higher level of interoperability and more efficient run-time system. First of all, I assume
an interoperable memory management for ML run-time system in which a common heap
space can be shared by ML and other languages including C. The following two features
are considered to be prerequisites in this memory management system:

• integers, floating point values, and other atomic data have the same natural repre-
sentations as those in C;

• each memory block includes its layout information for garbage collection.

One natural strategy that satisfies these criteria is to include in each heap-allocated
block a bitmap that describes the pointer positions in the block. Figure 1.2 depicts a
memory model that satisfies the described criteria. In this example, atomic objects such
as intergers (1, 2), floating point numbers (1.1) are naturally represented. Strings and
other structured objects such as records are boxed. A bitmap are generated for each
record, indicating pointer positions in the record. In the example, bitmap of the records
(1,′′ Hello′′) and (“Hello′′, 2) are [0, 1] and [1, 0], respectively. Runtime environment (root)
also requires bitmap. For the sake of simplicity, in the above example, I consider the
bitmap of runtime environment as the same as the bitmap of the record (1.1, (1,′′ Hello′′))
whose value is [0, 0, 1]. Since the floating point value 1.1 is inlined and occupies two words,
we need to reserve two zero bits in the bitmap for this value. In a practical development,
bitmaps for runtime environment are different. I shall described this later in Chapter 5.

Since this representation only includes the necessary information for garbage collection
and does not place any constraint on scanning strategy of garbage collection, it should be

3

efficient and also compatible with heap management of most of typed languages whose
object creation is monomorphic such as Java.

The major task of the thesis is to develop a compilation method that support the
proposed memory management system. For monomorphic language where all type infor-
mation can statically determined, allocating heap block with unboxed representation and
correct layout bitmap is easy. This, however, is challenging for a polymorphic language
such as ML. Two major problems we have to face when compiling polymorphic functions
are: generating code for computing a correct layout bitmap for each memory block, gen-
erating code for manipulating unboxed values. To see the problems, let us consider the
following program in Standard ML syntax,

let fun f x y = (x,y)

in (f 1 1 ; f 1.1 1; f "a" 1) end

where (e1,e2) is a record to be allocated in a heap, and (e1;e2) is sequential evaluation.
Although there is only one heap allocation code, namely (x,y), it will allocate 3 different
records ([0,0]; 1, 1), ([0,0,0]; 1.1, 1), and ([1,0]; p, 1) (p is the pointer to
the string block “a”).

The first problem is to set a correct bitmap for each instance of the function. In order
to do this, it is necessary to evaluate the instance types of x and y to get the corresponding
portions of the entire bitmap, compose them, and pass them to the code of (x,y).

The second problem is to generate code for manipulating unboxed values. In the above
example, allocation code for the record (x,y) consists of the following steps.

1. allocating a fresh memory block whose size is the total size of x and y, plus size of
the bitmap.

2. generating bitmap (as shown above) and copy the resulting value to the first word
of the block

3. copy the value of x from runtime environment to its location in the block

4. copy the value of y from runtime environment to its location in the block

In the above steps, size information of x and y are required. Therefore it is also necessary
to evaluate the instance types of x and y to get their sizes and propagate these sizes into
appropriate operations.

My strategy to deal with these two problems is to develop a type-directed compilation
algorithm that statically transforms types into terms that can evaluate at runtime to
compute the necessary information.

The remainder of this chapter serves as an overview of this strategy. In Section 1.1,
I briefly introduces the method applied in this research. In Section 1.2, I review several
related works, compare them with the proposed method, and claim the contributions of
the thesis. Section 1.3 gives a comprehensive overview for the rest of the thesis.

1.1 Method Outline

The general idea behind this research is to follow type-passing approach presented in
several existing works including intentional type analysis [HM95], compilation of type

4

classes [HHJW96, PJ93], polymorphic record compilation [Oho95], and mixed represen-
tation optimization [Ler92]. In order to pass types to run-time, I develop a type-directed
compilation scheme in which type information are encoded as terms in the target language,
and the compilation algorithm takes responsibility for this transformation.

As mentioned above, type information are useful for computing layout bitmaps and
manipulating of unboxed values. Unlike dynamic type dispatch approach in [HM95], we
do not need full type information for compiling polymorphism; size and tag information
of types are sufficient for generating bitmaps and locations. The compiler, therefore, only
encodes types as size and tag terms in the target language. For the types whose data
layouts are statically determined, the compiler can statically generate tag and size values.
For abstract types such as type variables, we need to introduce tag/size variables. In
this case, the compiler generates tag/size abstractions at type abstractions and tag/size
applications at type instantiations.

This compilation scheme is seemingly complex for generating code for both of comput-
ing bitmaps and manipulating unboxed values. For the sake of readability, in the thesis, I
separately present the compilation method for generating bitmaps (namely bitmap-passing
compilation) and the compilation method for manipulating unboxed value (unboxed com-
pilation). After giving a formal representation of these methods, I shall show how to
combine these methods in a practical implementation of ML. The rest of this section
gives an overview for each parts of the presentation.

1.1.1 Bitmap-passing Compilation

The goal of the bitmap-passing compilation is to generate code for computing necessary
bitmap for each memory block. Since bitmaps are required for all memory blocks including
heap-allocated blocks and run-time environments (stack frames), we need to compute
bitmaps for all of them. As a formal representation, in the bitmap-passing compilation, I
only consider the generation of bitmaps for heap-allocated blocks. Generation of bitmaps
for run-time environments shall be discussed later in the implementation issues.

Let us consider the following explicitly typed polymorphic expression in ML-style.

let f:∀t.t → t × t = Λt.λx:t.(x,x)
in (f int 1; f string "1") end

Since the type of the record expression (x,x) is t×t, we know that this expression requires
a bitmap corresponding to t× t. This bitmap can be composed from bit tag information
of objects of types t. We extend the function f by introducing new parameters a and
type this new variable with a special bit tag type of the forms 〈t〉. In general, 〈σ〉 denotes
(the singleton set of) 0 if σ is a type of unboxed objects (i.e. non-pointer atoms), and 1 if
σ is a type of boxed objects (i.e. pointers). In ML, if σ is not a type variable then 〈σ〉 is
determined by the outermost type constructor of σ.

Using bit tag type, we can obtain the necessary bit tag for each usage of f by inspecting
the instance of the bit tag types.

For example, if t is instantiated to int then the corresponding bit tag type is 〈t〉[int/t] =
〈int〉 which denotes the (singleton) value 0. The value of bitmap (x,x) is therefore [0, 0].
Based on this idea, the bitmap-passing compiler with a typing derivation algorithm will
transform the above program to the following explicitly typed term.

5

let f:∀t.〈t〉 → t → t × t = Λt.λa:〈t〉.λx: t.([a,a]; x,x)

in (f int 0 1; f string 1 "1") end

where the syntax [e1, . . . , en] is the term constructor for bitmaps and (ebm; e1, . . . , en) is
the term constructor for a record where the first component ebm is the bitmap term of
the record.

In the above example, new bit tag parameter a is introduced. Then, bitmap of the
record (x, x) is generated as [a, a]. At the type instantiation, this bit tag parameter will
be given actual value, i.e 0 for the argument’s instance type int and 1 for the argument’s
instance type string.

1.1.2 Unboxed Compilation

Unboxed compilation takes responsibility for generating code for manipulating unboxed
values. In order to support recursively user-defined data, we put a restriction on unbox-
ing rules: only multi-word atomic constants such as floating point values are unboxed,
structured data such as records, strings remain boxed. We also assume that polymorphic
operators never inspect the content of unboxed values. Common copying and comparing
operators satisfy this assumptions. Other polymorphic operators such as “+” can be
implemented by overload operators. Under these restrictions, the only information which
are really needed for manipulating an unboxed value in the presence of polymorphism are
location and size of the value.

In ML, a run-time value is allocated either in a heap block or in a run-time environment
(stack frame). The location of the value (or the offset of the value related to the memory
block pointer) is computed as the total sizes of its predecessors in the block. For example,
let us consider a block of three unboxed value (1.1,2,3). Offset of the third element
related to the block pointer is 3 since the floating point value 1.1 requires two words. In
the presence of polymorphism, types of the value and its predecessors may not be statically
determined. Their sizes, therefore, are needed to be evaluated from their instance types.
We can apply the same strategy as bitmap-passing compilation for computing offsets and
sizes: statically compute offset and size as far as possible, introduce extra size parameter
for each type variable, and pass the neccessary sizes to offset computation.

Here, we meet a problem of performance inefficiency. Since offset computations are re-
quired for all values resided in memory, these computation would be heavy in the presence
of polymorphism. In order to reduce the run-time overhead arising by offset computation
of stack frame values, we consider a simple model of stack frame where all variables are
allocated in static locations (therefore their offset can be statically computed). We can
do this by reserving maximum space for each polymorphic variables, i.e. two words in our
compiler implementation. Since all polymorphic variables have fixed sizes, we can easily
computed their offset without knowing their actual types. This strategy would require
extra memory space for runtime environment. However, I believe that the redundancy
problem arising from variable allocations is not serious with a variable liveness analy-
sis optimization. Adopting this model of runtime environment, the only kind of offset
computation we have to deal with are those of unboxed values resided in heap-allocated
blocks.

Let us consider the following explicitly typed polymorphic expression in ML-style.

let f : ∀t.t × int × t → t = Λt.λx : t × int × t. #3 x

6

in (f int × int × int (1, 2, 3); f real × int × real (1.1, 2, 3.3)) end

Function f performs the projection for the third element of a given record x of type
t× int× t. Offset of the third element depends on size of values of type t, i.e. sizeOf(t)+
1. Following the strategy of bitmap-passing compilation, we extend the function f by
introducing new parameters a and type this new variable with a special size type of the
forms |t|. In general, |σ| denotes (the singleton set of) 1 if objects of type σ are single
(i.e. have one word size such as integers, pointers), and 2 if objects of type σ are double
(i.e. have two word size such as floating points). In ML, if σ is not a type variable then
|σ| is also determined by the outermost type constructor of σ.

Using size type, we can obtain the necessary size for each usage of f by inspecting the
instance of the size types.

For example, if t is instantiated to real then the corresponding size type is |t|[real/t] =
|real| which denotes the (singleton) value 2. The offset of the third element of x is therefore
2 + 1 = 3. Based on this idea, the compiler can transform the above program into the
following explicitly typed term.

let f : ∀t.|t| → t × int × t → t = Λt.λa : |t|.λx : t × int × t. πa
a+1(x)

in (f int × int × int 1 (11, 21, 31); f real × int × real 2 (1.12, 21, 3.32)) end

In the above code, the term πa
a+1(x) is compiled from the projection #3 x. The superscript

a represents actual size of the selected field, the subscript a + 1 represents the offset term
of the selected field. This offset term is generated from type information of predecessor of
the field (t and int). In record allocations (11, 21, 31) and (1.12, 21, 3.32), the superscripts
represent size of each element required in the allocation of the record at runtime.

At type instantiation, actual sizes are given to the size parameter though funtion
application. In the first instantiation, actual size is given to 1 corresponding to the actual
type of t is int. In the second instantiation, actual size is given to 2 corresponding to the
actual type of t is real.

1.1.3 Implementation Issues

We have successfully implemented a compiler of ML, namely SML#. Beside several
powerful features such as rank-1 polymorphism [OY99], polymorphic record compilation
[Oho95], the compiler also archives a high-degree of interoperability based on the pro-
posed compilation methods. During the development of this compiler, we have worked
out several implementation issues related to bitmap-passing compilation and unboxed
compilation.

The first one is the mutual dependency problem among bitmap-passing compilation,
unboxed compilation and closure conversion.

• Dependency between bitmap-passing compilation and unboxed compila-
tion. Bitmap-passing compilation generates bitmaps for heap-allocated blocks. The
composition of these bitmaps also require size information generated from unboxed
compilation. For example a bitmap of a record of type t×t may have three different
values depending on the instance type of t: [0, 0] for single, unboxed type t (e.g.
int), [1, 1] for single, boxed type t (e.g. string), and [0, 0, 0, 0] for double, unboxed
type t (e.g. real). In the first two cases, the generated bitmap consists of two bits.
In the last cases, the generated bitmap consists of four bits. In general, generating

7

a correct bitmap of an unboxed memory block in bitmap-passing compilation, we
also need size information of each element of the block. These size information may
need to be generalized by unboxed compilation.

• Dependency between bitmap-passing compilation and closure conversion.
A practical compiler of functional languages often implements closure conversion as
a crucial immediate compilation step which transforms functions into data struc-
tures (closures) that encapsulates the function’s code and its environments (often
implemented as records). Bitmap-passing compilation introduces bit tag abstrac-
tions which are treated as ordinary lambda abstractions. These abstractions need
to be closure converted. In the other hand, a closure and its environment record are
also heap-allocated objects. Bitmap-passing compilation is required for generating
bitmaps for them.

• Dependency between unboxed compilation and closure conversion. Sim-
ilar to bit tag abstractions introduced in bitmap-passing compilation, size abstrac-
tions introduced in unboxed compilation also need to be closure converted. A closure
and its environment records are heap-allocated blocks. Normally, a closure is just
a pair of the pointer to code and the pointer to its environment record. It does
not need any special treatment in unboxed manipulation. However, an environment
record may consist of polymorphic unboxed values. In this case, allocation of an
environment record and accessing to its components require to be done in unboxed
compilation.

Due to the mutual dependency among these compilation processes, in SML# compiler,
we combine them into a single compilation step. The resulting algorithm is complex but it
does not add much complexity, and it does not violate the correctness of the type-directed
compilation.

The second implementation issue is the problem of how to generate bitmap information
for stack frames. We consider a stack-based implementation, where a stack frame is
allocated for each function, and all the temporary variables used by the function are
allocated in the stack frame. Suppose that the function code is implemented by a sequence
of instructions in three address format x1 = op(x2, x3) where x1, x2, x3 are locations in a
stack frame relative to the frame pointer. Compiling a lambda term to three address code
can be done by translating it to A-normal form [FSDF93] and minimizing the number of
stack slots. Our strategy for setting up a bitmap for such a stack frame is first to type
each local variable to one of the following types: {boxed, unboxed, t} where t stands for
type variables. Let {t1, . . . , tn} be the set of type variable appearing in a stack frame. We
represent the layout information of a stack frame by the following data:

1. the number of slots of type unboxed,

2. the number of slots of type boxed,

3. a set of bit tags types {〈t1〉, . . . , 〈tn〉}, and

4. the number of slots of each ti.

Secondly, we refine the type-directed compilation algorithm to compute the necessary
layout information by the following steps.

8

1. In the type-directed compilation, we identify the set of type variables {t1, . . . , tn}
that will appear as types of local variables and arguments, and record it in a function
definition. This is easily done by analyzing the types of the set of sub-terms in the
function body,

2. The type-directed compilation algorithm is refined so that it regards the function
body to create an additional record of type t1 × · · · × tn.

3. After the type-directed compilation algorithm, we perform type-preserving A-normalization
[Oho99] and code generation to obtain three address code.

4. The type of each address of instruction is evaluated to one of boxed, unboxed, and
t. We then perform variable liveness analysis and compute the maximal number of
simultaneously live variables for each type, and assign variables to a frame index.
This problem can be regarded as register allocation with unbounded number of
different kinds of registers (for each type), and can be solved by the technique
register-allocation by proof-transformation [Oho04].

5. We produce the stack frame layout by counting the number of slots for each type.

The third implementation issue relates to separate compilation and module language.
The standard algorithm of bitmap-passing compilation and unboxed compilation can be
extended to work well with the full set of ML Core Language where top-level objects are
closed in sense of type. However, in separate compilation and the presence of functor, top-
level objects in one module may involve abstract types which are specialized in another
modules. Tags and sizes of these types, therefore, are undetermined, and the compilation
algorithm will be unsound. I solve this by introducing top-level tag and size variables
(corresponding to each abstract user-defined type). Actual values of these variables will
be determined at the time we link modules together (or at the time of functor application).

The forth issue is the treatment of mutually recursive function definitions. In a poly-
morphic mutually recursive function definition, all functions share the same type ab-
straction. Bitmap-passing compilation and unboxed compilation generate extra lambda
abstractions (bit tag abstractions and size abstractions) at type abstractions. This im-
plies that all functions must share the same tag and size abstractions generated from the
common type abstractions. Passing tags and sizes among these functions may introduce
significant run-time overhead. We solve this by wrapping each function in the definition
by a polymorphic function. The recursive definition becomes monomorphic inside each
wrapper, therefore no more tag and size passing are required.

The fifth issue relates to the implementation of interoperability feature in some specific
run-time architecture. Some architectures (e.g. SPARC) assume that floating point values
are double-word aligned. An interoperable compiler should, therefore, generate data that
compromise with this assumption. We solve this by refining bitmap-compilation and
unboxed compilation for inserting a dummy word before each possition which is need to
be double-word aligned.

Last but not least, we considered several optimizations for reducing run-time overhead
arising by bitmap-passing compilation and unboxed compilation. Both of these methods
introduce extra abstractions, extra applications and extra computation of bitmaps and

9

offsets. Run-time overhead arising by these computation might be significant in com-
parison to the main task. Reducing this overhead, therefore, is an important issue for a
practical compiler. The optimizations we considered are:

• Uncurrying. Traditional uncurrying optimization is often performed before clo-
sure conversion. This transforms a sequence of ordinary lambda abstractions (curry
function) into a single, multiple argument function (uncurry function). In the devel-
opment of SML#, extra bit tag/size abstractions are generated at type abstraction.
In addition, rank-1 polymorphic type reconstruction often introduces type abstrac-
tions at ordinary abstractions. We can, therefore, perform the optimization again for
uncurrying the extra bit tag/size parameters with the ordinary lambda parameter.

• Sharing bitmap/offset computation. Bitmap and offset computation are heavy
in presence of polymorphism. Reducing the number of identical bitmap/offset com-
putation would help us to generate a better compilation results. This optimization
have the same spirit with the well-known common expression elimination technique.
We specialize this for bitmaps and offsets by introducing efficient comparison rules
on bitmap/offset based on type information. In addition, compiler can chose the
best place to put common bitmaps/offsets without adding much complexity.

• Arithmetic optimization. Bitmap and offset computation can be implemented
by simpler arithmetic operations such as addition, logical bitwise operations. This
optimization first break down a set of bitmap/offset computation into a set of simpler
operations, then remove unnecessary duplicate operations. This process is directed
by types of bitmaps/offsets.

1.2 Related Work

The problem of boxed and tagged data representation has attracted attention of several
researchers, and several methods on unboxed representation and tag-free garbage collection
have been proposed for run-time efficiency of polymorphic languages. Let us summarize
these existing methods and compare them to the proposed compilation method.

• Tag-free garbage collection. Most relevant to the bitmap-passing compilation
is the work on tag-free garbage collection, where the garbage collector traces data
using type information generated by the compiler. Goldberg [Gol91] has proposed
a tracing method by inspecting the call frame of the current function to determine
the type of each runtime object. If the current function is a polymorphic function,
then the type information is computed from the types of its arguments. Tolmach
[Tol94] has proposed a refined approach to pass types of arguments to each poly-
morphic function. This approach requires runtime construction and inspection of
type information, which may be large and inefficient. In [MMH96, SS98], methods
for optimizing type-passing compilation have been proposed.

One drawback to this approach is the runtime overhead arising from manipulating
type information, which may sometimes become very large compared to allocated
data. Another drawback, which we regard as a serious obstacle in achieving high-
degree of interoperability, is the close dependency between the garbage collector
and the compiler. The garbage collector needs to know the semantics of types and

10

their precise runtime representations. This also implies that the traversal strategy is
constrained by type structures. For example, Tolmach’s algorithm relies on depth-
first traversal and does not necessarily compatible with commonly used efficient
strategies, including the most notable one of Cheney’s collector [Che70].

Compared with these approaches, the proposed method can be regarded as an op-
timized version of a type-passing approach by statically computing most the layout
information at compile time. This reduces the runtime time and space overhead of
type-passing. Another important feature is that our method produces self-contained
layout information for each runtime object so that the garbage collector may be im-
plemented independently of the language type system.

• Unboxed Representation. To solve the problem of boxed data representation,
Morrison et. al. [MDCB91] have described several optimization techniques for run-
time specialization of functions using type information at run-time. Peyton Jones
and Launchbury [JL91] have proposed a calculus where boxed and unboxed ob-
jects are explicitly manipulated and polymorphism is restricted to boxed objects.
They have also proposed several optimization strategies by source-to-source pro-
gram translation. Leroy [Ler92] proposed a systematic method to transform ML
into a calculus similar to that of Peyton Jones and Launchbury. His strategy is to
keep objects unboxed as long as its type is statically determined. To combine this
strategy with polymorphic functions, his algorithm inserts representation conver-
sion functions before and after each invocation of a polymorphic function. Leroy’s
method is further refined in [HJ94, Thi95].

These methods of “mixed representation” try to minimize boxed representation
overhead by localizing them to polymorphic functions. This approach should be
effective for those application whose cost is largely determined by monomorphic
manipulation of multi-word data such as arithmetic computation loops. One appar-
ent limitation of this approach is that it does not eliminate the mismatch between
the boxed representation required by polymorphic functions and various unboxed
data; polymorphic functions still require their arguments to be boxed. Another
weakness of this approach, as Leroy pointed out, is that it does not work well for re-
cursively defined data types such as lists or trees, since these data structures require
boxing/unboxing coercions to be lifted to the structures by recursively applying the
necessary coercions.

Ohori and Katamizawa [OT97] proposed an operational semantics for full unboxed
representation. This serves as an abstract machine where unboxed values are ma-
nipulated through their actual positions in the memory block. Size information of
types are encoded and passed to run-time to compute correct positions of unboxed
values. This method, however, exposes several limitations. One of them is the
poor support for different kinds of memory blocks. Only pairs are accepted, other
kinds such as multi-field records would require must more works on the formalism
of the operational semantics. Another serious drawback is that the implicit rules of
location computation given by the unboxed operational semantics prevent us from
developing optimization in source level.

Our compilation method, in contrast, supports full unboxed representation for multi-
word atomic constants. This should be efficient for the case of combining unboxed

11

representation with recursively defined data. More important, this fully supports
natural data representation, and therefore encourage a high-degree of interoperabil-
ity.

Our method yields an accurate collector based on reachability. There have also been
several attempts [Fra94, MFH95, IK00] to develop more powerful GC exploiting type
informations at runtime. It is an interesting open issue whether we can combine these
approach and our type-based compilation approach.

Our method uses type information at runtime. This technique is related to previous
work on type-directed compilation, including intentional type analysis [HM95], compila-
tion of type classes [HHJW96, PJ93], and mixed representation optimization [Ler92]. In
comparison with these approaches, one type theoretical feature our method relies on is
the introduction of a family of bit tag/size types, each of which denotes a singleton set
of bit tags/sizes. This idea is first presented in [Oho95]. Crary, Weirich, and Morriset
[CWM98] have proposed a similar mechanism.

We have implemented the mechanism presented here in our Standard ML compiler.
The compiler is composed of a series of type-directed type-preserving transformation steps.
This approach has the same spirit of the TIL compiler [TMC+96] and the compilation of
System F to a typed assembly language [MWCG99].

1.3 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents an ML-style
polymorphic calculus which serves as the source calculus in the proposed type-directed
compilation. Unlike in most conventional ML compiler, this calculus is equipped with
rank-1 polymorphism to suppress unnecessary type abstraction and type application. I
formalize type system of the source calculus and show several property of this type system.

Chapter 3 and Chapter 4 independently show the theoretical aspect of the bitmap-
passing compilation and unboxed compilation. In each chapter, I present a target calculus
as an extension of the source calculus with new factors involved in the corresponding meth-
ods. I formalize semantics and typing rules of each target calculus, and show the usual
soundness property with respect to the evaluation rules. Bitmap-passing compilation al-
gorithm and unboxed compilation algorithm are given, and I show that both of them are
type-preserved. As in usual type-directed compilation method, the soundness property of
the target calculus and the type-preserved property of the transformation guarantee that
the source calculus is sound with respect to a semantics realized by the transformation
followed by the evaluation rules.

Chapter 5 presents a combination scheme of bitmap-passing compilation, unboxed
compilation and closure conversion. In this chapter, I also present an extension of this
combined algorithm for generating layout information of stack frame.

In Chapter 6, I show how to extend the compilation method for separate compilation
and module language.

Chapter 7 presents several implementation issues including the treatment of mutually
recursive function definition, double-word alignment, and optimizations.

Finally, Chapter 8 concludes the thesis and gives some future directions for the re-
search.

12

Chapter 2

The Source Calculus – λML

This chapter presents an explicitly typed ML-style polymorphic calculus, written λML,
which serves as the source calculus for the type-directed compilation presented in the
next chapters. While most of ML dialects adopt conventional ML type system [DM82], I
choose an extended version that supports full rank-1 polymorphism [OY99] for relaxing
the “value-only” restriction of ML type system, and for suppressing unnecessary type
abstractions/type applications introduced by constructing polymorphic terms from other
polymorphic terms.

In the rest of this chapter, I briefly review the conventional ML type system, analise
its problems related to value polymorphism and type passing semantics, and introduce
the source calculus with rank-1 polymorphic type systems.

2.1 Conventional ML Type System

Damas-Milner type discipline [DM82] has been chosen as the basis for type system of ML
(Standard ML, Ocaml) and several other functional languages (Miranda, Hope, Haskell).
The widespread use of this type system is due to the benefits achieved from the flexibility
of programming through ML’s polymorphic let construct, and the efficiency of imple-
mentation of type inference through the restricted treatment of polymorphism. However,
as pointed out by Ohori and Yoshida in [OY99], this type system exposes some weaknesses
relating to value polymorphism and type-directed compilation.

The following three sub-sections briefly summarize the benefits and limitations of this
type system.

2.1.1 ML type system at a glance

Assuming a set of base types o and type variables t, the syntax of ML types (ranged over
by τ) and type schemes (ranged over by σ) is given by

τ ::= o | t | τ → τ

σ ::= τ | ∀t.σ

where o represents a base type, and τ → τ stands for function types.
A type scheme ∀t1 . . .∀tn.τ (also written as ∀t1 . . . tn.τ) represents a set of types (in-

stance types) achieved from τ by substituting each free occurrence of ti in τ by a type τi.

13

Polymorphism can be achieved by giving a type scheme to the bound variable of an ML
let construct. In the following context of the variable binding, this variable can be used
polymorphically, i.e. it can be assumed to different instance types of the type scheme.

Let us consider the following example

let

val f = fn x => x

in

(f 1, f "a")

end

A type scheme ∀t.t → t is given to the variable f, and in the record (f 1, f "a") f is
used with different types, i.e. int → int and string → string.

Despite the existence of more powerful type systems, ML type system has been chosen
as the basis for implementation of many functional languages including Standard ML of
New Jersey, Ocaml, Haskell. This is due to the fact that ML types can be reconstructed
efficiently by the unification-based type inference algorithm presented in [DM82].

2.1.2 Problem with value polymorphism

The interaction between polymorphism and imperative features of ML such as reference,
communication and continuation has always been a troublesome problem. Let us consider
the following example taken from Standard ML of New Jersey documentation.

val r = ref(fn x => x);

r := (fn x => x+1);

!r true;

The basic rules of ML type inference give the following polymorphic type to r:

r : ∀t.(t → t) ref .

Given that r has this polymorphic type, the occurrence of r in the assignment ex-
pression would have the type (int → int) ref , while in the third line r would have the
type (bool → bool) ref . This typing of the program is clearly unsound, since it allows a
function on integers to be applied to a boolean value.

This problem happens because of the mutable value r is given a polymorphic type.
This allows the mutable value’s type to be instantiated differently at the points where the
contents are updated and where they are fetched, with the consequence that the value
stored and retrieved changes type in the process.

In order to avoid this problem, ML adopt the so-call “value polymorphism” scheme
so that polymorphism is restricted to syntactic values (also known as non-expansive ex-
pressions). A non-expansive expression is identified if it has one of the following forms.

• constant

• variable

• function

• nullary constructor

14

let

val x = fn x => x

val x = (x,x)

...

val x = (x,x)

in

(#1 (...(#1 x)...))

end

let

val x = Λt1.λx : t1.x
val x = Λt1Λt2.(x t1, x t2)
...

val x =

Λt1 . . .Λt2n .(x t1 · · · t2n−1 , x t2n−1+1 · · · t2n)
in

(#1 (...(#1 (x int s1 · · · s2n−1))...)) 1

end

The source term The explicitly typed term

Figure 2.1: An example of ML polymorphism related to type passing implementation

For relaxing these restrictions, some languages find more rules to enlarge the class
of non-expansive expressions. For example, Standard ML of New Jersey 97’ adds the
following two rules.

• record or tuple with non-expansive fields

• constructor (except ref) applied to non-expansive arguments

However, the combination of value polymorphism and ML type inference still excludes
a number of safe programs. Let us consider the following example.

val r = ((fn x => x) 1, fn x => x)

In this example, the variable r is given a monomorphic type, i.e. int × (X → X) (X
is a dummy type variable), since the first component is an expansive expression. The
second component is therefore given a monomorphic function type where the argument
is instantiated to a dummy type X. This implies that any application of the second
component should be rejected by the type checking system. This situation is unreasonable
because the second component fn x => x can be safely given a polymorphic type ∀t.t → t,
and it could be used polymorphically in the following context.

For the same reason, ML type inference system may reject a large number of safe
programs involving rich data structures which contain high-order objects. This is an
unexpected behavior of such a modern language.

2.1.3 Problem with type-directed compilation

The second problem addresses to the inefficiency of the current ML type system in type-
passing implementation of many type-directed compilation methods including the one I
am going to develop in the following chapters.

To identify the problem, let us consider the example depicted in Figure 2.1 (the exam-
ple is taken from [OY99]). As seen from the example, the explicitly typed term achieved
from ML type inference system contains many unnecessary type abstractions and type
applications. This is due to the ML restriction of polymorphism: type abstractions are
only allowed at top-level. ML type inference should therefore perform both type applica-
tion and type abstraction when constructing a polymorphic term from other polymorphic
term, e.g. making polymorphic records in the given example.

15

In type-directed compilation approaches including intensional type analysis [HM95],
polymorphic record compilation [Oho95], and the compilation method I am going to
present, static type information are encoded to use at run-time for dealing with polymor-
phism. Type abstractions and type applications would therefore be compiled into lambda
abstractions and lambda applications, respectively. Compilation and execution of the
given example may suffer from exponential overhead problem arising from the explosion
of type abstractions and type applications.

In real-life applications, this extreme case may not often occur. But at least, run-
time overhead increases in proportion to the number of nested type abstractions and type
applications. In a large and modular program, this may result in a significant reduction
of the run-time efficiency.

2.2 Rank-1 Polymorphism

Both of the described drawbacks of conventional ML type system can be removed by the
solution proposed in [OY99]. In this research, the authors first extend the set of ML
types to rank-1 polymorphic types, and then propose an efficient unification-based type
inference algorithm for implementing practical compilers.

Following [KT92], the set of rank-k polymorphic types is inductively defined as follows.

R(0) = τ Monomorphic type
R(k) = R(k − 1) Rank-(k-1) polymorphic type

| ∀t.R(k) Rank-k second-order type
| R(k − 1) → R(k) Rank-k function type
| R(k) × · · · × R(k) Rank-k product type

Under the definition, ML monomorphic types can be regarded as rank-0 type (R(0))
and type quantifier (∀) can appear at strictly positive positions (i.e. those that are not
at the left of function arrow) of any type constructors.

Apparently, the set of rank-1 polymorphic types is a super set of the set of ML types.
Supporting rank-1 polymorphic types, an ML compiler can accept a more larger class of
programs, e.g. the ones containing high-order polymorphic objects inside data structures.
Moreover, an ML type inference system equipped with rank-1 polymorphism can avoid a
large number of unnecessary type abstractions and type applications. Considering again
the example depicted in Figure 2.1, the following explicitly typed term can be achieved
by such a type inference system.

let

val x = Λt1.λx : t1.x
val x = (x,x)

...

val x = (x,x)

in

(#1 (...(#1 x))...)) int 1

end

When being compiled by a type-directed compilation method, this result would give a
much more efficient code than the one resulted by conventional ML type inference system.

16

There is one question arising to be answered for implementing a practical compiler:
“how can such a type inference system be implemented efficiently?”. Note that there exists
more powerful type systems than that of rank-1 polymorphism, but designing efficient type
inference algorithm for them was always problematic. The solution proposed in [OY99] is
a reasonable answer for the question. The general idea behind this solution is to introduce
type abstractions at the time of lambda abstraction instead of at the variable binding of
let terms as conventional ML type inferencer does. Type applications are delayed until
they are really needed, e.g. at function application. In the above example, the proposed
type inference algorithm allows polymorphic records to be constructed without performing
extra type abstractions and type applications.

I shall not go further in details of this solution since this is out of the thesis concerns
and this may distract readers from the subject matter of the thesis.

2.3 The Source Calculus – λML

Now I am going to define an explicitly typed polymorphic calculus equipped with rank-1
polymorphism. This calculus serves as the source calculus for both type-directed compi-
lation methods (bitmap-passing compilation and unboxed compilation) presented in next
two chapters. Without considering the semantic correctness of the type-directed compi-
lations, in this section, I only present the syntactic behaviors of the source calculus.

2.3.1 Types

Let t range over an infinite set of type variables and o range over a set of base type, the
sets monomorphic types (ranged over by τ) and polymorphic types (ranged over by σ)
are given by the following syntax.

τ ::= o base type
| t type variable
| τ → τ monomorphic function type
| τ × · · · × τ monomorphic product type

σ ::= τ
| ∀t.σ second-order type
| τ → σ polymorphic function type
| σ × · · · × σ polymorphic product type

Let a be a sequence of objects denoted by the meta-variable a. We write τ → σ and
∀t.σ as shorthands for τ1 → · · · → τn → σ and ∀t1 · · · ∀tm.σ where τ = {τ1, . . . , τn} and
t = {t1, . . . , tm}.

Let σ be a type, the set of type variables that are free in σ (written FTV (σ)) is defined
as follows.

FTV (o) = ∅
FTV (t) = {t}

FTV (τ → σ) = FTV (τ) ∪ FTV (σ)
FTV (σ1 × · · · × σn) =

⋃n
i=1 FTV (σi)

FTV (∀t.σ) = FTV (σ) − {t}

17

We write FTV (σ) for the union set of all FTV (σi) where σi ∈ σ. A type substitution,
or simply substitution, is a function that maps from a finite set of type variables to
monotypes. We write S = [τ1/t1, . . . , τn/tn] for the substitution that maps ti to τi, and
define dom(S) for the set {t1, . . . tn}. A substitution S is extended to set of all type
variables by letting S(t) = t for all t �∈ dom(S). By this extension, the application of a
substitution S to a type σ, written S(σ), is defined as follows.

S(o) = o
S(t) = S(t)

S(τ → σ) = S(τ) → S(σ)
S(σ1 × · · · × σn) = S(σ1) × · · · × S(σn)

S(∀t.σ) = ∀t.S(σ) (for t �∈ dom(S))

Under the bound type variable convention, we can assume that the condition in the last
rule always satisfies.

2.3.2 Syntax

The set of terms of λML is given by the following grammar.

e ::= co constant
| x variable
| λx : τ .e function
| (e e) application
| Λt.e type abstraction
| (e τ) type application
| (e, . . . , e) record
| πi(e) projection
| let x : σ = e in e end let binding

co is a constant of the base type o. x ranges over an infinite set of identifiers. Lambda
abstractions (λx : τ .e) and lambda applications ((e1 e2)) are generalized with multiple ar-
guments. Since bit tag/size abstractions and bit tag/size applications usual occur together
with ordinary abstractions and applications, this generalization is useful for generating
optimized code by uncurrying extra arguments to the ordinary lambda argument. I shall
comment on this issue in Section 7.3. Type abstractions Λt.e and type applications (e τ)
are explicitly defined in the syntax of terms. (e1, . . . , en) and πi(e) are term construc-
tors for records and projections, respectively. ML let expressions are represented by
let x : σ = e in e end. Parentheses may be used for eliminating syntactic ambiguity.

Example. Here are two examples of syntactically correct expressions.

let f : ∀t1.t1 → ∀t2.t2 → t1 × t2 = Λt1.λx : t1.Λt2.λy : t2.(x, y)
in f int 1 string "a" end;

let r : (∀t1.t1 → t1) × (∀t2.t2 → t2) = (Λt1.λx : t1.x, Λt2.λy : t2.y)
in π1(r) int 1 end;

In the first example, f is given a nested polymorphic type. In the second one, r is a
record consisting of two polymorphic fields. Comparing with the results achieved from

18

	ML ∅
	ML Γ FTV (τ) ⊆ TV (Γ) x ∩ dom(Γ) = ∅

	ML Γ, arg(x : τ)

	ML Γ TV (Γ) ∩ t = ∅
	ML Γ, tvar(t)

	ML Γ FTV (σ) ⊆ TV (Γ) x �∈ dom(Γ)
	ML Γ, local(x : σ)

Figure 2.2: Context Formation Rules

conventional ML type system, f and r can be partially instantiated without introducing
any extra type abstraction or type application.

For the sake of readability, recursions are omitted from the syntax of the calculus. In
Chapter 7, I shall give a presentation of how to incorporate mutually recursive function
definitions into the language.

2.3.3 Typing Environment

In order to type source expressions, let us define typing environments (or contexts) of
λML as follows.

Γ ::= ∅ | Γ, arg(x : τ) | Γ, local(x : σ) | Γ, tvar(t)

Intuitively, a context Γ is a sequence of assumptions of the forms arg(x : τ), local(x : σ),
and tvar(t) for lambda variables, let variables, and type variables. To introduce bit
tag/size abstractions, it is necessary to record type variables explicitly in the context.

Let TV (Γ) be the set of type variables declared in Γ.

TV (∅) = ∅
TV (Γ, arg(x : τ)) = TV (Γ)

TV (Γ, local(x : σ)) = TV (Γ)

TV (Γ, tvar(t)) = TV (Γ) ∪ t

A type σ is well-formed under a well-formed context Γ, written Γ 	ML σ, if FTV (σ) ⊆
TV (Γ). We write 	ML Γ if a context Γ is well-formed. Variables (as well as type variables)
recorded in a well-formed context are distinct. We write x : σ ∈ Γ for checking the
appearance of x : σ in assumptions arg() and local() of Γ. We also write Γ(x) = σ if
x : σ ∈ Γ, and define dom(Γ) as the set of all variables recorded in Γ. The well-formedness
of a context is derived by the set of rules depicted in Figure 2.2.

Given a type substitution S and a context Γ, we define the type substitution of the
context, i.e. S(Γ), by the following rules.

S(∅) = ∅
S(Γ, arg(x : τ)) = S(Γ), arg(x : S(τ))

S(Γ, local(x : σ)) = S(Γ), local(x : S(σ))

S(Γ, tvar(t)) = S(Γ), tvar(t)

19

Since type variables are recorded explicitly in contexts, the well-formedness of context
may not be preserved under type substitution. In order to keep this property, we put a
particular restriction on type substitutions.

Firstly, we define orders on type variables declared in a context Γ as:

t1 ≺Γ t2 if t1 is recorded before t2 in Γ

Note that t1 ≺Γ t2 implies that both t1 and t2 are recorded in the context Γ.
Secondly, we define that a substitution S respects a context Γ if for all t1 ∈ TV (Γ) ∩

dom(S) , and for all t2 ∈ FTV (S(t1)), we have t2 ≺Γ t1. Intuitively, if S respects Γ
then for any type variable t in the domain of S and being recorded in Γ, S(t) should be
well-formed under Γ and does not contain any free type variable declared after t. The
following properties are easy to check.

Lemma 2.1 Let Γ be a well-formed context, S be a type substitution that respects Γ, and
σ be a well-formed type under Γ. Then Γ 	ML S(σ).

PROOF. Since σ is well-formed under Γ, then FTV (σ) ⊆ TV (Γ). The substitution S to
σ only replaces free type variables, e.g. t, in FTV (σ) by the corresponding type obtained
from S, e.g. S(t). Since S respects Γ, then we have FTV (S(t)) ⊆ TV (Γ). This implies
that FTV (S(Γ)) ⊆ TV (Γ). Then we have S(Γ) is well-formed under Γ as desired. �

Lemma 2.2 Let Γ be a well-formed context, S be a type substitution that respects Γ.
Then S(Γ) is also a well-formed context.

PROOF. This is proved by induction on the structure of Γ.

Case Γ = ∅. Straightforward

Case Γ = Γ′, arg(x : τ). Because S respects Γ then S must also respect Γ′. Applying
induction hypothesis for Γ′, we have S(Γ′) is well-formed. Since Γ is well-formed, we have
Γ′ 	ML τ . Because S respects Γ′, by the Lemma 2.1 we have Γ′ 	ML S(τ). Furthermore,
Γ′ and S(Γ′) have the same set of type variables, we can easily derive S(Γ′) 	ML S(τ).
By the context formation rules, we have 	ML S(Γ′), arg(x : S(τ)). By substitution rules
for contexts, we obtain 	ML S(Γ′, arg(x : τ)) as desired.

Case Γ = Γ′, local(x : σ). Similar to the previous case.

Case Γ = Γ′, tvar(t). Since S respects Γ, we have that S also respects Γ′. Applying induc-
tion hypothesis for Γ′, we obtain that S(Γ′) is well-formed. Since TV (Γ′) = TV (S(Γ′)),
then t∩ TV (S(Γ′)) = ∅. Then we have 	ML S(Γ′), tvar(t). By type substitution rules for
context, we obtain 	ML S(Γ′, tvar(t)) as desired �

Lemma 2.3 Let Γ be a well-formed context, S be a type substitution that respects Γ, and
σ be a well-formed type under Γ. Then S(Γ) 	ML S(σ).

PROOF. Firstly, by applying Lemma 2.1, we have Γ 	ML S(σ). By Lemma 2.2, we have
S(Γ) is well-formed. Since TV (Γ) = TV (S(Γ)), then FTV (σ) ⊆ TV (S(Γ)). We obtain
S(Γ) 	ML S(σ) as desired. �

Let’s define ground substitution as a type substitution that assign each type variable t
to a closed type σ (FTV (σ) = ∅). Apparently, a ground substitution respects any context.

20

Γ 	ML co : o

Γ 	ML x : σ if x : σ ∈ Γ

Γ, arg(x : τ) 	ML e : σ
Γ 	ML λx : τ .e : τ → σ

Γ, tvar(t) 	ML e : σ
Γ 	ML Λt.e : ∀t.σ

Γ 	ML e1 : τ → σ Γ 	ML e2 : τ
Γ 	ML (e1 e2) : σ

Γ 	ML e : ∀t.σ Γ 	ML τ
Γ 	ML (e1 τ) : σ[τ/t]

Γ 	ML ei : σi for all 1 ≤ i ≤ n
Γ 	ML (e1, . . . , en) : σ1 × · · · × σn

Γ 	ML e : σ1 × · · · × σn

Γ 	ML πi(e) : σi

Γ 	ML e1 : σ1 Γ, local(x : σ1) 	ML e2 : σ2

Γ 	ML let x : σ1 = e1 in e2 end : σ2

Figure 2.3: The Type System of The Source Calculus

Lemma 2.4 For a ground substitution S and a context Γ, if TV (Γ) ⊆ dom(S) then

1. for all σ so that Γ 	ML σ, then S(σ) is a closed type

2. S(Γ) is a ground context which assigns a closed type to each variable

2.3.4 Typing Rules

We write Γ 	ML e : σ if e has type σ under a well-formed context Γ. The set of rules
to derive this judgment is given in Figures 2.3. In the typing rule for variables, we check
x : σ ∈ Γ by looking up the appearance of x : σ in both arg() and local() assumptions
of Γ. If x is defined in a local() assumption, x can be given a polymorphic type. In the
rule for type instantiation terms, the instance type σ[τ/t] should be well-formed under
the context Γ by the given condition Γ 	ML τ (we write this for the logical conjunction
of all conditions Γ 	ML τi, τi ∈ τ).

As seen from the typing rules, polymorphic type can be given to any term (except
constants and arguments). This would be more flexible than conventional ML type system
where polymorphic types are only given to local variables.

21

Chapter 3

Bitmap-passing Compilation

In the present chapter I introduce the bitmap-passing compilation method. Firstly, I de-
fine a target calculus where bitmap information of heap-allocated objects are formulated.
Then I establish operational semantics to give the meaning of terms in the calculus, and
show that the typing system of the calculus is sound with respect to the given operational
calculus. Finally, I develop a type-preserved compilation algorithm which translates terms
in the source calculus (presented in previous chapter) into terms in the target calculus.
The combination of these development steps guarantees that the type system of the source
calculus is sound with respect to the operational semantics realized by bitmap-passing
compilation followed by evaluation of the compiled term.

3.1 The Target Calculus – ΛB

I am going to define the target calculus, namely bitmap-passing calculus or ΛB, for the
bitmap-passing compilation method. Firstly, I define the syntax and the type system of
the calculus involving bitmaps and bit tags. Then, I define operational semantics that
faithfully models the evaluation of expressions under bitmap-inspecting garbage collection.
The type system of the calculus is shown to be sound with respect to the operational
semantics to ensure that the evaluation of a typable expression in ΛB never fails.

Different from λML, ΛB is formulated as an implicitly typed calculus in ML style for
the convenience of establishing the soundness property. In a practical implementation,
several type-based optimizations may require type information from target terms. Later
in the presentation of bitmap-passing compilation algorithm, I will introduce an explicitly
typed calculus, written λB, as an immediate language for the compilation method. Terms
in this calculus contain enough type information for optimizations, and we can prove that
if we “erase” all type annotations in an well-typed λB term, we can achieve an ΛB term
of the same type.

3.1.1 Types

The set of types of terms in ΛB is extended for bitmaps and bit tags as follows.

22

τ ::= o base type
| t type variable
| 〈σ〉 bit tag type
| 〈〈σ, . . . , σ〉〉 bitmap type
| τ → τ monomorphic function type
| τ × · · · × τ monomorphic product type

σ ::= τ
| ∀t.σ second-order type
| τ → σ polymorphic function type
| σ × · · · × σ polymorphic product type

〈σ〉 is a bit tag type which denotes a singleton set of bit tag ({0} or {1}) for objects of
type σ. In ML Core language, for any type σ other than type variable, whether σ is a
boxed type or an unboxed type is determined by its outermost type constructor. I define
the function tagOf(σ) which determines the tag value of objects of type σ as follows.

tagOf(o) = 0 if o is an unboxed base type
tagOf(o) = 1 if o is an boxed base type

tagOf(τ → σ) = 1
tagOf(∀t.σ) = 1

tagOf(σ1 × · · · × σn) = 1
tagOf(〈σ〉) = 0

tagOf(〈〈σ1, . . . , σn〉〉) = 0
tagOf(t) = undetermined

The case for ∀t.σ requires some explanation: this type refers to a polymorphic function
type since bit tag abstractions are always inserted at type abstractions. Then we can
safely assume that ∀t.σ is a boxed type.

A bitmap type 〈〈σ1, . . . , σn〉〉 denotes a singleton set of the bitmap of records of type
σ1 × · · · × σn. Value of the bitmap can be composed from tag values of objects of types
σ1, . . . , σn.

The function FTV is extended for bit tag and bitmap types as:

FTV (〈σ〉) = FTV (σ)

FTV (〈〈σ1, . . . , σn〉〉) =
⋃

FTV (σi)

The set of substitution rules for types is also extended for bitmap and bit tag types
as follows.

S(〈σ〉) = 〈S(σ)〉
S(〈〈σ1, . . . , σn〉〉) = 〈〈S(σ1), . . . , S(σn)〉〉

3.1.2 Syntax

The set of terms of ΛB is given by the following syntax:

23

e ::= co constant
| x variable
| λx.e function
| (e e) application
| (e; e, . . . , e) record
| πi(e) projection
| let x = e in e end let binding
| [e, . . . , e] bitmap
| 〈B〉 constant bit tag (B ∈ {0, 1})

In this implicitly typed calculus, type information are hidden from terms. The lambda
abstraction λx.e plays dual roles: this term can represent the resulting term of either
an ordinary lambda abstraction or a type abstraction in λML. More clearly, since bit
tag abstractions are inserted at type abstractions and they are encoded as the same as
ordinary lambda abstractions, a type abstraction Λt.e in λML will be compiled into the
term λb.e′ in ΛB where b represent the formal bit tag parameters corresponding to t.

Similarly, the lambda application (e1 e2) also plays dual roles: this can represent the
resulting term of either an ordinary lambda application or a type instantiation in λML.
A type instantiation (e τ) in λML will be compiled into (e′ eb) where eb are the actual bit
tag parameters generated from τ .

Bit tag constants (〈B〉) and bitmaps ([e1, . . . , en]) are formulated as first class objects
in ΛB. We distinguish between bit tag constants and integer numbers. 〈0〉 and 〈1〉 are
syntactic bit tag values for unboxed objects (non-pointers) and boxed objects, respectively.
[e1, . . . , en] is the term constructor for a bitmap composed from n bit tags {e1, . . . , en}.
The first component e0 in a record (e0; e1, . . . , en) is a bitmap term representing the bitmap
information of this record.

3.1.3 Typing Environment

Typing environment (context) of ΛB is defined as the same as in λML. Let us distinguish
the well-formednesses of types and contexts of ΛB to those of λML by judgments of forms
Γ 	B σ, 	B Γ. The former is for well-formedness of types, the latter is for well-formedness
of contexts.

The rules to derive these judgments are defined as the same as in λML. The following
properties still hold.

Lemma 3.1 Let Γ be a well-formed context, σ be a type, and S be a substitution that
respects Γ. If Γ 	B σ then S(Γ) 	B S(σ).

Lemma 3.2 Let Γ be a well-formed context and S be a substitution that respects Γ. If
	B Γ then 	B S(Γ).

Lemma 3.3 For a ground substitution S and a context Γ, if TV (Γ) ⊆ dom(S) then

1. for all σ so that Γ 	B σ, then S(σ) is a closed type

2. S(Γ) is a ground context

24

Γ 	B co : o

Γ 	B x : σ if x : σ ∈ Γ

Γ, arg(x : τ) 	B e : σ
Γ 	B λx.e : τ → σ

Γ, tvar(t), arg(b : 〈t〉) 	B e : σ

Γ 	B λb.e : ∀t.〈t〉 → σ

Γ 	B e1 : τ → σ Γ 	B e2 : τ
Γ 	B (e1 e2) : σ

Γ 	B e : ∀t.〈t〉 → σ Γ 	B eb : 〈τ〉 Γ 	ML τ
Γ 	B (e eb) : σ[τ/t]

Γ 	B ei : σi (1 ≤ i ≤ n) Γ 	B e0 : 〈〈σ1, . . . , σn〉〉
Γ 	B (e0; e1, . . . , en) : σ1 × · · · × σn

Γ 	B e : σ1 × · · · × σn

Γ 	B πi(e) : σi

Γ 	B e1 : σ1 Γ, local(x : σ1) 	B e2 : σ2

Γ 	B let x = e1 in e2 end : σ2

tagOf(σ) = B
Γ 	B 〈B〉 : 〈σ〉

Γ 	B ei : 〈σi〉 (1 ≤ i ≤ n)
Γ 	B [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉

Figure 3.1: Typing Rules of The Target Calculus

3.1.4 Typing Rules

Typing rules for the target calculus are formulated as judgments of the form Γ 	B e : σ,
which read e has type σ under Γ. Figure 3.1 gives the set of typing rules of the target
calculus. Since λx.e plays dual roles, we may have two different typing derivations for this
term. One is to give a function type to the term, and other is to give a second order type
to the term (we call these two rules are typing rule for lambda abstraction and typing
rule for type abstraction). Similarly, (e1 e2) may also have two typing derivations: one is
a typing derivation for ordinary lambda application and other for type instantiation with
bit tag application (we call these two rules are typing rule for lambda application and
typing rule for type instantiation). In the rule for typing records, we check the consistency
of bitmap type and record’s field types by adding Γ 	B e0 : 〈〈σ1, . . . , σn〉〉 in the premises.
This bitmap type check is proceeded by checking type of each bit tag in the bitmap.
Careful readers may notice that a bit tag is either a variable or a constant. Therefore the
bit tag type is either recorded in the context or statically given by the function tagOf().

Now we show that the type system of ΛB is stable under type substitution in the
following lemma.

25

Lemma 3.4 Let e be an expression, σ be a type, Γ be a well-formed context and S be a
substitution that respects Γ. If Γ 	B e : σ then S(Γ) 	B e : S(σ).

PROOF. This is proved by induction on the derivation of the typing rule Γ 	B e : σ.

Case Γ 	B co : o. Straightforward.

Case Γ 	B x : σ. By typing rule for variable, Γ(x) = σ. By Lemma 3.2, we have S(Γ)
is a well-formed context. By the typing rule for variable, S(Γ) 	B x : S(Γ)(x). By the
definition of type substitution for context, S(Γ)(x) = S(Γ(x)) = S(σ) as desired.

Case Γ 	B λx.e : τ → σ. Suppose this is derived from

Γ, arg(x : τ) 	B e : σ
Γ 	B λx.e : τ → σ

Since S respects Γ, we have that S also respects Γ, arg(x : τ). Applying induction hy-
pothesis for Γ, arg(x : τ) 	B e : σ, we obtain

S(Γ, arg(x : τ)) 	B e : S(σ)

By definition of type substitution for context, we have

S(Γ, arg(x : τ)) = S(Γ), arg(x : S(τ))

Thus S(Γ), arg(x : S(τ)) 	B e : S(σ). Applying typing rule for lambda abstraction, we
obtain

S(Γ) 	B λx.e : S(τ) → S(σ)

By type substitution for type, we have S(τ) → S(σ) = S(τ → σ) as desired.

Case Γ 	B λb.e : ∀t.〈t〉 → σ. By bound type variable convention, we assume that
t ∩ dom(Γ) = ∅ and t ∩ dom(S) = ∅. Suppose this typing is derived from

Γ, tvar(t), arg(b : 〈t〉) 	B e : σ

Γ 	B λb.e : ∀t.〈t〉 → σ

Since t∩dom(S) = ∅ and S respects Γ, we also have that S respects Γ, tvar(t), arg(b : 〈t〉).
Applying induction hypothesis for Γ, tvar(t), arg(b : 〈t〉) 	B e : σ, we obtain

S(Γ, tvar(t), arg(b : 〈t〉)) 	B e : S(σ)

Since t ∩ dom(S) = ∅, then

S(Γ, tvar(t), arg(b : 〈t〉)) = S(Γ), tvar(t), arg(b : 〈t〉)
By typing rule for type abstraction, we have

S(Γ) 	B λb.e : ∀t.〈t〉 → S(σ)

Since t ∩ dom(S) = ∅, we have ∀t.〈t〉 → S(σ) = S(∀t.〈t〉 → σ) as desired.

Case Γ 	B (e1 e2) : σ. Suppose this typing is derived from

26

Γ 	B e1 : τ → σ Γ 	B e2 : τ
Γ 	B (e1 e2) : σ

Applying induction hypothesis for Γ 	B e1 : τ → σ and Γ 	B e2 : τ , we obtain

S(Γ) 	B e1 : S(τ → σ)
S(Γ) 	B e2 : S(τ)

Since S(τ → σ) = S(τ) → S(σ), applying typing rule for lambda application, we obtain

S(Γ) 	B (e1 e2) : S(σ)

as desired.

Case Γ 	B (e eb) : σ[τ/t]. Suppose this typing is derived from

Γ 	B e : ∀t.〈t〉 → σ Γ 	B eb : 〈τ〉 Γ 	ML τ
Γ 	B (e eb) : σ[τ/t]

Applying induction hypothesis for Γ 	B e : ∀t.〈t〉 → σ and Γ 	B eb : 〈τ〉, we obtain

S(Γ) 	B e : S(∀t.〈t〉 → σ)
S(Γ) 	B eb : S(〈τ〉)

By bound type variable convention, assume that t ∩ dom(S) = ∅. Thus S(∀t.〈t〉 → σ) =
∀t.〈t〉 → S(σ). By type substitution for type, S(〈τ〉) = 〈S(τ)〉. Applying Lemma 3.1, we
also have S(Γ) 	B τ . By typing rule for type instantiation, we obtain

S(Γ) 	B (e eb) : S(σ)[S(τ)/t].

Since t ∩ dom(S) = ∅, we have S(σ)[S(τ)/t] = S(σ[τ/t]) as desired

Case Γ 	B (e0; e1, . . . , en) : σ1 × · · · × σn. Suppose this typing is derived from

Γ 	B ei : σi, for all 1 ≤ i ≤ n Γ 	B e0 : 〈〈σ1, . . . , σn〉〉
Γ 	B (e0; e1, . . . , en) : σ1 × · · · × σn

Applying induction hypothesis for each ei, we have

S(Γ) 	B ei : S(σi)
S(Γ) 	B e0 : S(〈〈σ1, . . . , σn〉〉)

Since S(〈〈σ1, . . . , σn〉〉) = 〈〈S(σ1), . . . , S(σn)〉〉, we have

S(Γ) 	B e0 : 〈〈S(σ1), . . . , S(σn)〉〉
Applying the typing rule for records, we have

S(Γ) 	B (e0; e1, . . . , en) : S(σ1) × · · · × S(σ1)

Since S(σ1) × · · · × S(σ1) = S(σ1 × · · · × σn), we obtain

S(Γ) 	B (e0; e1, . . . , en) : S(σ1 × · · · × σ1)

as desired.

Case Γ 	B πi(e) : σi. Suppose this typing is derived from

27

Γ 	B e : σ1 × · · · × σn

Γ 	B πi(e) : σi

Applying induction hypothesis for Γ 	B e : σ1 × · · · × σn, we have

S(Γ) 	B e : S(σ1 × · · · × σn), we have

Since S(σ1 × · · · × σn) = S(σ1) × · · · × S(σn), applying typing rule for projection, we
obtain S(Γ) 	B πi(e) : S(σi) as desired.

Case Γ 	B let x = e1 in e2 end : σ2. Suppose this typing is derived from

Γ 	B e1 : σ1 Γ, local(x : σ1) 	B e2 : σ2

Γ 	B let x = e1 in e2 end : σ2

Applying induction hypothesis for Γ 	B e1 : σ1, we obtain

S(Γ) 	B e1 : S(σ1)

Since S respects Γ, then S also respects Γ, local(x : σ). Applying induction hypothesis
for Γ, local(x : σ1) 	B e2 : σ2, we obtain

S(Γ, local(x : σ1)) 	B e2 : S(σ2)

Since S(Γ, local(x : σ1)) = S(Γ), local(x : S(σ1)), by applying typing rule for let term,
we obtain

S(Γ) 	B let x = e1 in e2 end : S(σ2)

as desired.

Case Γ 	B [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉. Suppose this typing is derived from

Γ 	B ei : 〈σi〉 (1 ≤ i ≤ n)
Γ 	B [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉

Applying induction hypothesis for each ei, we have S(Γ) 	B ei : S(〈σi〉). Since S(〈σi〉) =
〈S(σi)〉, applying the typing rule for bitmap, we have

S(Γ) 	B [ei, . . . , en] : 〈〈S(σ1), . . . , S(σn)〉〉
Applying substitution rule for bitmap type , we can conclude

S(Γ) 	B [ei, . . . , en] : S(〈〈σ1, . . . , σn〉〉)

Case e = 〈B〉. Suppose Γ 	B 〈B〉 : 〈σ〉. Since 〈B〉 is a constant bit tag, type σ must
have an appropriate outermost type constructor. Type substitution does not modify the
outermost type constructor, then the substituted type S(σ) must have the same outermost
constructor as σ, therefore tagOf(σ) = tagOf(S(σ)). This implies S(Γ) 	B 〈B〉 : S(〈σ〉)
as desired. �

28

3.1.5 Semantics

I define semantics of ΛB, in style of natural semantic [Kah87], that faithfully models
evaluation of expressions under bitmap-inspecting garbage collection. The sets of runtime
values (ranged over by v) and runtime environments (ranged over by E) are given by the
following grammar.

v ::= co constant value
| i unsigned integer
| cls(E, λx.e) closure
| (v; v, . . . , v) record value
| wrong runtime error

E ::= ∅ | E, x : v run-time environment

Bit tags and bitmaps are evaluated into unsigned integers (denoted by i). A bit tag value
is either 0 or 1. A bitmap value represents a sequence of bit tags. We use the notation
[B1 ◦ · · · ◦ Bn] for the unsigned integer obtained by setting the least ith bit to the bit tag
value Bi.

A bitmap value may exceed one word representation if the number of bit tag compo-
nents is greater than 32. In order to make sure that bitmaps always fit into one word
data, I assume that the maximum number of fields in a record is always smaller than 32
or equal 32. Long record can be converted into a nested record by applying a source-to-
source transformation before passed to the compilation algorithm. For example, the record
(e1, . . . , e40) in the source language can be transformed into (e1, . . . , e31, (e32, . . . , e40)).
Nested representation of records may introduce extra performance cost. But I believe
that this extreme case does not often occur in a real-life application.

cls(E, λx.e) is a function closure, where E is an environment assigning values to vari-
ables. (v0; v1, . . . , vn) represents a record value whose first component v0 is the bitmap
value of the record block. wrong represents a runtime type error.

Instead of explicitly modeling bitmap-inspecting garbage collection, I define the op-
erational semantics in such a way that it checks the correctness of a bitmap every time
a record is created or used. If this check fails then the evaluation halts with wrong. For
performing this check, I define the trace bit tagOf(v) corresponding to v as follows.

tagOf(co) = 0 if co is an unboxed constant

tagOf(co) = 1 if co is a boxed constant

tagOf(i) = 0

tagOf(cls(E, λx : τ .e)) = 1

tagOf(tcls(E, Λt.λb : 〈t〉.e)) = 1

tagOf((v0; v1, . . . , vn)) = 1

The operational semantics are defined in the style of [Kah87] by giving a set of rules to
derive a evaluation relation of the form E 	B e ⇓ v, which reads: “e evaluates to v under
E”. Figure 3.2 gives the set of evaluation rules. In evaluating a record, runtime system
first evaluates the record’s bitmap into an integer. After evaluating the record’s fields,
runtime system checks the bit tag consistency by comparing the bit tags of the actual
field’s values (tagOf(vi)) with the corresponding bit tags obtained from the bitmap’s
value (Bi). If this check fails, then the evaluation process will go wrong. Later in the

29

E 	B co ⇓ co

E 	B x ⇓ E(x)

E 	B λx.e ⇓ cls(E, λx.e)

E 	B e1 ⇓ cls(E0, λx.e0) E 	B e2 ⇓ v2 E0, x : v2 	B e0 ⇓ v0

E 	B (e1 e2) ⇓ v0

E 	B e0 ⇓ i where i = [B1 ◦ · · · ◦ Bn]
E 	B ej ⇓ vj tagOf(vj) = Bj for all 1 ≤ j ≤ n

E 	B (e0; e1, . . . , en) ⇓ (i; v1, . . . , vn)

E 	B e ⇓ (v0; v1, . . . , vn)
E 	B πi(e) ⇓ vi

E 	B e1 ⇓ v1 E, x : v1 	B e2 ⇓ v2

E 	B let x = e1 in e2 end ⇓ v2

E 	B 〈B〉 ⇓ B

E 	B ei ⇓ Bi (1 ≤ i ≤ n)
E 	B [e1, . . . , en] ⇓ [B1 ◦ · · · ◦ Bn]

Figure 3.2: Operational Semantics of The Target Calculus

soundness theorem I will show that, for a well typed term, this check never fails. This
implies that the evaluation of well typed program never go wrong. Hence, in a practical
runtime system, we do not need to implement this check.

In the rule for evaluating bitmap, the value of each bit tag component, i.e. Bi, is
evaluated. The bitmap’s value is obtained by setting the least ith bit of an zero word
to Bi. This would be done by a sequence of logical bitwise operations. This is the only
kind of computation left for the bitmap-passing compilation method. In Chapter 7, I
shall present several optimizations for reducing runtime overhead arising by this kind of
computation.

This set of rules should be taken with the following implicit rules yielding wrong: if
evaluation of any component yields wrong or undefined or does not satisfy the specified
condition then the entire term will yield wrong. For example, the rules for (e0; e1, . . . , en)
include, among others, the following one:

E 	B e0 ⇓ [B1 ◦ · · · ◦ Bn] E 	B e1 ⇓ v1 tagOf(v1) �= B1

E 	B (e0; e1, . . . , en) ⇓ wrong

To show that the type system is sound with respect to this operational semantics, I
define typing judgments on runtime values and environments of the forms |=B v : σ and
|=B E : Γ where σ is a closed type and Γ is a ground context. The set of rules to derive
these judgments is given in Figure 3.4 and Figure 3.3.

The following properties holds.

Lemma 3.5 If |=B v : σ then tagOf(v) = tagOf(σ).

30

|=B ∅ : ∅
|=B E : Γ |=B v : τ

|=B (E, x : v) : (Γ, arg(x : τ))

|=B E : Γ |=B v : σ
|=B (E, x : v) : (Γ, local(x : σ))

|=B E : Γ
|=B E : (Γ, tvar(t))

Figure 3.3: Typing rules on environments

|=B co : o

|=B i : 〈σ〉 if i = tagOf(σ)

i = [B1 ◦ · · · ◦ Bn] |=B Bj : 〈σj〉 for all 1 ≤ j ≤ n
|=B i : 〈〈σ1, . . . , σn〉〉

There exists a ground context Γ and closed types τ so that
|=B E : Γ Γ, arg(x : τ) 	B e : σ

|=B cls(E, λx.e) : τ → σ

There exists a ground context Γ so that

|=B E : Γ Γ, tvar(t), arg(b : 〈t〉) 	B e : σ

|=B cls(E, λb.e) : ∀t.〈t〉 → σ

|=B vi : σi for all 1 ≤ i ≤ n |=B v0 : 〈〈σ1, . . . , σn〉〉
|=B (v0; v1, . . . , vn) : σ0 × · · · × σn

Figure 3.4: Typing rules on values

PROOF. From the value typing rules, σ must have a proper outermost type constructor.
By the definition of bit tag value of runtime values and types, we can easily derive the
expected result. �

As in a conventional type system, the type system of the target calculus is sound, i.e.
it guarantees type-error free evaluation of any type correct expression. We show this in
the following theorem.

Theorem 3.1 Let Γ be a context, e be an expression, σ be a type so that Γ 	B e : σ. Let
S be a ground substitution so that TV (Γ) ⊆ dom(S). Let E be a run-time environment
so that |=B E : S(Γ). If E 	B e ⇓ v then |=B v : S(σ).

PROOF. We prove this theorem by induction on the derivation of the evaluation rule.

Case e 	B c0 ⇓ co. Straightforward.

Case E 	B x ⇓ E(x). Suppose Γ 	B x : σ is derived from Γ(x) = σ. Since |=B E : S(Γ),
we have |=B E(x) : S(Γ)(x). Since S(Γ)(x) = S(Γ(x)), we obtain |=B E(x) : S(σ) as

31

desired.

Case E 	B λx.e ⇓ cls(E, λx.e). We have two possible typing derivation of λx.e
Sub-case 1 Γ 	B λx.e : τ → σ. Suppose this typing is derived from

Γ, arg(x : τ) 	B e : σ
Γ 	B λx.e : τ → σ

S is a ground substitution, then S should respect Γ, arg(x : τ). Applying substitution
lemma 3.4, we obtain

S(Γ, arg(x : τ)) 	B e : S(σ)

Since S(Γ, arg(x : τ)) = S(Γ), arg(x : S(τ)), then

S(Γ), arg(x : S(τ)) 	B e : S(σ)

By context formation rule, we have Γ 	B τ . By lemma 3.3 we have S(τ) are closed types
and S(Γ) is a ground context. Then by applying value typing rule for closure, we obtain

|=B cls(E, λx.e) : S(τ) → S(σ)

Since S(τ) → S(σ) = S(τ → σ), then we have

|=B cls(E, λx.e) : S(τ → σ)

as desired.
Sub-case 2 Γ 	B λx.e : ∀t.〈t〉 → σ Suppose this typing is derived from

Γ, tvar(t), arg(x : 〈t〉) 	B e : σ

Γ 	B λx.e : ∀t.〈t〉 → σ

By bound type variable convention, suppose that t ∩ dom(S) = ∅. Since S is a ground
substitution then S respects Γ, tvar(t), arg(x : 〈t〉). Applying substitution lemma 3.4, we
obtain

S(Γ, tvar(t), arg(x : 〈t〉)) 	B e : S(σ)

Since t ∩ dom(S) = ∅, then

S(Γ), tvar(t), arg(x : 〈t〉) 	B e : S(σ)

By lemma 3.3 we have that S(Γ) is a ground context. By value typing for closure, we
obtain

|=B cls(E, λx.e) : ∀t.〈t〉 → S(σ)

Since t ∩ dom(S) = ∅, then we have ∀t.〈t〉 → S(σ) = S(∀t.〈t〉 → σ) as desired.

Case E 	B (e1 e2) ⇓ v0. Suppose that this is derived from

E 	B e1 ⇓ cls(E0, λx.e0) E 	B e2 ⇓ v2 E0, x : v2 	B e0 ⇓ v0

E 	B (e1 e2) ⇓ v0

32

There are two possible typing derivations for (e1 e2)
Sub-case 1.

Γ 	B e1 : τ → σ Γ 	B e2 : τ
Γ 	B (e1 e2) : σ

Applying induction hypothesis for e1 and e2, we obtain

|=B cls(E0, λx.e0) : S(τ → σ)
|=B v2 : S(τ)

Since S(τ → σ) = S(τ) → S(σ), by value typing rule for closure, there must exist
a ground context Γ0 so that |=B E0 : Γ0 and Γ0, arg(x : S(τ)) 	B e0 : S(σ). This is
easy to choose Γ0 so that it does not contain any tvar() assumption. By typing rule for
runtime environment, we have |=B (E0, x : v2) : Γ0, arg(x : S(τ)) We choose an identical
substitution S0 (dom(S0) = ∅), Since Γ0 does not contain any tvar() assumption, then we
can apply induction hypothesis for e0 to obtain |=B v0 : S(σ) as desired.
Sub-case 2.

Γ 	B e1 : ∀t.〈t〉 → σ Γ 	B e2 : 〈τ〉 Γ 	B τ
Γ 	B (e1 e2) : σ[τ/t]

Applying induction hypothesis for e1 and e2, we obtain

|=B cls(E0, λx.e0) : S(∀t.〈t〉 → σ)
|=B v2 : S(〈τ〉)

By the bound type variable convention, assume that t∩dom(S) = ∅. Therefore S(∀t.〈t〉 →
σ) = ∀t.〈t〉 → S(σ). By value typing rule for closure, there must exist a ground context
Γ0 so that |=B E0 : Γ0 and Γ0, tvar(t), arg(x : 〈t〉) 	B e0 : S(σ). This is easy to choose Γ0

so that it does not contain any tvar() assumption. Since S(〈τ〉) = 〈S(τ)〉, then we have

|=B v2 : 〈S(τ)〉
Since Γ 	B τ , then by lemma 3.3, we have S(τ) are closed types. Choose S0 = [S(τ)/t],
S0 is a ground substitution and TV (Γ0, tvar(t), arg(x : 〈t〉)) ⊆ dom(S0). Since Γ0 is a
ground context and does not contain any tvar() assumption, we have

S0(Γ0, tvar(t), arg(b : 〈t〉)) = Γ0, tvar(t), arg(x : 〈S(τ)〉)
Since |=B E0 : Γ0 then

|=B (E0, x : v2) : (Γ0, tvar(t), arg(x : 〈S(τ)〉))
Now, we apply induction hypothesis for e0 to obtain |=B v0 : S0(S(σ)). Since S0 = [S(τ)/t]
and t ∩ dom(S) = ∅, we can conclude that |=B v0 : S(σ[τ/t]) as desired.

Case E 	B (e0; e1, . . . , en) ⇓ (i; v1, . . . , vn). Suppose this is derived from

E 	B e0 ⇓ i where i = [B1 ◦ · · · ◦ Bn]
E 	B ej ⇓ vj tagOf(vj) = Bj for all 1 ≤ j ≤ n

E 	B (e0; e1, . . . , en) ⇓ (i; v1, . . . , vn)

Also suppose Γ 	B (e0; e1, . . . , en) : σ1 × · · · × σn. This is derived from

33

Γ 	B ej : σj for all 1 ≤ j ≤ n Γ 	B e0 : 〈〈σ1, . . . , σn〉〉
Γ 	B (e0; e1, . . . , en) : σ1 × · · · × σn.

We have to prove: tagOf(vj) = Bj for each j, and |=B (i; v1, . . . , vn) : S(σ1 × · · · × σn).
Applying induction hypothesis for e0 and each ej , we have

|=B vj : S(σj)
|=B i : S(〈〈σ1, . . . , σn〉〉)

By lemma 3.5, we have tagOf(vi) = tagOf(S(σi)). Since

S(〈〈σ1, . . . , σn〉〉 = 〈〈S(σ1), . . . , S(σn)〉〉
i = [B1 ◦ · · · ◦ Bn]

by value typing rule for bitmap and bit tag, we have Bj = tagOf(S(σj)). Therefore
tagOf(vj) = Bj for each j. Besides, applying value typing rule for records, we obtain,

|=B (i; v1, . . . , vn) : S(σ1) × · · · × S(σn)

Since S(σ1 × · · · × σn) = S(σ1) × · · · × S(σn), the proof for this case is done.

Case E 	B πi(e
′) ⇓ vi. This should be derived from

E 	B e′ ⇓ (v0; v1, . . . , vn).

Also suppose Γ 	B πi(e
′) : σi. By the typing rule for projection, Γ 	B e′ : σ1 × · · · × σn.

Applying the induction hypothesis for e′, |=ML (v0; v1, . . . , vn) : S(σ1 × · · · × σn). Since
S(σ1 × · · · × σn) = S(σ1) × · · · × S(σn), by the value typing rule for record, we have
|=ML vi : S(σi) as desired.

Case E 	B let x = e1 in e2 end ⇓ v2. Suppose that this is derived from

E 	B e1 ⇓ v1 E, x : v1 	B e2 ⇓ v2

E 	B let x = e1 in e2 end ⇓ v2

Also suppose Γ 	B let x : σ1 = e1 in e2 end : σ2. By the typing rule for let term, we
have

Γ 	B e1 : σ1

(Γ, local(x : σ1)) 	B e2 : σ2.

Applying induction hypothesis for e1, we obtain |=ML v1 : S(σ1). Let’s define Γ1 =
Γ, local(x : σ1), We have TV (Γ1) = TV (Γ) ⊆ dom(S). We also have S(Γ1) = S(Γ), local(x :
S(σ1)). Since |=B E : S(Γ), we obtain |=B (E, x : v1) : S(Γ), local(x : S(σ1)). Applying
induction hypothesis for e2 , we obtain |=B v2 : S(σ2) as desired.

Case E 	B 〈B〉 ⇓ B. immediate by definition.

Case E 	B [e1, . . . , en] ⇓ [B1 ◦ · · · ◦ Bn]. This is derived from E 	B ei ⇓ Bi for each i.
Also suppose Γ 	B [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉. By the bitmap typing rule, Γ 	B ei : 〈σi〉,
for each 1 ≤ i ≤ n. Applying induction hypothesis for each ei, we obtain |=B Bi : 〈S(σi)〉.
By value typing for bitmap and type substitution rule, we have |=ML [B1 ◦ · · · ◦ Bn] :
S(〈〈σ1, . . . , σn〉〉) as desired. �

34

3.2 The Compilation Algorithm

I’m going to define a type-directed compilation algorithm that transforms terms in the
source calculus (λML) into term in the target calculus (ΛB). This would be done in a
single phase. However, as I have briefly described, some optimization technique may need
type information for generating a more efficient code. Thus I designed the compilation
algorithm in two phases: compilation of the source expressions into an immediate explic-
itly typed language, written λB, and the transformation from λB terms into ΛB terms.
The later phase is easy done by eliminating all type annotations in the given λB term.

The syntactic correctness for the whole compilation process can be proved by a com-
bination of syntactic correctnesses of each phase.

3.2.1 The Explicitly Typed Bitmap-passing Calculus – λB

The set of terms of λB is given by the following syntax:

e ::= co constant
| x variable
| λx : τ .e function
| (e e) application

| Λt.λx : 〈t〉.e type abstraction and bit tag abstraction
| (e τ e) type instantiation and bit tag application
| (e; e, . . . , e) record
| πi(e) projection
| let x : σ = e in e end let binding
| [e, . . . , e] bitmap
| 〈B〉 bit tag constant (B ∈ {0, 1})

In this calculus, we distinguish between two kinds of function: ordinary function (repre-
sented by λx : τ .e) and bit tag function (represented by Λt.λx : 〈t〉.e). A bit tag function
Λt.λx : 〈t〉.e′ can be obtained from the compilation result of a type abstraction Λt.e in
λML where x are the inserted bit tag parameters corresponding to t.

We also distinguish two kinds of application: ordinary lambda application ((e1 e2))
and bit tag application (e τ eB). A bit tag application can be generated from a type
instantiation (e τ) in λML where eB are actual bit tag parameters generated from τ .

In order to etablish the type system for λB, We define the typing context, type well-
formedness and context well-formedness as the same as in ΛB. We define the typing
judgment of the form Γ 	TB e : σ for λB. The set of rules to derive this judgment is given
in Figure 3.5.

The typing rule for bit tag function is just a combination of typing rules for type
abstraction and lambda abstraction in λML. The typing rule for bit tag application is
just a combination of typing rules for type instantiation and lambda application in λML.
Other cases are easily understandable.

3.2.2 Compilation from λML to λB

Now, I show the compilation algorithm from λML terms into λB terms. The algorithm
is formulated by judgment of the forms Γ 	TB e � e′ where Γ is a context of the target

35

Γ 	TB co : o

Γ 	TB x : σ if x : σ ∈ Γ

Γ, arg(x : τ) 	TB e : σ
Γ 	TB λx : τ .e : τ → σ

Γ, tvar(t), arg(b : 〈t〉) 	TB e : σ

Γ 	TB Λt.λb : 〈t〉.e : ∀t.〈t〉 → σ

Γ 	TB e1 : τ → σ Γ 	TB e2 : τ
Γ 	TB (e1 e2) : σ

Γ 	TB e : ∀t.〈t〉 → σ Γ 	TB eb : 〈τ〉 Γ 	B τ
Γ 	TB (e τ eb) : σ[τ/t]

Γ 	TB ei : σi (1 ≤ i ≤ n) Γ 	TB e0 : 〈〈σ1, . . . , σn〉〉
Γ 	TB (e0; e1, . . . , en) : σ1 × · · · × σn

Γ 	TB e : σ1 × · · · × σn

Γ 	TB πi(e) : σi

Γ 	TB e1 : σ1 Γ, local(x : σ1) 	TB e2 : σ2

Γ 	TB let x : σ1 = e1 in e2 end : σ2

tagOf(σ) = B
Γ 	TB 〈B〉 : 〈σ〉

Γ 	TB ei : 〈σi〉 (1 ≤ i ≤ n)
Γ 	TB [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉

Figure 3.5: Typing Rules of λB

calculus, e is a source expression and e′ is a target expression. The set of compilation
rules is given in Figure 3.6.

In the compilation rule for type abstraction Λt.e, the algorithm introduces new bit tag
parameters b : 〈t〉 corresponding to type variables t. In the rule for type instantiation (e τ),
actual bit tag parameters eb are generated and inserted after type instantations. Each of
eb is generated by inspecting the corresponding instance type in τ . In the compilation rule
for records, the bitmap [eb

1, . . . , e
b
n] is generated by composing bit tags eb

1, . . . , e
b
n. Each eb

i

is also generated by inspecting the corresponding field type σi.
We formalize the creation of eb in type instantiation compilation rule and eb

i in record
compilation rule by introducing bit tag creation algorithm of the form Γ 	TB σ � e as
follows.

Γ 	TB σ � 〈tagOf(σ)〉 if σ has a proper outermost type constructor
Γ 	TB t � b where b : 〈t〉 ∈ Γ

This algorithm generate a bit tag term corresponding to a given type σ. In the first
rule, σ has a proper outermost type constructor. Therefore bit tag of objects of this
type is statically determined by 〈tagOf(σ)〉. If σ does not have proper outermost type

36

Γ 	TB co � co

Γ 	TB x � x If x : σ ∈ Γ

Γ, arg(x : τ) 	TB e � e′

Γ 	TB λx : τ .e � λx : τ .e′

Γ 	TB e1 � e′1 Γ 	TB e2 � e′2
Γ 	TB (e1 e2) � (e′1 e′2)

Γ, tvar(t), arg(b : 〈t〉) 	TB e � e′ b are fresh variables

Γ 	TB Λt.e � Λt.λb : 〈t〉.e′

Γ 	TB e � e′ Γ 	TB τ � eb

Γ 	TB (e τ) � (e′ τ eb)

Γ 	TB ei � e′i Γ 	TB e′i : σi Γ 	TB σi � eb
i (1 ≤ i ≤ n)

Γ 	TB (e1, . . . , en) � ([eb
1, . . . , e

b
n]; e′1, . . . , e

′
n)

Γ 	TB e � e′

Γ 	TB πi(e) � πi(e
′)

Γ 	TB e1 � e′1 Γ 	TB e1 : σ′ Γ, local(x : σ′) 	TB e2 � e′2
Γ 	TB let x : σ = e1 in e2 end � let x : σ′ = e′1 in e′2 end

Figure 3.6: Bitmap-passing Compilation

constructor, i.e. σ is a type variable t, the algorithm will looking for a bit tag variable
of type 〈t〉 recorded in the context. If this search returns no result, the bit tag creation
algorithm will fail. To ensure that the bit tag creation algorithm never fails, we assume
that the compile context Γ is constructed in such a way where any tvar(t) assumption
is followed by a arg(b : 〈t〉) assumption (this is guaranteed by the simulation relations
defined later). The following proposition demonstrates this feature.

Lemma 3.6 Let Γ be an well-formed context and each tvar(t) assumption of Γ is followed
by a arg(b : 〈t〉) assumption, σ be a type. If Γ 	B σ then Γ 	TB σ � b always succeeds
and Γ 	TB b : 〈σ〉.
PROOF. There are two cases.

Case 1. σ has a proper outermost type constructor, i.e σ �= t. In this case the bit tag
creation succeeds with a constant bit tag B = tagOf(σ). Obviously, Γ 	TB 〈B〉 : 〈σ〉.
Case 2. σ is a type variable, i.e. σ = ti. By the assumption, Γ 	B ti, Γ must contain
a tvar(t) assumption where ti ∈ t. Also by the assumption, there must be a arg(b : 〈t〉)
followed tvar(t). Then the algorithm succeeds with the variable bi corresponding to ti,
and we have Γ 	TB bi : 〈ti〉 as desired. �

The bitmap compilation algorithm only inserts bitmap abstractions and bitmap ap-
plications in target types and terms. Erasing all bitmap abstractions from the type of a
target expression should therefore recover the original type of the source expression. To

37

τ ∼B τ

σ ∼B σ′

τ → σ ∼B τ → σ′

σ ∼B σ′

∀t.σ ∼B ∀t.〈t〉 → σ′

σi ∼B σ′
i for each 1 ≤ i ≤ n

σ1 × · · · × σn ∼B σ′
1 × · · · × σ′

n

∅ ∼B ∅
Γ ∼B Γ′ x �∈ dom(Γ′) σ ∼B σ′

(Γ, local(x : σ)) ∼B (Γ′, local(x : σ′))

Γ ∼B Γ′ x ∩ dom(Γ′) = ∅
(Γ, arg(x : τ)) ∼B (Γ′, arg(x : τ))

Γ ∼B Γ′ b ∩ dom(Γ′) = ∅
(Γ, tvar(t)) ∼B (Γ′, tvar(t), arg(b : 〈t〉))

Figure 3.7: Simulation Relations on Types and Contexts

formalize this property, we define simulations relations σ ∼B σ′ between source and target
types, and Γ ∼B Γ′ between source and target contexts in Figure 3.7. The simulation
relations satisfy following properties.

Lemma 3.7 Let Γ be a well-formed context in λML and Γ′ be a context in λB. If Γ ∼B

Γ′, then Γ′ is well-formed and any tvar(t) assumption in Γ′ must have an arg(b : 〈t〉)
assumption follows.

PROOF. Straightforward by structural induction on Γ. �

Lemma 3.8 Let Γ be a well-formed context in λML, Γ′ be a context in λB, σ be a type in
λML, and σ′ be a type in λB. If Γ ∼B Γ′, σ ∼B σ′ and Γ 	ML σ then Γ′ 	B σ′.

PROOF. Straightforward. �

Lemma 3.9 If Γ ∼B Γ′ then Γ(x) ∼B Γ′(x) for all x ∈ dom(Γ)

PROOF. Straightforward by structural induction on Γ.
�

Lemma 3.10 The simulation relations on types are stable under monomorphic substitu-
tion. If σ ∼B σ′ then for any monomophic substitution S = [τ/t], S(σ) ∼B S(σ′).

PROOF. This is proved by induction on the derivation of σ ∼B σ′. We do case analysis
on σ.

38

Case σ = o. Straightforward.

Case σ = t. From the simulation relation rule, σ′ = σ = t. Therefore S(σ) = S(σ′) is a
monomorphic type. Then we have S(σ) ∼B S(σ′) as desired.

Case σ = τ → σ1. Suppose τ → σ1 ∼B τ → σ′
1. This is derived from σ1 ∼B σ′

1. Applying
induction hypothesis for σ1 ∼B σ′

1, S(σ1) ∼ S(σ′
1). In addition, S(τ) ∼B S(τ), therefore

S(τ) → S(σ1) ∼B S(τ) → S(σ′
1). This implies S(τ → σ1) ∼B S(τ → σ′

1).

Case σ = σ1 × · · · × σn. Suppose σ1 × · · · × σn ∼B σ′
1 × · · · × σ′

n. This is derived
from σi ∼B σ′

i, for all 1 ≤ i ≤ n. Applying induction hypothesis for each σi, we have
S(σi) ∼B S(σ′

i). Therefore, S(σ1)×· · ·×S(σn) ∼B S(σ′
1)×· · ·×S(σ′

n). By the definition
of type substitution, we have S(σ1 × · · · × σn) ∼B S(σ′

1 × · · · × σ′
n) as desired.

Case σ = ∀t.σ1. By bound type variable convention, suppose t ∩ dom(S) = ∅. Also
suppose ∀t.σ1 ∼B ∀t.〈t〉 → σ′

1. This is derived from σ1 ∼B σ′
1. Applying induction hy-

pothesis for σ1, we obtain S(σ1) ∼B S(σ′
1). Therefore, ∀t.S(σ1) ∼B ∀t.〈t〉 → S(σ′

1). Since
t∩dom(S) = ∅, by the definition of type substitution, we have S(∀t.σ1) ∼B S(∀t.〈t〉 → σ′

1)
as desired. �

Now we show the type preservation property of the compilation algorithm by the
following theorem:

Theorem 3.2 Suppose Γ 	ML e : σ. For any Γ′ so that Γ ∼B Γ′ the compilation algo-
rithm succeeds as Γ′ 	TB e � e′ with Γ′ 	TB e′ : σ′ where σ ∼B σ′

PROOF. This is proved by induction on derivation of the typing rule. We proceed by do
case analysis on e.
Case e = co. Straighforward.

Case e = x. Suppose Γ 	ML x : σ, then by the λML typing rule for variable, we have
Γ(x) = σ. Since Γ ∼B Γ′, by Lemma 3.9, Γ(x) ∼B Γ′(x). Then the compilation succeeds
as Γ′ 	TB x � x. By the λB typing rule for variable, we have Γ′ 	TB x : Γ′(x). Since
Γ(x) ∼B Γ′(x), we get the desired result.

Case e = λx : τ .e1. Suppose Γ 	ML λx : τ .e1 : τ → σ1. This is derived from Γ, arg(x : τ) 	ML

e1 : σ1. By the context simulation relation, we have (Γ, arg(x : τ)) ∼B (Γ′, arg(x : τ)).
Applying induction hypothesis for e1, we have Γ′, arg(x : τ) 	TB e1 � e′1 succeeds with
Γ′, arg(x : τ) 	TB e′1 : σ′

1 where σ1 ∼B σ′
1. Applying the compilation algorithm for func-

tion, we have Γ′ 	TB λx : τ .e1 � λx : τ .e′1 succeeds. By the λB typing rule for function,
we have Γ′ 	TB λx : τ ..e′1 : τ → σ′. Since σ1 ∼B σ′

1, by the simulation relation for type,
we have (τ → σ1) ∼B (τ → σ′

1) as desired.

Case e = (e1 e2). Suppose Γ 	ML (e1 e2) : σ. This is derived from

Γ 	ML e1 : τ → σ Γ 	ML e2 : τ
Γ 	ML (e1 e2) : σ

Applying induction hypothesis for e1 and e2, we have

• Γ′ 	TB e1 � e′1 succeeds with Γ′ 	TB e′1 : σ1 where (τ → σ) ∼B σ1

• Γ′ 	TB e2 � e′2 succeeds with Γ′ 	TB e′2 : σ2 where τ ∼B σ2.

39

By simulation relations on types, we have σ1 ≡ τ → σ′ where σ ∼B σ′, and σ2 ≡ τ .
Applying the compilation rule for lambda application, we have Γ′ 	TB (e1 e2) � (e′1 e′2)
succeeded. Applying λB typing rule for application, we obtain Γ′ 	TB (e′1 e′2) : σ′ where
σ ∼B σ′ as desired.

Case e = Λt.e1. Suppose Γ 	ML Λt.e1 : ∀t.σ1 This is derived from Γ, tvar(t) 	ML e1 : σ1.
Let b be a sequence of fresh variables, b∩dom(Γ) = ∅. By the context simulation relation,
we have (Γ, tvar(t)) ∼B (Γ′, tvar(t), arg(b : 〈t〉)). Applying induction hypothesis for e1, we
have Γ′, tvar(t), arg(b : 〈t〉) 	TB e1 � e′1 succeeds with Γ′, tvar(t), arg(b : 〈t〉) 	TB e1 : σ′

1

where σ1 ∼B σ′
1. Applying the compilation algorithm, we have

Γ′ 	TB Λt.e1 � Λt.λb : 〈t〉.e′1.
By the target typing rule for type abstraction, we have

Γ′ 	TB Λt.be′1 : ∀t.〈t〉 → σ′
1

Since σ1 ∼B σ′
1, by the simulation relation on type, we have ∀t.σ1 ∼B ∀t.〈t〉 → σ′

1 as
desired.

Case e = Λe1.τ . Suppose Γ 	ML Λe1.τ : σ1[τ/t]. This is derived from

Γ 	ML e1 : ∀t.σ1 Γ 	ML τ
Γ 	ML Λe1.τ : σ1[τ/t]

Applying induction hypothesis for e1, we have Γ′ 	TB e1 � e′1 with Γ′ 	TB e′1 : σ2 where
∀t.σ1 ∼B σ2. By the simulation relation for types, σ2 must have form ∀t.〈t〉 → σ′

1 where
σ1 ∼B σ′

1. Since Γ 	ML τ , by Lemma 3.8, we have Γ′ 	B τ . By Lemma 3.7 and Lemma 3.6,
Γ′ 	TB τ � eb must succeeds and Γ′ 	TB eb : 〈τ〉. Applying the compilation rule for
type instantiation, we have Γ′ 	TB Λe1.τ � Λe′1.λτ : 〈e′1〉.eb. Applying the λB typing
rule for type instantiation, we have Γ′ 	TB Λe′1.λτ : 〈e′1〉.eb : σ′

1[τ/t]. By Lemma 3.10,
σ1[τ/t] ∼B σ′

1[τ/t] as desired.

Case e = (e1, . . . , en). Suppose Γ 	ML (e1, . . . , en) : σ1 × · · · × σn. This is derived from
Γ 	ML ei : σi, for all 1 ≤ i ≤ n. Applying induction hypothesis for each ei, we have
Γ 	TB ei � e′i succeeds with Γ′ 	TB e′i : σ′

i where σi ∼B σ′
i. Since σi is well-formed under

Γ, by Lemma 3.8, we have Γ′ 	B σ′
i. By Lemma 3.7 and Lemma 3.6, Γ′ 	TB σ′

i � eb
i

must succeeds and Γ′ 	TB eb
i : 〈σ′

i〉. Applying the compilation rule for record, we obtain
Γ′ 	TB (e1, . . . , en) � ([eb

1, . . . , e
b
n]; e′1, . . . , e

′
n). Applying the λB typing rule for bitmap,

we have Γ′ 	TB [eb
1, . . . , e

b
n] : 〈〈σ′

1, . . . , σ
′
n〉〉. Applying the λB typing rule for record, we

have Γ′ 	TB ([eb
1, . . . , e

b
n]; e′1, . . . , e

′
n) : σ′

1 × · · · × σ′
n. By the simulation relation on types,

we have (σ1 × · · · × σn) ∼B (σ′
1 × · · · × σ′

n) as desired.

Case e = πi(e1). Suppose Γ 	ML πi(e1) : σi. This is derived from Γ 	ML e1 : σ1×· · ·×σn.
Applying the induction hypothesis for e1, we have Γ′ 	TB e1 � e′1 with Γ′ 	TB e′1 : σ′

where (σ1 × · · · × σn) ∼B σ′. Then σ′ must have the form σ′
1 × · · · × σ′

n where σi ∼B σ′
i

for each i. Applying the compilation rule for projection, we have Γ′ 	TB πi(e1) � πi(e
′
1).

Applying the λB typing rule for projection, we obtain Γ′ 	TB πi(e
′
i) : σ′

i where σi ∼B σ′
i

as desired.

Case e = let x : σ1 = e1 in e2 end. Suppose Γ 	ML let x : σ1 = e1 in e2 end : σ2. This
is derived from

40

Γ 	ML e1 : σ1 Γ, local(x : σ1) 	ML e2 : σ2

Γ 	ML let x : σ1 = e1 in e2 end : σ2

Applying induction hypothesis for e1, we have Γ′ 	TB e1 � e′1 succeeds with Γ′ 	TB e′1 : σ′
1

where σ1 ∼B σ′
1 By the simulation relation for context, we have

(Γ, local(x : σ1)) ∼B (Γ′, local(x : σ′
1)).

Applying induction hypothesis for e1, we obtain Γ′, local(x : σ′
1) 	TB e2 � e′2 succeeds

with Γ′, local(x : σ′
1) 	TB e′2 : σ′

2 where σ2 ∼B σ′
2. By the compilation algorithm, we have

Γ′ 	TB let x : σ1 = e1 in e2 end � let x : σ′
1 = e′1 in e′2 end.

Finally, by the λB typing rule for let expression, we have Γ′ 	TB let x : σ′
1 = e′1 in e′2 end :

σ′
2 where σ2 ∼B σ′

2 as desired. �

3.2.3 Transformation from λB terms to ΛB terms

After obtaining the explicitly typed term in λB by the above compilation algorithm, we
can easily get the target term in ΛB by using the eraseB(e) function which erases all type
annotation in the given term e in λB. The eraseB function can be inductively defined as
follows

eraseB(c0) = co

eraseB(x) = x

eraseB(λx : τ .e) = λx.eraseB(e)

eraseB((e1 e2)) = (eraseB(e1) eraseB(e2))

eraseB(Λt.λx : 〈t〉.e) = λx.eraseB(e)

eraseB((e τ eb)) = (eraseB(e) eraseB(eb))

eraseB((ebm; e1, . . . , en)) = (eraseB(ebm); eraseB(e1), . . . , eraseB(en))

eraseB(πi(e)) = πi(eraseB(e))

eraseB(let x : σ = e1 in e2 end) = let x = eraseB(e1) in eraseB(e2) end

eraseB([e1, . . . , en]) = [eraseB(e1), . . . , eraseB(en)]

eraseB(〈B〉) = 〈B〉

The function eraseB just simply eliminates type annotation in the given term. Typing
derivation should be the same in the given term and the result. This property is shown
by the following theorem

Theorem 3.3 Suppose Γ, e, σ is a well-formed context, a term and a well-formed type
in λB so that Γ 	TB e : σ. Then we also have Γ 	B eraseB(e) : σ.

PROOF. This is proved by induction on derivation of the typing rule Γ 	TB e : σ. We
proceed by case analysis on e.

Case e = co, e = x, e = 〈B〉.. Straightforward.

Case e = λx : τ .e′. Suppose that we have the following type derivation

41

Γ, arg(x : τ) 	TB e′ : σ
Γ 	TB λx : τ .e′ : τ → σ

Applying induction hypothesis for e′, we obtain Γ, arg(x : τ) 	B eraseB(e′) : σ. Applying
the first ΛB typing rule for function, we have Γ 	B λx.eraseB(e′) : τ → σ. Since
eraseB(λx : τ .e′) = λx.eraseB(e′), we have Γ 	B eraseB(λx : τ .e′) : τ → σ as desired.

Case e = (e1 e2). Suppose

Γ 	TB e1 : τ → σ Γ 	TB e2 : τ
Γ 	TB (e1 e2) : σ

Applying induction hypothesis for e1 and e2, we have

Γ 	B eraseB(e1) : τ → σ
Γ 	B eraseB(e2) : τ

By the first typing rule for application in ΛB, we obtain Γ 	B (eraseB(e1) eraseB(e2)) : σ.
Since eraseB((e1 e2)) = (eraseB(e1) eraseB(e2)), then we have Γ 	B eraseB((e1 e2)) : σ
as desired.

Case e = Λt.λx : 〈t〉.e′. Suppose

Γ, tvar(t), arg(x : 〈t〉) 	TB e′ : σ

Γ 	TB Λt.λx : 〈t〉.e′ : ∀t.〈t〉 → σ

Applying induction hypothesis for e′ we have Γ, tvar(t), arg(x : 〈t〉) 	B eraseB(e′) : σ.
By the second typing rule for function in ΛB, we have Γ 	B λx.eraseB(e′) : σ. Since
eraseB(Λt.λx : 〈t〉.e′) = λx.eraseB(e′), then we have Γ 	B eraseB(Λt.λx : 〈t〉.e′) : σ as
desired.

Case e = (e′ τ eb). Suppose

Γ 	TB e′ : ∀t.〈t〉 → σ Γ 	TB eb : 〈τ〉 Γ 	B τ
Γ 	TB (e′ τ eb) : σ[τ/t]

Applying induction hypothesis for e′ and eb we obtain

Γ 	B eraseB(e′) : ∀t.〈t〉 → σ
Γ 	B eraseB(eb) : 〈τ〉

By the second typing rule for application in ΛB, we have Γ 	B (eraseB(e′) eraseB(eb)) :
σ[τ/t]. Since eraseB((e′ τ eb)) = (eraseB(e′) eraseB(eb)), the we have Γ 	B eraseB((e′ τ eb)) :
σ[τ/t] as desired.

Case e = (e0; e1, . . . , en). Suppose

Γ 	TB ei : σi (1 ≤ i ≤ n) Γ 	TB e0 : 〈〈σ1, . . . , σn〉〉
Γ 	TB (e0; e1, . . . , en) : σ1 × · · · × σn

Applying induction hypothesis for each e0, we obtain

Γ 	B eraseB(ei) : σi (1 ≤ i ≤ n)
Γ 	B eraseB(e0) : 〈〈σ1, . . . , σn〉〉

42

By ΛB typing rule for record, we have

Γ 	B (eraseB(e0); eraseB(e1), . . . , eraseB(en)) : σ1 × · · · × σn

Since eraseB((e0; e1, . . . , en)) = (eraseB(e0); eraseB(e1), . . . , eraseB(en)), the we have

Γ 	B eraseB((e0; e1, . . . , en)) : σ1 × · · · × σn

as desired.

Case e = πi(e
′). Suppose

Γ 	TB e′ : σ1 × · · · × σn

Γ 	TB πi(e
′) : σi

Applying induction hypothesis for e′, we have Γ 	B eraseB(e′) : σ1 × · · · × σn. By ΛB

typing rule for projection, we have Γ 	TB πi(eraseB(e′)) : σi. Since eraseB(πi(e
′)) =

πi(eraseB(e′)), then we obtain Γ 	TB eraseB(πi(e
′)) : σi as desired.

Case e = let x : σ = e1 in e2 end. Suppose

Γ 	TB e1 : σ1 Γ, local(x : σ1) 	TB e2 : σ2

Γ 	TB let x : σ1 = e1 in e2 end : σ2

Applying induction hypothesis for e1 and e2, we obtain

Γ 	B eraseB(e1) : σ1

Γ, local(x : σ1) 	B eraseB(e2) : σ2

By the ΛB typing rule for let term, we have

Γ 	B let x = eraseB(e1) in eraseB(e2) end : σ2

Since eraseB(let x : σ = e1 in e2 end) = let x = eraseB(e1) in eraseB(e2) end, Then
we have

Γ 	B eraseB(let x : σ = e1 in e2 end : σ2

as desired.

Case e = [e1, . . . , en]. Suppose

Γ 	TB ei : 〈σi〉 (1 ≤ i ≤ n)
Γ 	TB [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉

Applying induction hypothesis for each ei, we obtain Γ 	B eraseB(ei) : 〈σi〉. By ΛB

typing rule for bitmap, we have

Γ 	B [eraseB(e1), . . . , eraseB(en)] : 〈〈σ1, . . . , σn〉〉.
Since eraseB([e1, . . . , en]) = [eraseB(e1), . . . , eraseB(en)], then we have

Γ 	B eraseB([e1, . . . , en]) : 〈〈σ1, . . . , σn〉〉.
as desired. �

This result together with the type soundness theorem of the target calculus (The-
orem 3.1) and the type preservation theorem (Theorem 3.2) establishes that the type
system of the source calculus is sound with respect to the operational semantics realized
by λML to λB to ΛB compilation followed by evaluation of the compiled term.

43

Chapter 4

Unboxed Compilation

In previous chapter, we have seen how to generate bitmap information for heap-allocated
objects – the first step in my development process for achieving a high-degree of interoper-
ability. In this chapter, I present the second step: generating information for manipulat-
ing unboxed values. Presentation strategy in this chapter is as the same as previous one.
First, I define a target calculus where the necessary information are formalized. Then, I
establish an operational semantics to give the meaning of terms in the calculus, and show
that typing system of the calculus is sound with respect to the given operational calculus.
Finally, I develop a type-preserved compilation algorithm which translates terms in the
source calculus (presented in previous chapter) into terms in the target calculus.

4.1 The Target Calculus – ΛU

I’m going to define the target calculus, namely unboxed calculus or ΛU , for the unboxed
compilation method. In order to identify the necessary information to be formalized in
the calculus, let me first describe several preliminaries related to unboxed manipulation.

This compilation method aims to support fully unboxed representation for multi-word
atomic values such as floating point numbers. These values may reside in either a heap
block or in a run-time environment (e.g. stack frame). In order to manipulate these
values, runtime system must know their sizes and exact locations of these values. This
task would not be difficult for a monomorphic language where all size information are
statically determined. For a polymorphic language, computing sizes and locations is
challenge due to the abstraction of types (and therefore the abstraction of sizes). This
problem can be solved by following the strategy of bitmap-passing compilation presented
in previous chapter: statically computing sizes for layout-fixed objects; introducing a
size parameter for each type variable (by inserting a size abstraction/size application at
each type abstraction/type instantiation), and passing size information to the necessary
computation (re-formulating language constructions with size information).

To determine which language constructions need size information, and how to re-
formulate them is not so simple. In fact, almost every run-time operations that directly
manipulate unboxed values require sizes and locations of the values. In the presence of
polymorphism where sizes and locations may not be statically determined, the computa-
tion of size and locations is heavy. For the sake of efficiency, as mentioned in the Chapter 1,
we assume a simple model of run-time environment: polymorphic variables are allocated
with maximum size, i.e. two words in our implementation. This assumption allows the

44

compiler to generate locations of variables in run-time environment statically. I exclude
this computation from the formalism. Under this assumption, only size information are
required for manipulating immediate variables (arguments and local variables). For heap
objects, both size and location are needed. An alternative representation of location for
an unboxed value which resides in a heap block is the offset of the value related to block
pointer. From now on, we use the term “offset” instead of “location”.

In the rest of this section, I define the syntax and type system of the target calculus
involving size and offset. Then, I define operational semantics that faithfully models the
evaluation of expressions under unboxed manipulation. The type system of the calculus is
shown to be sound with respect to the operational semantics to ensure that the evaluation
of a typable expression in the target calculus never fails.

4.1.1 Types

The sets of monomorphic types (ranged over by τ) and polymorphic types (ranged over
by σ) of ΛU is defined as follows.

τ ::= o base type
| t type variable
| |σ| size type
| ‖σ, . . . , σ‖ offset type
| τ → τ monomorphic function type
| τ × · · · × τ monomorphic product type

σ ::= τ
| ∀t.σ second-order type
| τ → σ polymorphic function type
| σ × · · · × σ polymorphic product type

|σ| denotes a singleton set of size for objects of type σ. For example, if σ is a single type
(e.g. int, word, boxed), |σ| denotes {1}. if σ is a double type (e.g. real), |σ| denotes {2}.
In ML Core language, for any σ type other than type variable, whether σ is a single type
or a double type is determined by its outermost type constructor. We define the size value
sizeOf(σ) of a type σ as follows.

sizeOf(o) = 1 if o is a single base type
sizeOf(o) = 2 if o is an double base type

sizeOf(τ → σ) = 1
sizeOf(σ1 × · · · × σn) = 1

sizeOf(|σ|) = 1
sizeOf(t) = undetermined

sizeOf(‖σ1, . . . , σn ‖) = 1
sizeOf(∀t.σ) = 1

In the cases for sizeOf(τ → σ) and sizeOf(σ1 × · · · × σn), the size value is 1 because all
these types denote sets of pointer values (to a function’s closure and to a heap-allocated
block). In the case for size and offset types, the size is 1 because the actual runtime
representation of a size or an offset is an integer number. The case for ∀t.σ needs more
explanation: this type refers to a polymorphic function type since size abstractions are

45

always inserted at type abstractions. Then we can safely assume ∀t.σ to be a single type
(pointer).

A offset type ‖σ1, . . . , σn ‖ denotes a singleton set of offset of fields whose predecessors
(with respect to the heap block) have types {σ1, . . . , σn}. Value of an offset can be
computed by a summation of all sizes of values of these types.

The well-formedness of types is similarly defined as one in the source language with
an extension of the function FTV for size and offset types:

FTV (|σ|) = FTV (σ)

FTV (‖σ1, . . . , σn ‖) =
⋃

FTV (σi)

We also extend the set of substitution rules for bitmap and bit tag types as follows.

S(|σ|) = |S(σ)|
S(‖σ1, . . . , σn ‖) = ‖S(σ1), . . . , S(σn)‖

4.1.2 Syntax

The set of terms of ΛU is given by the following syntax:

e ::= co constant
| xe variable
| λx.e function
| (e ee) application
| (ee, . . . , ee) record
| πe

e(e) projection
| let xe = e in e end let binding
| [e + · · · + e] offset
| |B| constant size (B ∈ {1, 2})

ΛU serves as a low-level calculus closed to an abstract machine of ML. Each term con-
structor in the syntax represents a (or a set of) instructions in the machine. I will explain
the meaning of each syntax of terms in an intuitive way.

Constant co corresponds to a constant loading instruction, this requires size informa-
tion of the constant which can statically determined from the base type o.

A variable xs represents an access instruction to a value in run-time environment
corresponding to the variable x. As we mentioned above, we omit the location information
of the variable which can be statically computed by the compiler. Only size information
is needed. The subscript expression s in the variable term xs represents size information
of this variable.

As the same as in ΛB, a function construction λx.e has dual roles: this represents a
resulting term of either a lambda abstraction or a type abstraction in the source calculus
(λML). The type abstraction Λt.e in λML will be compiled into λs.e in ΛU where s is the
size parameters corresponding to t.

(e1 e2
es) represents a resulting term of either a lambda application or a type instanti-

ation in the source calculus where e1 is a function, e2 are actual parameters (in the case
of type instantiation, they are actual size parameters generated from the instance types),
es are size information of actual parameters. These information are needed for copying
the values of actual parameters to the function’s stack frame.

46

A record expression (es1
1 , . . . , esn

n) corresponds to an allocation of heap block with
the field values taken from the evaluation of e1, . . . , en. This requires size information
s1, . . . , sn of each e1, . . . , en for computing the total size of the block, and for copying the
values of e1, . . . , en into correct locations in the block.

The most interesting case is the projection of the form πs
o(e). Given a record e,

size s and offset o, this term will be transformed into an instruction that extracts an
unboxed value of size s resided at the offset o of the block e. o is an offset term of form
[s1+· · ·+sn] where {s1, . . . , sn} are size expressions. o represents the summation of values
of {s1, . . . , sn}. In a projection term πs

o(e), o represents the total sizes of the predecessors
of the selected field.

A let expression of the form let xs = e1 in e2 end can be evaluated by a sequence
of operations in the target abstract machine. Firstly, the value v1 of e1 is computed.
Secondly, the machine binds this value to the variable x by copying it to the corresponding
location of x in the runtime environment. Finally, e2 is evaluated under the updated run-
time environment. Since we assume that the location of x is fixed, the machine only need
to know size of x (or size of v1). We provide this information by introducing s in the
syntax of the let term.

4.1.3 Typing Environment

Typing environment of ΛU is defined as the same as in λML. We distinguish the well-
formednesses of type and context of ΛU to those of λML (and also those of the ΛB) by
judgments of forms Γ 	U σ, 	U Γ. The former is for well-formedness of types, the latter is
for well-formedness of context. The rules to derived these judgments are similarly defined
as those in the source calculus.

The following properties still hold in the target calculus.

Lemma 4.1 Let Γ be a well-formed context, σ be a type, and S be a substitution that
respects Γ. If Γ 	U σ then S(Γ) 	U S(σ).

Lemma 4.2 Let Γ be a well-formed context and S be a substitution that respects Γ. If
	U Γ then 	U S(Γ).

Lemma 4.3 For a ground substitution S and a context Γ, if TV (Γ) ⊆ dom(S) then

1. for all σ so that Γ 	U σ, then S(σ) is a closed type

2. S(Γ) is a ground context

4.1.4 Typing Rules

I formalize typing rules for ΛU as judgments of the form Γ 	U e : σ, read e has type σ
under Γ. Figure 4.1 gives the set of rules to derive these judgment.

In the typing rule for variable, we check the consistency between type of the variable
and type of the variable size by Γ 	U s : |σ|.

Similar to ΛB type system, a function term λx.e may have two different typing deriva-
tions: one for lambda abstraction and other for type abstraction (together with size
abstraction).

47

Γ 	U co : o

x : σ ∈ Γ Γ 	U s : |σ|
Γ 	U xs : σ

Γ, arg(x : τ) 	U e : σ
Γ 	U λx.e : τ → σ

Γ, tvar(t), arg(x : |t|) 	U e : σ

Γ 	U λx.e : ∀t.|t| → σ

Γ 	U e1 : τ → σ Γ 	U e2 : τ Γ 	U es : |τ |
Γ 	U (e1 e2

es) : σ

Γ 	U e : ∀t.|t| → σ Γ 	U es : |τ | Γ 	U τ

Γ 	U (e es
|1|) : σ[τ/t]

Γ 	U ei : σi Γ 	U si : |σi| for (1 ≤ i ≤ n)
Γ 	U (es1

1 , . . . , esn
n) : σ1 × · · · × σn

Γ 	U e : σ1 × · · · × σn Γ 	U s : |σi| Γ 	U o :‖σ1, . . . , σi−1 ‖
Γ 	U πs

o(e) : σi

Γ 	U e1 : σ1 Γ 	U s : |σ1| Γ, local(x : σ1) 	U e2 : σ2

Γ 	U let xs = e1 in e2 end : σ2

sizeOf(σ) = S
Γ 	U |S| : |σ|

Γ 	U ei : |σi| (1 ≤ i ≤ n)
Γ 	U [e1 + · · ·+ en] :‖σ1, . . . , σn ‖

Figure 4.1: Typing Rules of The Target Calculus

(e1 e2
es) may also have two different typing derivations: one for lambda application and

other for type instantiation. In the case of lambda application, we check the consistency
between the type of actual arguments and the type of their sizes by Γ 	U es : |τ |. In the
case of type instantiation, since actual arguments are always size values whose sizes are
always one word, we do not need to perform these checks.

In the case of record, we check the consistency between type of each element and type
of its size by Γ 	U si : |σi|. In the case of projection, the consistency checks are performed
for both size and offset of the selected fields (Γ 	U s : |σi| and Γ 	U o :‖ σ1, . . . , σi−1 ‖).
For let expression, the consistency of type of the bound variable’s size is performed
(Γ 	U s : |σ1|).

Now I show that the type system of ΛB is stable under type substitution by the
following lemma.

Lemma 4.4 Let e be an expression, σ be a type, Γ be a well-formed context and S be a
substitution that respects Γ. If Γ 	U e : σ then S(Γ) 	U e : S(σ).

48

PROOF. This is proved by induction on the derivation of the typing rule Γ 	U e : σ.

Case Γ 	U co : o. Straightforward.

Case Γ 	U xs : σ. This is derived from

x : σ ∈ Γ Γ 	U s : |σ|
Γ 	U xs : σ

By induction hypothesis for Γ 	U s : |σ| and the definition of substitution for types, we
have S(Γ) 	U s : |S(σ)|. By the definition of type substitution for context, S(Γ)(x) =
S(Γ(x)) = S(σ). By typing rule for variable, we obtain S(Γ) 	U xs : S(σ) as desired.

Case Γ 	U λx.e : τ → σ. Suppose this is derived from

Γ, arg(x : τ) 	U e : σ
Γ 	U λx.e : τ → σ

Since S respects Γ, we have that S also respects Γ, arg(x : τ). Applying induction hy-
pothesis for Γ, arg(x : τ) 	U e : σ, we obtain

S(Γ, arg(x : τ)) 	U e : S(σ)

By definition of type substitution for context, we have

S(Γ, arg(x : τ)) = S(Γ), arg(x : S(τ))

Thus S(Γ), arg(x : S(τ)) 	U e : S(σ). Applying typing rule for lambda abstraction, we
obtain

S(Γ) 	U λx.e : S(τ) → S(σ)

By type substitution for type, we have S(τ) → S(σ) = S(τ → σ) as desired.

Case Γ 	U λs.e : ∀t.|t| → σ. By bound type variable convention, we assume that
t ∩ dom(Γ) = ∅ and t ∩ dom(S) = ∅. Suppose this typing is derived from

Γ, tvar(t), arg(s : |t|) 	U e : σ

Γ 	U λs.e : ∀t.|t| → σ

Since t∩dom(S) = ∅ and S respects Γ, we also have that S respects Γ, tvar(t), arg(s : |t|).
Applying induction hypothesis for Γ, tvar(t), arg(s : |t|) 	U e : σ, we obtain

S(Γ, tvar(t), arg(s : |t|)) 	U e : S(σ)

Since t ∩ dom(S) = ∅, then

S(Γ, tvar(t), arg(s : |t|)) = S(Γ), tvar(t), arg(s : |t|)
By typing rule for type abstraction, we have

S(Γ) 	U λs.e : ∀t.|t| → S(σ)

Since t ∩ dom(S) = ∅, we have ∀t.|t| → S(σ) = S(∀t.|t| → σ) as desired.

Case Γ 	U (e1 e2
es) : σ. Suppose this typing is derived from

49

Γ 	U e1 : τ → σ Γ 	U e2 : τ Γ 	U es : |τ |
Γ 	U (e1 e2

es) : σ

Applying induction hypothesis for Γ 	B e1 : τ → σ, Γ 	B e2 : τ , and Γ 	U es : |τ |, we
obtain

S(Γ) 	U e1 : S(τ → σ)
S(Γ) 	U e2 : S(τ)
S(Γ) 	U es : S(|τ |)

Since S(τ → σ) = S(τ) → S(σ) and S(|τ |) = |S(τ)|, applying typing rule for lambda
application, we obtain

S(Γ) 	U (e1 e2
es) : S(σ)

as desired.

Case Γ 	U (e es
|1|) : σ[τ/t]. Suppose this typing is derived from

Γ 	U e : ∀t.|t| → σ Γ 	U es : |τ | Γ 	U τ

Γ 	U (e es
|1|) : σ[τ/t]

Applying induction hypothesis for Γ 	U e : ∀t.|t| → σ and Γ 	U es : |τ |, we obtain

S(Γ) 	U e : S(∀t.|t| → σ)
S(Γ) 	U es : S(|τ |)

By bound type variable convention, assume that t ∩ dom(S) = ∅. Thus S(∀t.|t| → σ) =
∀t.|t| → S(σ). By type substitution for type, S(|τ |) = |S(τ)|. Applying Lemma 4.1, we
also have S(Γ) 	U τ . By typing rule for type instantiation, we obtain

S(Γ) 	U (e eb
|1|) : S(σ)[S(τ)/t].

Since t ∩ dom(S) = ∅, we have S(σ)[S(τ)/t] = S(σ[τ/t]) as desired

Case Γ 	U (es1
1 , . . . , esn

n) : σ1 × · · · × σn. Suppose this typing is derived from

Γ 	U ei : σi Γ 	U si : |σi| for (1 ≤ i ≤ n)
Γ 	U (es1

1 , . . . , esn
n) : σ1 × · · · × σn

Applying induction hypothesis for each ei and si, we have

S(Γ) 	U ei : S(σi)
S(Γ) 	U si : S(|σi|)

Since S(|σi|) = |S(σi)|, we have

S(Γ) 	U si : |S(σi)|
Applying the typing rule for records, we have

S(Γ) 	U (es1
1 , . . . , esn

n) : S(σ1) × · · · × S(σ1)

Since S(σ1) × · · · × S(σ1) = S(σ1 × · · · × σn), we obtain

50

S(Γ) 	U (es1
1 , . . . , een

n) : S(σ1 × · · · × σ1)

as desired.

Case Γ 	U πs
o(e) : σi. Suppose this typing is derived from

Γ 	U e : σ1 × · · · × σn Γ 	U s : |σi| Γ 	U o :‖σ1, . . . , σi−1‖
Γ 	U πs

o(e) : σi

Applying induction hypothesis for Γ 	U e : σ1 × · · · × σn, Γ 	U s : |σi|, and Γ 	U o :‖
σ1, . . . , σi−1‖, we have

S(Γ) 	U e : S(σ1 × · · · × σn), S(Γ) 	U s : S(|σi|), and S(Γ) 	U o : S(‖σ1, . . . , σi−1 ‖), we
have

By definition of substitution for types, we have

S(σ1 × · · · × σn) = S(σ1) × · · · × S(σn)
S(|σi|) = |S(σi)|

S(‖σ1, . . . , σi−1‖) =‖S(σ1), . . . , S(σi−1)‖
applying typing rule for projection, we obtain S(Γ) 	U πs

o(e) : S(σi) as desired.

Case Γ 	U let xs = e1 in e2 end : σ2. Suppose this typing is derived from

Γ 	U e1 : σ1 Γ 	U s : |σ1| Γ, local(x : σ1) 	U e2 : σ2

Γ 	U let x = e1 in e2 end : σ2

Applying induction hypothesis for Γ 	U e1 : σ1 and Γ 	U s : |σ1|, we obtain

S(Γ) 	U e1 : S(σ1)
S(Γ) 	U s : S(|σ1|)

Since S respects Γ, then S also respects Γ, local(x : σ). Applying induction hypothesis
for Γ, local(x : σ1) 	U e2 : σ2, we obtain

S(Γ, local(x : σ1)) 	U e2 : S(σ2)

Since S(Γ, local(x : σ1)) = S(Γ), local(x : S(σ1)), by applying typing rule for let term,
we obtain

S(Γ) 	U let xs = e1 in e2 end : S(σ2)

as desired.

Case Γ 	U [e1 + · · · + en] :‖σ1, . . . , σn ‖. Suppose this typing is derived from

Γ 	U ei : |σi| (1 ≤ i ≤ n)
Γ 	U [e1 + · · ·+ en] :‖σ1, . . . , σn ‖

Applying induction hypothesis for each ei, we have S(Γ) 	U ei : S(|σi|). Since S(|σi|) =
|S(σi)|, applying the typing rule for offset, we have

S(Γ) 	U [ei + · · · + en] :‖S(σ1), . . . , S(σn)‖

51

Applying substitution rule for bitmap type , we can conclude

S(Γ) 	U [ei + · · · + en] : S(‖σ1, . . . , σn ‖)

Case e = |B|. Suppose Γ 	U |B| : |σ|. Since |B| is a constant size, type σ must
have an appropriate outermost type constructor. Type substitution does not modify the
outermost type constructor, then the substituted type S(σ) must have the same outermost
constructor as σ, therefore sizeOf(σ) = sizeOf(S(σ)). This implies S(Γ) 	U |B| : S(|σ|)
as desired. �

4.1.5 Semantics

We define semantics of ΛU , in style of natural semantic [Kah87], that faithfully models
evaluation of expressions involving unboxed manipulation. The sets of runtime values
(ranged over by v) and runtime environments (ranged over by E) are given by the following
grammar.

v ::= co constant value
| i integer
| cls(E, λx.e) function closure
| (v, . . . , v) record value
| wrong runtime error

E ::= ∅ | E, x : v run-time environment

Size terms or offset terms in the calculus are evaluated to integers (denoted by i).
cls(E, λx.e) is a function closure, where E is an environment assigning values to vari-

ables.
(v1, . . . , vn) is a record (heap block) consisting of n unboxed values {v1, . . . , vn}.
wrong represents a runtime type error.
We define the operational semantics, which serves as an abstract machine (VM), in

such a way that it checks the consistency of unboxed values and their sizes every time
they are manipulated. If this check fails then the evaluation halts with wrong. In order
to formalize this check, we define the size value sizeOf(v) corresponding to v as follows.

sizeOf(co) = 1 if co is a single constant

sizeOf(co) = 2 if co is a double constant

sizeOf(i) = 1

sizeOf(cls(E, λx.e)) = 1

sizeOf((v1, . . . , vn)) = 1

Closure and record values have one word size since we do not unbox structured data. In
our development, only floating point numbers have two word size.

The operational semantics is defined in the style of [Kah87] by giving a set of rules
to derive a evaluation relation of the form E 	U e ⇓ v, which reads: “e evaluates to v
under E”. Figure 4.2 gives the set of evaluation rules. This set of rules should be taken
with the following implicit rules yielding wrong: if evaluation of any component yields
wrong or undefined or does not satisfy the specified condition then the entire term will
yield wrong.

52

E 	U co ⇓ co

E 	U s ⇓ v v = sizeOf(E(x))
E 	U xs ⇓ E(x)

E 	U s ⇓ i
E 	U λx.e ⇓ cls(E, λx.e)

E 	U e1 ⇓ cls(E0, λx.e0) E 	U e2 ⇓ v2

E0, x : v2 	U e0 ⇓ v0 E0 	U es ⇓ vs vs = sizeOf(v2)
E 	U (e1 e2

es) ⇓ v0

E 	U si ⇓ vs
i E 	U ei ⇓ vi sizeOf(vi) = vs

i for all 1 ≤ i ≤ n
E 	U (es1

1 , . . . , esn
n) ⇓ (v1, . . . , vn)

E 	U e ⇓ (v1, . . . , vn) E 	U s ⇓ vs E 	U o ⇓ vo

sizeOf(vi) = vs sizeOf(v1) + · · ·+ sizeOf(vi−1) = vo

E 	U πs
o(e) ⇓ vi

E 	U e1 ⇓ v1 E 	U s ⇓ vs sizeOf(v1) = vs E, x : v1 	U e2 ⇓ v2

E 	U let xs = e1 in e2 end ⇓ v2

E 	U |i| ⇓ i

E 	U ei ⇓ Bi (1 ≤ i ≤ n)
E 	U [e1 + · · ·+ en] ⇓ B1 + · · · + Bn

Figure 4.2: Operational Semantics of The Unboxed Calculus

In the rule for variable xs, VM checks the consistency between the value E(x) and its
size by first evaluating the size expression s, then comparing the result with the actual
size of E(x).

In the rule for application, VM checks the consistency between the sizes of actual
arguments and the values of size terms vs.

For allocating a record, VM also has to check the consistency between layout of record
given by sizes of its fields (si) and size the actual field values. This is done by first
evaluating each si to vs

i , then comparing vs
i with the corresponding field size sizeOf(vi).

The evaluation rule for projection needs more explanations. VM obtains the selected
value by first evaluate the record to get a block of memory, compute the value of offset
and size, and extract the field by using the resulting offset value and size value. Suppose
that the block consists of (v1, . . . , vn). For checking the consistency, VM compares the
values of s and o (vs, vo) with the actual field size sizeOf(vi) and actual offset (computed
from sizeOf(v1) + · · ·+ sizeOf(vi−1))

In the evaluation rule for let expressions, VM first evaluates the bound expression
e1, binds its value to runtime environment slot x, then evaluate the main expression e2

under the updated environment. To ensure that the value v1 of e1 has a correct size (with
respect to size of e1 given by s), VM checks sizeOf(v1) = vs.

To show that the type system is sound with respect to this operational semantics, we
define typing judgments on runtime values and environments of the forms |=U v : σ and

53

|=U ∅ : ∅
|=U E : Γ |=U v : τ

|=U (E, x : v) : (Γ, arg(x : τ))

|=U E : Γ |=U v : σ
|=U (E, x : v) : (Γ, local(x : σ))

|=U E : Γ
|=U E : (Γ, tvar(t))

Figure 4.3: Typing rules on environments

|=U co : o

|=U i : |σ| If sizeOf(σ) = i

|=U i :‖σ1, . . . , σn ‖ If sizeOf(σ1) + · · ·+ sizeOf(σn) = i

There exists a ground context Γ and closed types τ
|=U E : Γ Γ, arg(x : τ) 	U e : σ

|=U cls(E, λx.e) : τ → σ

There exists a ground context Γ so that

|=U E : Γ Γ, tvar(t), arg(s : |t|) 	U e : σ

|=U cls(E, λs.e) : ∀t.|t| → σ

|=U vi : σi for all 1 ≤ i ≤ n
|=U (v1, . . . , vn) : σ1 × · · · × σn

Figure 4.4: Typing rules on values

|=U E : Γ where σ represents a closed type and Γ represents a ground context. The set
of rules to derive these judgments is given in Figure 4.4 and Figure 4.3.

The following property holds.

Lemma 4.5 If |=U v : σ then sizeOf(v) = sizeOf(σ).

PROOF. Straightforward by definition. �

As in a conventional type system, the type system of ΛU is sound, i.e. it guarantees
type-error free evaluation of any type correct expression. We show this in the following
theorem.

Theorem 4.1 Let Γ be a context, e be an expression, σ be a type so that Γ 	U e : σ. Let
S be a ground substitution so that TV (Γ) ⊆ dom(S). Let E be a run-time environment
so that |=U E : S(Γ). If E 	U e ⇓ v then |=U v : S(σ).

PROOF. We prove this theorem by induction on the derivation of the evaluation rule.

Case e 	U c0 ⇓ co. Straightforward.

Case E 	U xs ⇓ E(x). This is derived from

54

E 	U s ⇓ v v = sizeOf(E(x))
E 	U xs ⇓ E(x)

Suppose Γ 	U xs : σ is derived from Γ(x) = σ and Γ 	U s : |σ|. By induction hypothesis
for s, we obtain |=U v : S(|σ|). Since S(|σ|) = |S(σ)|, by value typing for size, we
have v = sizeOf(S(σ)). We have to prove v = sizeOf(E(x)) and |=U E(x) : S(σ).
Since |=U E : S(Γ), we have |=U E(x) : S(Γ)(x). Since S(Γ)(x) = S(Γ(x)), we obtain
|=U E(x) : S(σ). By lemma 4.5, we also have sizeOf(E(x)) = sizeOf(S(σ)). Then we
obtain v = sizeOf(()E(x)) as desired.

Case E 	U λx.e ⇓ cls(E, λx.e). We have two possible typing derivation of λx.e
Sub-case 1 Γ 	U λx.e : τ → σ. Suppose this typing is derived from

Γ, arg(x : τ) 	U e : σ
Γ 	U λx.e : τ → σ

S is a ground substitution, then S should respect Γ, arg(x : τ). Applying substitution
lemma 3.4, we obtain

S(Γ, arg(x : τ)) 	U e : S(σ)

Since S(Γ, arg(x : τ)) = S(Γ), arg(x : S(τ)), then

S(Γ), arg(x : S(τ)) 	U e : S(σ)

By context formation rule, we have Γ 	U τ . By lemma 4.3 we have S(τ) are closed types
and S(Γ) is a ground context. Then by applying value typing rule for closure, we obtain

|=U cls(E, λx.e) : S(τ) → S(σ)

Since S(τ) → S(σ) = S(τ → σ), then we have

|=U cls(E, λx.e) : S(τ → σ)

as desired.
Sub-case 2 Γ 	U λx.e : ∀t.|t| → σ Suppose this typing is derived from

Γ, tvar(t), arg(x : |t|) 	U e : σ

Γ 	U λx.e : ∀t.|t| → σ

By bound type variable convention, suppose that t ∩ dom(S) = ∅. Since S is a ground
substitution then S respects Γ, tvar(t), arg(x : |t|). Applying substitution lemma 4.4, we
obtain

S(Γ, tvar(t), arg(x : |t|)) 	U e : S(σ)

Since t ∩ dom(S) = ∅, then

S(Γ), tvar(t), arg(x : |t|) 	U e : S(σ)

By lemma 4.3 we have that S(Γ) is a ground context. By value typing for closure, we
obtain

|=U cls(E, λx.e) : ∀t.|t| → S(σ)

55

Since t ∩ dom(S) = ∅, then we have ∀t.|t| → S(σ) = S(∀t.|t| → σ) as desired.

Case E 	U (e1 e2
es) ⇓ v0. Suppose that this is derived from

E 	U e1 ⇓ cls(E0, λx.e0) E 	U e2 ⇓ v2

E0, x : v2 	U e0 ⇓ v0 E0 	U es ⇓ vs vs = sizeOf(v2)
E 	U (e1 e2

es) ⇓ v0

There are two possible typing derivations for (e1 e2
es)

Sub-case 1.

Γ 	U e1 : τ → σ Γ 	U e2 : τ Γ 	U es : |τ |
Γ 	U (e1 e2

es) : σ

Applying induction hypothesis for e1, e2 and es, we obtain

|=U cls(E0, λx.e0) : S(τ → σ)
|=U v2 : S(τ)
|=U vs : S(|τ |)

We have to prove that vs = sizeOf(v2) and |=U v0 : S(σ). By lemma 4.5, v2 = sizeOf(S(τ)).
Since S(|τ |) = |S(τ)|, we also have vs = sizeOf(S(τ)). Therefore vs = sizeOf(v2). Since
S(τ → σ) = S(τ) → S(σ), by value typing rule for closure, there must exist a ground
context Γ0 so that |=B E0 : Γ0 and Γ0, arg(x : S(τ)) 	B e0 : S(σ). This is also easy to
choose that Γ0 does not contain any tvar() assumption. By typing rule for runtime envi-
ronment, we have |=U (E0, x : v2) : Γ0, arg(x : S(τ)) We choose an identical substitution
S0 (dom(S0) = ∅), Since Γ0 does not contain any tvar() assumption, then we can apply
induction hypothesis for e0 to obtain |=U v0 : S(σ) as desired.
Sub-case 2.

Γ 	U e1 : ∀t.|t| → σ Γ 	U e2 : |τ | Γ 	U τ
Γ 	U (e1 e2

es) : σ[τ/t]

where es = |1|. Applying induction hypothesis for e1 and e2, we obtain

|=U cls(E0, λx.e0) : S(∀t.|t| → σ)
|=U v2 : S(|τ |)

By the bound type variable convention, assume that t∩dom(S) = ∅. Therefore S(∀t.|t| →
σ) = ∀t.|t| → S(σ). By value typing rule for closure, there must exist a ground context
Γ0 so that |=U E0 : Γ0 and Γ0, tvar(t), arg(x : |t|) 	B e0 : S(σ). This is easy to choose Γ0

so that it does not contain any tvar() assumption. Since S(|τ |) = |S(τ)|, then we have

|=U v2 : |S(τ)|
Since Γ 	U τ , then by lemma 4.3, we have S(τ) are closed types. Choose S0 = [S(τ)/t],
S0 is a ground substitution and TV (Γ0, tvar(t), arg(x : |t|)) ⊆ dom(S0). Since Γ0 is a
ground context and does not contain any tvar() assumption, we have

S0(Γ0, tvar(t), arg(b : |t|)) = Γ0, tvar(t), arg(x : |S(τ)|)
Since |=U E0 : Γ0 then

56

|=U (E0, x : v2) : (Γ0, tvar(t), arg(x : |S(τ)|))
Now, we apply induction hypothesis for e0 to obtain |=U v0 : S0(S(σ)). Since S0 = [S(τ)/t]
and t ∩ dom(S) = ∅, we can conclude that |=U v0 : S(σ[τ/t]) as desired.

Case E 	U (es1
1 , . . . , esn

n) ⇓ (v1, . . . , vn). Suppose this is derived from

E 	U si ⇓ vs
i E 	U ei ⇓ vi sizeOf(vi) = vs

i for all 1 ≤ i ≤ n
E 	U (es1

1 , . . . , esn
n) ⇓ (v1, . . . , vn)

Also suppose Γ 	U (es1
1 , . . . , esn

n) : σ1 × · · · × σn. This is derived from

Γ 	U ei : σi Γ 	U si : |σi| for (1 ≤ i ≤ n)
Γ 	U (es1

1 , . . . , esn
n) : σ1 × · · · × σn

We have to prove: tagOf(vi) = vs
i for each i, and |=U (v1, . . . , vn) : S(σ1 × · · · × σn).

Applying induction hypothesis for each ei and each es
j , we have

|=U vi : S(σi)
|=U vs

i : S(|σi|)
By lemma 4.5, we have tagOf(vi) = tagOf(S(σi)). Since S(|σi|) = |S(σi)| by value typing
rule for size, we have vs

i = sizeOf(S(σi)). Therefore tagOf(vi) = vs
i for each i. Besides,

applying value typing rule for records, we obtain,

|=U (v1, . . . , vn) : S(σ1) × · · · × S(σn)

Since S(σ1 × · · · × σn) = S(σ1) × · · · × S(σn), the proof for this case is done.

Case E 	U πs
o(e) ⇓ vi. This should be derived from

E 	U e ⇓ (v1, . . . , vn) E 	U s ⇓ vs E 	U o ⇓ vo

sizeOf(vi) = vs sizeOf(v1) + · · · + sizeOf(vi−1) = vo

E 	U πs
o(e) ⇓ vi

Also suppose Γ 	U πs
o(e) : σi. This is derived from

Γ 	U e : σ1 × · · · × σn Γ 	U s : |σi| Γ 	U o :‖σ1, . . . , σi−1‖
Γ 	U πs

o(e) : σi

We have to prove sizeOf(vi) = vs, sizeOf(v1)+· · ·+sizeOf(vi−1) = vo, and |=U vi : S(σi)
Applying the induction hypothesis for e, s, and o, we obtain

|=U (v1, . . . , vn) : S(σ1 × · · · × σn)
|=U vs : S(|σi|)

|=U vo : S(‖σ1, . . . , σi−1 ‖)
Since S(σ1 × · · ·× σn) = S(σ1)× · · ·×S(σn), by the value typing rule for record, we have
|=ML vi : S(σi). Since S(|σi|) = |S(σi)|, then by value typing rule for size, we have vs =
sizeOf(S(σ)). Since S(‖ σ1, . . . , σi−1 ‖) =‖S(σ1), . . . , S(σi−1) ‖, by value typing rule for
offset, we have vo = sizeOf(S(σ1))+· · ·+sizeOf(S(σi−1)). By value typing rule for record
, we have |=B vj : S(σj) for each j. By lemma 4.5, we have sizeOf(vj) = sizeOf(S(σj))
for each j. Therefore vs = sizeOf(vi) and v0 = sizeOf(v1)+· · ·+sizeOf(vi−1) as desired.

Case E 	U let xs = e1 in e2 end ⇓ v2. Suppose that this is derived from

57

E 	U e1 ⇓ v1 E 	U s ⇓ vs sizeOf(v1) = vs E, x : v1 	U e2 ⇓ v2

E 	U let xs = e1 in e2 end ⇓ v2

Also suppose Γ 	U let xs = e1 in e2 end : σ2. This is derived from

Γ 	U e1 : σ1 Γ 	U s : |σ1| Γ, local(x : σ1) 	U e2 : σ2

Γ 	U let xs = e1 in e2 end : σ2

Applying induction hypothesis for e1 and s, we obtain |=ML v1 : S(σ1) and |=ML vs :
S(|σ1|). Let’s define Γ1 = Γ, local(x : σ1), We have TV (Γ1) = TV (Γ) ⊆ dom(S). We
also have S(Γ1) = S(Γ), local(x : S(σ1)). Since |=U E : S(Γ), we obtain |=U (E, x : v1) :
S(Γ), local(x : S(σ1)). Applying induction hypothesis for e2 , we obtain |=U v2 : S(σ2).
Since |=ML v1 : S(σ1), by lemma 4.5, we have sizeOf(v1) = sizeOf(S(σ1)). Since
|=ML vs : S(|σ1|), by value typing rule for size, we obtain vs = sizeOf(()S(σ)). Thus
vs = sizeOf(v1) as desired.

Case E 	U |B| ⇓ B. immediate by definition.

Case E 	U [e1+· · ·+en] ⇓ B1+· · ·+Bn. This is derived from E 	U ei ⇓ Bi for each i. Also
suppose Γ 	U [e1+ · · ·+en] :‖σ1, . . . , σn ‖. By the offset typing rule, Γ 	U ei : |σi|, for each
1 ≤ i ≤ n. Applying induction hypothesis for each ei, we obtain |=U Bi : |S(σi)|. By value
typing for offset and type substitution rule, we have |=U B1 + · · · + Bn : S(‖σ1, . . . , σn ‖)
as desired. �

4.2 The Compilation Algorithm

Similar to the bitmap-passing compilation, I design the unboxed compilation in two
phases: compilation from terms of the source calculus (λML) into terms of an explic-
itly typed immediate calculus (λU), transformation from terms in λU to terms in ΛU by
erasing all type annotations.

The syntactic correctness for the whole compilation process can be proved by a com-
bination of syntactic correctnesses of each phase.

4.2.1 The Explicitly Typed Unboxed Calculus – λU

The set of terms of λU is given by the following syntax:

e ::= co constant
| xe variable
| λx : τ .e function
| (e ee) application

| Λt.λx : |t|.e type abstaction and size abstraction
| (e τ e) type instantiation and size application
| (ee, . . . , ee) record
| πe

e(e) projection
| let xe : σ = e in e end let binding
| [e + · · ·+ e] offset
| |B| constant size (B ∈ {1, 2})

58

Γ 	TU co : o

x : σ ∈ Γ Γ 	TU s : |σ|
Γ 	TU xs : σ

Γ, arg(x : τ) 	TU e : σ
Γ 	TU λx : τ .e : τ → σ

Γ, tvar(t), arg(s : |t|) 	TU e : σ

Γ 	TU Λt.λs : |t|.e : ∀t.|t| → σ

Γ 	TU e1 : τ → σ Γ 	TU e2 : τ Γ 	TU es : |τ |
Γ 	TU (e1 e2

es) : σ

Γ 	TU e : ∀t.|t| → σ Γ 	TU es : |τ | Γ 	U τ
Γ 	TU (e τ es) : σ[τ/t]

Γ 	TU ei : σi Γ 	TU si : |σi| for (1 ≤ i ≤ n)
Γ 	TU (es1

1 , . . . , esn
n) : σ1 × · · · × σn

Γ 	TU e : σ1 × · · · × σn Γ 	TU s : |σi| Γ 	TU o :‖σ1, . . . , σi−1‖
Γ 	TU πs

o(e) : σi

Γ 	TU e1 : σ1 Γ 	TU s : |σ1| Γ, local(x : σ1) 	TU e2 : σ2

Γ 	U let xs : σ1 = e1 in e2 end : σ2

sizeOf(σ) = S S ∈ {|1|, |2|}
Γ 	TU S : |σ|

Γ 	TU ei : |σi| (1 ≤ i ≤ n)
Γ 	TU [e1 + · · · + en] :‖σ1, . . . , σn ‖

Figure 4.5: Typing Rules of λU

In this calculus, we distinguish between two kinds of function: ordinary function (rep-
resented by λx : τ .e) and size function (represented by Λt.λx : |t|.e). A size function
Λt.λx : |t|.e′ can be obtained from the compilation result of a type abstraction Λt.e in
λML where x are the inserted bit tag parameters corresponding to t.

We also distinguish two kinds of application: ordinary lambda application (e1 e2
es)

and size application (e τ es). In an ordinary lambda application (e1 e2
es), es represent

the size terms of the actual arguments e2. This can be generated from types of e2. In the
case of size application (e τ es), es are actual size parameters. They are generated from
the types τ .

We share the same definition of typing context, type well-formedness and context well-
formedness of λU with those of ΛU . The set of rules to derive typing judgments of the
form Γ 	TU e : σ is given in Figure 4.5.

The typing rule for size function is similar to the second typing rule for function in
ΛU and the typing rule for bit tag application is similar to the second typing rule for
application in ΛU .

59

Γ 	TU co � co

x : σ ∈ Γ Γ 	TU σ � s
Γ 	TU x � xs

Γ, arg(x : τ) 	TU e � e′

Γ 	TU λx : τ .e � λx : τ .e′

Γ 	TU e1 � e′1 Γ 	TU e2 � e′2
Γ 	TU e2 : τ Γ 	TU τ � es

Γ 	TU (e1 e2) � (e′1 e′2
es)

Γ, tvar(t), arg(s : |t|) 	TU e � e′ s are fresh variables

Γ 	TU Λt.e � Λt.λs : |t|.e′

Γ 	TU e � e′ Γ 	TU τ � es

Γ 	TU (e τ) � (e′ τ es)

Γ 	TU ei � gi Γ 	TU gi : σi Γ 	TU σi � si (1 ≤ i ≤ n)
Γ 	TU (e1, . . . , en) � (gs1

1 , . . . , gsn
n)

Γ 	TU e � e′ Γ 	TU e′ : σ1 × · · · × σn Γ 	TU σj � sj for all 1 ≤ j ≤ i
Γ 	TU πi(e) � πsi

[s1+···+si−1]
(e′)

Γ 	TU e1 � e′1 Γ 	TU e1 : σ′ Γ 	TU σ′ � s Γ, local(x : σ) 	TU e2 � e′2
Γ 	TU let x : σ = e1 in e2 end � let xs : σ′ = e′1 in e′2 end

Figure 4.6: Unboxed Compilation

4.2.2 Compilation from λML to λU

The compilation algorithm from λML terms to λU terms is formulated as judgments of
the forms Γ 	TU e � e′ where Γ is a context in λU , e is a source expression in λML and
e′ is a target expression in λU . The set of compilation rules is given in Figure 4.6.

In the compilation rules, size abstractions are inserted at each type abstraction and
size applications are inserted at each type instantiation. The algorithm also inserts the
necessary information (sizes and offsets) at appropriate places where they are needed:
variables, lambda abstractions, records, projections, let expressions.

Sizes (and therefore offsets) are generated by inspecting the corresponding types. We
formalize this by a size creation algorithm of the form Γ 	TU σ � e. The set of rules to
derive this judgment is given below.

Γ 	TU σ � sizeOf(σ) if σ has a proper outermost type constructor
Γ 	TU t � s where s : |t| ∈ Γ

Similar to the bit tag creation algorithm, the size creation algorithm will fails if σ = t and
there does not exist s : |t| ∈ Γ. Then for the soundness of the algorithm, we assume that
the compile context Γ is constructed in such a way that any tvar(t) assumption is followed
by a arg(s : |t|) assumption (this is guaranteed by the simulation relations defined later).
The following lemma demonstrates this feature.

60

τ ∼U τ

σ ∼U σ′

τ → σ ∼U τ → σ′

σ ∼U σ′

∀t.σ ∼U ∀t.|t| → σ′

σi ∼U σ′
i for each 1 ≤ i ≤ n

σ1 × · · · × σn ∼U σ′
1 × · · · × σ′

n

∅ ∼U ∅
Γ ∼B Γ′ σ ∼U σ′ x �∈ dom(Γ′)

(Γ, local(x : σ)) ∼U (Γ′, local(x : σ′))

Γ ∼U Γ′ s ∩ dom(Γ′) = ∅
(Γ, arg(x : τ)) ∼U (Γ′, arg(x : τ))

Γ ∼U Γ′ s ∩ dom(Γ′) = ∅
(Γ, tvar(t)) ∼U (Γ′, tvar(t), arg(s : |t|))

Figure 4.7: Simulation Relations on Types and Contexts

Lemma 4.6 Let Γ be an well-formed context and each tvar(t) assumption of Γ is followed
by a arg(s : |t|) assumption, σ be a type. If Γ 	U σ then Γ 	TU σ � s always succeeds
and Γ 	TU s : |σ|.
PROOF. Similar to lemma 3.6. �

We also define simulations relations σ ∼U σ′ between source and target types, and
Γ ∼U Γ′ between source and target contexts for unboxed compilation in Figure 4.7. We
also have the following properties for the simulation relations.

Lemma 4.7 Let Γ be a well-formed context in λML and Γ′ be a context in λU . If Γ ∼U Γ′,
then Γ′ is well-formed and for any tvar(t) assumption of Γ′, there must be a arg(s : |t|)
follows.

PROOF. Similar to lemma 3.7 �

Lemma 4.8 Let Γ be a well-formed context in λML, Γ′ be a context in λU , σ be a type in
λML, and σ′ be a type in λU . If Γ ∼U Γ′, σ ∼U σ′ and Γ 	ML σ then Γ′ 	U σ′.

PROOF. Similar to lemma 3.8 �

Lemma 4.9 If Γ ∼U Γ′ then Γ(x) ∼U Γ′(x) for all x ∈ dom(Γ)

PROOF. Similar to lemma 3.9
�

61

Lemma 4.10 The simulation relations on types are stable under monomorphic substitu-
tion. If σ ∼U σ′ then for any monomophic substitution S = [τ/t], S(σ) ∼U S(σ′).

PROOF. Similar to lemma 3.10 �

The compilation from λML terms to λU terms preserves types as shows in the following
theorem

Theorem 4.2 Suppose Γ 	ML e : σ. For any Γ′ so that Γ ∼U Γ′ the compilation algo-
rithm succeeds as Γ′ 	TU e � e′ with Γ′ 	TU e′ : σ′ where σ ∼U σ′

PROOF. This is proved by induction on derivation of the typing rule. We proceed by do
case analysis on e.
Case e = co. Straightforward.

Case e = x. Suppose Γ 	ML x : σ, then by the source typing rule for variable, we have
Γ(x) = σ. Since Γ ∼U Γ′, by Lemma 4.9, Γ(x) ∼B Γ′(x). Let σ′ = Γ′(x). By Lemma 4.6,
we have Γ′ 	TU σ′ � s succeeds and Γ′ 	TU s : |σ′|. Applying the compilation rule for
variable, the compilation succeeds as Γ′ 	TU x � xs. By the λU typing rule for variable,
we have Γ′ 	TU xs : Γ′(x). Since Γ(x) ∼U Γ′(x), we have the expected result.

Case e = λx : τ .e1. Suppose Γ 	ML λx : τ .e1 : τ → σ1. This is derived from

Γ, arg(x : τ) 	ML e1 : σ1.

By the context simulation relation, we have

(Γ, arg(x : τ)) ∼U (Γ′, arg(x : τ)).

Applying induction hypothesis for e1, we have Γ′, arg(x : τ) 	TU e1 � e′1 succeeds with
Γ′, arg(x : τ) 	TU e′1 : σ′

1 where σ1 ∼U σ′
1. Applying the compilation algorithm for

function, we have

Γ′ 	TU λx : τ .e1 � λx : τ .e′1
Applying the λU typing rule for function, we have Γ′ 	TU λx : τ .e′1 : τ → σ′. Since
σ1 ∼U σ′

1, by the simulation relation for type, we have (τ → σ1) ∼U (τ → σ′
1) as desired.

Case e = (e1 e2). Suppose Γ 	ML (e1 e2) : σ. This is derived from

Γ 	ML e1 : τ → σ Γ 	ML e2 : τ
Γ 	ML (e1 e2) : σ

Applying induction hypothesis for e1 and e2, we have

• Γ′ 	TU e1 � e′1 succeeds with Γ′ 	TU e′1 : σ1 where (τ → σ) ∼U σ1

• Γ′ 	TU e2 � e′2 succeeds with Γ′ 	TU e′2 : σ2 where τ ∼U σ2.

By simulation relations on types, we have σ1 ≡ τ → σ′ where σ ∼U σ′, and σ2 ≡ τ . Since
σ2 is well-formed under Γ′, we have Γ′ 	U τ . By Lemma 4.6, we have Γ′ 	TU τ � es

succeeds and Γ′ 	TU es : |τ |. Applying the compilation rule for lambda application, we
have Γ′ 	TU (e1 e2) � (e′1 e′2

es). Applying λU typing rule for application, we obtain
Γ′ 	TU (e′1 e′2

es) : σ′ where σ ∼B σ′ as desired.

Case e = Λt.e1. Suppose Γ 	ML Λt.e1 : ∀t.σ1 This is derived from Γ, tvar(t) 	ML e1 : σ1.
Let s be a sequence of fresh variables, s∩dom(Γ) = ∅. By the context simulation relation,
we have

62

(Γ, tvar(t)) ∼U (Γ′, tvar(t), arg(s : |t|))
Applying induction hypothesis for e1, we have

Γ′, tvar(t), arg(s : |t|) 	TU e1 � e′1 succeeds
Γ′, tvar(t), arg(s : |t|) 	TU e1 : σ′

1

σ1 ∼U σ′
1

Applying the compilation algorithm for type abstraction, we obtain

Γ′ 	TU Λt.e1 � Λt.λs : |t|.e′1.
By the λU typing rule for type abstraction, we have

Γ′ 	TU Λt.λs : |t|.e′1 : ∀t.|t| → σ′
1

Since σ1 ∼U σ′
1, by the simulation relation on type, we have ∀t.σ1 ∼U ∀t.|t| → σ′

1 as
desired.

Case e = (e1 τ). Suppose Γ 	ML (e1 τ) : σ1[τ/t]. This is derived from

Γ 	ML e1 : ∀t.σ1 Γ 	ML τ
Γ 	ML (e1 τ) : σ1[τ/t]

Applying induction hypothesis for e1, we have Γ′ 	TU e1 � e′1 with Γ′ 	TU e′1 : σ2 where
∀t.σ1 ∼U σ2. By the simulation relation for types, σ2 must have form ∀t.|t| → σ′

1 where
σ1 ∼U σ′

1. Since Γ 	ML τ , by Lemma 4.8, we have Γ′ 	U τ . By Lemma 4.7 and Lemma 4.6,
Γ′ 	TU τ � es must succeeds and Γ′ 	TU es : |τ |. Applying the compilation rule for type
instantiation, we have Γ′ 	TU (e1 τ) � (e′1 τ es). Applying the λU typing rule for type
instantiation, we have Γ′ 	TU (e′1 τ es) : σ′

1[τ/t]. By Lemma 4.10, σ1[τ/t] ∼U σ′
1[τ/t] as

desired.

Case e = (e1, . . . , en). Suppose Γ 	ML (e1, . . . , en) : σ1 × · · · × σn. This is derived from
Γ 	ML ei : σi, for all 1 ≤ i ≤ n. Applying induction hypothesis for each ei, we have
Γ 	TU ei � gi succeeds with Γ′ 	TU gi : σ′

i where σi ∼U σ′
i. Since σi is well-formed under

Γ, by Lemma 4.8, we have Γ′ 	U σ′
i. By Lemma 4.7 and Lemma 4.6, Γ′ 	TU σ′

i � si must
succeeds and Γ′ 	TU si : |σ′

i|, for each i. Applying the compilation rule for record, we
obtain Γ′ 	TU (e1, . . . , en) � (gs1

1 , . . . , gsn
n). Applying the λU typing rule for record, we

have Γ′ 	TU (gs1
1 , . . . , gsn

n) : σ′
1 × · · · × σ′

n. By the simulation relation on types, we have
(σ1 × · · · × σn) ∼U (σ′

1 × · · · × σ′
n) as desired.

Case e = πi(e1). Suppose Γ 	ML πi(e1) : σi. This is derived from

Γ 	ML e1 : σ1 × · · · × σn

Applying the induction hypothesis for e1, we have Γ′ 	TU e1 � e′1 with Γ′ 	TU e′1 : σ′

where (σ1 × · · · × σn) ∼U σ′. Then σ′ must have the form σ′
1 × · · · × σ′

n where σi ∼U σ′
j

for each j. Since σj is well-formed under Γ, by Lemma 4.8, we have Γ′ 	U σ′
j for each j.

By Lemma 4.7 and Lemma 4.6, Γ′ 	TU σ′
j � sj must succeed and Γ′ 	TU sj : |σ′

j |, for
each 1 ≤ j ≤ i. Applying the compilation rule for projection, we have

Γ′ 	TU πi(e1) � πsi

[s1+···+si−1]
(e′1)

63

Applying the λU typing rule for offset, we have

Γ′ 	TU [s1 + · · · + si−1] :‖σ′
1, . . . , σ

′
i−1‖

Applying the λU typing rule for projection, we obtain

Γ′ 	TU πsi

[s1+···+si−1]
(e′1) : σ′

i

where σi ∼U σ′
i as desired.

Case e = let x : σ1 = e1 in e2 end. Suppose Γ 	ML let x : σ1 = e1 in e2 end : σ2. This
is derived from

Γ 	ML e1 : σ1 Γ, local(x : σ1) 	ML e2 : σ2

Γ 	ML let x : σ1 = e1 in e2 end : σ2

Applying induction hypothesis for e1, we have Γ′ 	TU e1 � e′1 succeeds with Γ′ 	TU e′1 : σ′
1

where σ1 ∼U σ′
1 By Lemma 4.7 and Lemma 4.6, Γ′ 	TU σ′

1 � s must succeed and
Γ′ 	TU s : |σ′

1|. By the simulation relation for context, we have

(Γ, local(x : σ1)) ∼U (Γ′, local(x : σ′
1)).

Applying induction hypothesis for e1, we obtain Γ′, local(x : σ′
1) 	TU e2 � e′2 succeeds

with Γ′, local(x : σ′
1) 	TU e′2 : σ′

2 where σ2 ∼U σ′
2. By the compilation algorithm, we have

Γ′ 	TU let x : σ1 = e1 in e2 end � let xs : σ′
1 = e′1 in e′2 end.

Finally, by the λU typing rule for let expression, we have

Γ′ 	TU let xs : σ′
1 = e′1 in e′2 end : σ′

2

where σ2 ∼U σ′
2 as desired. �

4.2.3 Transformation from λU terms to ΛU terms

After obtaining the explicitly typed term in λU by the above compilation algorithm, we
can easily get the target term in ΛU by using the eraseU(e) function which erases all type
annotation in the given term e in λU . The eraseU function can be inductively defined as
follows

eraseU(c0) = co

eraseU(xs) = xeraseU (s)

eraseU(λx : τ .e) = λx.eraseU (e)

eraseU ((e1 e2
es)) = (eraseU(e1) eraseU (e2)

eraseU (es))

eraseU (Λt.λx : 〈t〉.e) = λx.eraseU (e)

eraseU((e τ eb)) = (eraseU(e) eraseU(eb)
|1|)

eraseU((es1
1 , . . . , esn

n)) = (eraseU(e1)
eraseU (s1), . . . , eraseU(en)eraseU (sn))

eraseU (πs
o(e)) = π

eraseU (s)
eraseU (o)(eraseU (e))

eraseU(let xs : σ = e1 in e2 end) = let xeraseU (s) = eraseU (e1) in eraseU(e2) end

eraseU([e1 + · · ·+ en]) = [eraseU(e1) + · · ·+ eraseU (en)]

eraseU(|B|) = |B|

64

The function eraseU just simply eliminates type annotation in the given term. Typing
derivation should be the same for the given term and for the result. This property is shown
by the following theorem

Theorem 4.3 Suppose Γ, e, σ is a well-formed context, a term and a well-formed type
in λU so that Γ 	TU e : σ. Then we also have Γ 	U eraseU(e) : σ.

PROOF. As the same as in Theorem 3.3, this can be proved straightforwardly by induction
on the derivation of the typing rule Γ 	TU e : σ. �

This result together with the type soundness theorem of the target calculus (The-
orem 4.1) and the type preservation theorem (Theorem 4.2) establishes that the type
system of the source calculus is sound with respect to the operational semantics realized
by λML to λU to ΛU compilation followed by evaluation of the compiled term.

65

Chapter 5

The Combined Algorithm

So far I have presented my compilation method in two separated directions for two re-
lated matters – generating bitmaps and supporting unboxed manipulation. Simplicity
and readability are the reasons that made me choose this presentation strategy. In a
practical implementation, we can not separate bitmap-passing compilation and unboxed
compilation (e.g. implementing one after another) because of the mutual dependency
among them and closure conversion.

Targeting to a practical implementation, in the rest of this chapter I present a combi-
nation of bitmap-passing compilation, unboxed compilation, and typed closure conversion.
The combined method would be notationally complex, but it does not add much com-
plexity to the resulting algorithm, and more important, it does not violate the required
theoretical properties such as soundness of the target calculus and the correctness of the
compilation algorithm.

In this chapter, I also present an extension of the combined compilation method for
generating layout information (including bitmap) of stack frames.

5.1 Combination with Closure Conversion

Closure conversion is an important compilation step in a practical compiler. It plays the
role of separating between data and code. A closure conversion algorithm transforms a
function with free variables into a closure consisting of two parts: a function’s environment
encapsulating all free variables, and a function’s code abstracted on the environment
by replacing each occurrence of a free variable in the function with the corresponding
reference to the environment. A typical run-time representation of a closure is a two-
word heap block whose the first component is the pointer to the function’s code and the
second component is the pointer to environment block consisting of free variable’s values.

As mentioned in Chapter 1, we encountered a mutual dependency problem between
bitmap-passing compilation, unboxed compilation, and closure conversion. The major
reasons of this problem are that extra abstractions (bit tag and size abstraction) inserted
during bitmap-passing compilation and unboxed compilation require to be closure con-
verted, and environment records of functions (generated by closure conversion) should
be handled under bitmap-passing and unboxed compilation scheme. Thus these three
compilation processes can not be implemented separately (i.e. one after another).

Due to these reasons, I develop a combined method that takes responsibility for doing
the tasks of both three compilation methods. In this section, I present this combined

66

method in the following steps.

• introducing a target calculus, namely bitmap-passing unboxed closure calculus or
ΛBUC for short;

• establishing operational semantics for this calculus;

• developing the combined algorithm, namely BUC transformation, that transforms
expressions in the source calculus (λML) into expressions in ΛBUC . Similar to
bitmap-passing compilation and unboxed compilation, I also design an explicitly
typed calculus, written λBUC which serves as the immediate language for the com-
pilation method. The compilation process can be done in two phases: compilation
from λML terms into λBUC terms, and transformation from λBUC terms to ΛBUC

terms.

5.1.1 Bitmap-passing unboxed closure calculus – ΛBUC

Syntax and Types

The set of terms of ΛBUC is given by the following syntax.

e ::= co constant
| xs temporary variable (argument or local)
| enve

e environment access (free variable)
| code(x, e) function’s code
| 〈〈e, e〉〉 closure
| (e ee) application
| (e; ee, . . . , ee) record
| πe

e(e) projection
| let xe = e in e end let binding
| [e, . . . , e] bitmap
| [e + · · · + e] offset
| 〈B〉 constant bit tag (B ∈ {0, 1, 00})
| |S| constant size (S ∈ {1, 2})

Closure conversion generate code for a function by abstracting all free variables occurred
in the function’s body. This is done by replacing each occurrence of free variables with a
reference to the function’s environment. We consider a record representation for a func-
tion’s environment consisting of free variables. Under the proposed unboxed approach,
run-time presentation of the environment record is a heap block and consisting unboxed
values. Similar to the case of projection in unboxed compilation, accessing to a free vari-
able in the environment requires both offset and size of this variable. We formulate this
by introducing environment access terms of the form envs

o in syntax of the calculus where
o and s are terms representing offset and size of the selected free variable. Other kinds
of variables including arguments and local variables (introduced by let expression) are
represented in the syntax by terms of form xs as the same as in unboxed calculus.

Function’s codes are represented by terms of the form code(x, e). This term construc-
tor can be used for representing the code generated from both lambda abstraction and
type abstraction. In the case of type abstraction, bit tag and size parameters generated

67

from abstract type variables are uncurried and represented by the formal arguments of
code.

A closure of the form 〈〈e1, e2〉〉 is considered as a partial application of the code e1 to
the environment record e2.

(e1 e2
es) can represent the resulting term of either an ordinary lambda application or

a type instantiation in the source calculus. In the case of lambda application e2 represent
the actual parameters and es are size of them generated from their types. In the case
of type instantiation, the transformation algorithm introduces actual bit tag and size
parameters based on the instance type, they are uncurried and represented by e2. In this
case we can discard es since they are alway |1|.

A records of the form (ebm; es1
1 , . . . , es2

2) is a combined representation of record terms
in bitmap-passing calculus and in unboxed calculus. ebm is the bitmap of the record,
e1, . . . , en and s1, . . . , sn are fields and field sizes, respectively.

Projection, let expression, bitmap, and offset are represented as the same as in un-
boxed calculus and bitmap-passing calculus.

In the present of multi-word unboxed values, a “bit tag” information of a run-time
object is no longer a machine bit. For unboxed floating point value which consists of
two words, the corresponding bit tag is therefore two machine bits and represented in
the syntax by 〈00〉. For objects of single type, we use constant tag 〈0〉, 〈1〉 to denote bit
tag of unboxed single values and pointers. Note that objects of double types are always
unboxed, then we do not have a constant bit tag like 〈01〉, 〈10〉, or 〈11〉. |1| and |2| denote
sizes of single values and unboxed double values, respectively.

The set of types of the target calculus are defined as an union of the sets of bitmap-
passing types, and unboxed types. In addition, for typing code which is actually an
abstraction on free variables, we add a new category of types for code, i.e. σe →C σ
where σe stands for type of environment and σ represents type of the function.

We extend the function tagOf() for double unboxed base type o as tagOf(o) = 00
(two zero bits).

We also extend the function FTV for code types as

FTV (σ1 →C σ2) = FTV (σ1) ∪ FTV (σ2)

Typing Environment

We define contexts in ΛBUC slightly different from ones of previous calculus. A context in
ΛBUC is a tuple (ΓT ; ΓF ; ΓA; ΓL) where ΓT is a sequence of type variables, and ΓT , ΓA, ΓL

are sequences of type assumptions of the form x : σ for recording type information of free
variables, arguments and local variables, respectively.

We redefine the well-formednesses of types and contexts as follows.

• A type σ is well-formed under a context (ΓT ; ΓF ; ΓA; ΓL),written (ΓT ; ΓF ; ΓA; ΓL) 	BUC

σ, if all free type variables of σ are declared in ΓT , i.e. FTV (σ) ⊆ ΓT .

• A context (ΓT ; ΓF ; ΓA; ΓL) is well-formed, written 	BUC (ΓT ; ΓF ; ΓA; ΓL) if for any
assumption x : σ ∈ ΓF or x : σ ∈ ΓA or x : σ ∈ ΓL then (ΓT ; ΓF ; ΓA; ΓL) 	BUC σ.

Typing Rules

A ΛBUC term e has a type σ under a well-formed context (ΓT ; ΓF ; ΓA; ΓL), written

68

(ΓT ; ΓF ; ΓA; ΓL) 	BUC co : o

x : σ ∈ ΓA (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σ|
(ΓT ; ΓF ; ΓA; ΓL) 	BUC xs : σ

x : σ ∈ ΓL (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σ|
(ΓT ; ΓF ; ΓA; ΓL) 	BUC xs : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σi| (ΓT ; ΓF ; ΓA; ΓL) 	BUC o :‖σ1, . . . , σi−1‖
ΓF = {x1 : σ1, . . . , xn : σn} i ≤ n

(ΓT ; ΓF ; ΓA; ΓL) 	BUC envs
o : σi

(ΓT ; (y1 : σ1, . . . , yn : σn); (x : τ); ∅) 	BUC e : σ
(ΓT ; ΓF ; ΓA; ΓL) 	BUC code(x, e) : σ1 × · · · × σn →C τ → σ

((ΓT , t); (y1 : σ1, . . . , yn : σn); (b : 〈t〉, s : |t|); ∅) 	BUC e : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC code(b, s, e) :

σ1 × · · · × σn →C ∀t.{〈t〉, |t|} → σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 : σenv →C σ (ΓT ; ΓF ; ΓA; ΓL) 	BUC e2 : σenv

(ΓT ; ΓF ; ΓA; ΓL) 	BUC 〈〈e1, e2〉〉 : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 : τ → σ (ΓT ; ΓF ; ΓA; ΓL) 	BUC e2 : τ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC es : |τ |
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e1 e2

es) : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e : ∀t.{〈t〉, |t|} → σ (ΓT ; ΓF ; ΓA; ΓL) 	BUC τ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC eb : 〈τ〉 (ΓT ; ΓF ; ΓA; ΓL) 	BUC es : |τ |
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e eb, es

|1|) : σ[τ/t]

Figure 5.1: Typing Rules of ΛBUC (1)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e : σ

This is derived from the set of rules given in Figure 5.1 and Figure 5.2.
In closure conversion we distinguish between free variables and temporary variables

(by terms xs and envs
o). Typing rules for these cases are therefore changed. For temporary

variable, the typing rule is almost the same with the one in unboxed calculus, except that
it only checks the appearance of x in ΓA (for arguments), and in ΓL (for local variables).
The case for free variables (environment access) is different. Type assumption for free
variables are recorded in ΓF which models a run-time environment record. Thus we
formulate the rule for free variable as the same as for projection (in which size and offset
checking are involved). Variable names in ΓF are not needed for type checking. We just
keep this for technical development of the compilation algorithm presented later.

Since a code is a closed term, in the typing rules for it we discard all type assumptions
of variables (ΓF , ΓA, ΓL) when checking type of the body. Instead, we use type information
of the abstracted environment and arguments given in the syntax.

We regard a closure as a partial application of a code of type σenv →C σ to an
environment record of type σenv. The typing rule for closure checks this type consistency.

69

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei : σi (ΓT ; ΓF ; ΓA; ΓL) 	BUC si : |σi| for 1 ≤ i ≤ n
(ΓT ; ΓF ; ΓA; ΓL) 	BUC ebm : 〈〈σ1, . . . , σn〉〉

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (ebm; es1
1 , . . . , esn

n) : σ1 × · · · × σn

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e : σ1 × · · · × σn

(ΓT ; ΓF ; ΓA; ΓL) 	BUC o :‖σ1, . . . , σi−1 ‖ (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σi|
(ΓT ; ΓF ; ΓA; ΓL) 	BUC πs

o(e) : σi

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 : σ1 (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σ1|
(ΓT ; ΓF ; ΓA; (ΓL, x : σ1)) 	BUC e2 : σ2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC let xs = e1 in e2 end : σ2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei : 〈σi〉 (1 ≤ i ≤ n)
(ΓT ; ΓF ; ΓA; ΓL) 	BUC [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei : |σi| (1 ≤ i ≤ n)
(ΓT ; ΓF ; ΓA; ΓL) 	BUC [e1 + · · ·+ en] :‖σ1, . . . , σn ‖

tagOf(σ) = B
(ΓT ; ΓF ; ΓA; ΓL) 	BUC 〈B〉 : 〈σ〉

sizeOf(σ) = S
(ΓT ; ΓF ; ΓA; ΓL) 	BUC |S| : |σ|

Figure 5.2: Typing Rules of ΛBUC (2)

In the rule for records, bitmap of the record and sizes of fields are checked to ensure the
consistency between record’s fields and its layout information. For the rest of cases, typing
rules are defined similarly to those of bitmap-passing calculus and unboxed calculus.

Type system of ΛBUC is also stable under type substitution. In order to formalize this
property, we re-define some related terms as follows.

• A substitution S respects to a well-formed context (ΓT ; ΓF ; ΓA; ΓL) if for all t1 ∈
dom(S) ∩ ΓT and for all t2 ∈ FTV (S(t1)) then t2 must be located before t1 in ΓT

• An instantiation context S((ΓT ; ΓF ; ΓA; ΓL)) is the context obtained from (ΓT ; ΓF ; ΓA; ΓL)
by replacing each assumption x : σ in ΓF , ΓA, ΓL with x : S(σ).

• A ground context (ΓT ; ΓF ; ΓA; ΓL) is a context where ΓF , ΓA, ΓL only assign closed
types to variables

Thus the substitution property holds as shown in the following lemma.

Lemma 5.1 Suppose (ΓT ; ΓF ; ΓA; ΓL) 	BUC e : σ. For any substitution S that respects
(ΓT ; ΓF ; ΓA; ΓL), we have S((ΓT ; ΓF ; ΓA; ΓL)) 	BUC e : S(σ)

Semantics

Before establishing semantics of ΛBUC , we define run-time objects which are evaluated
from terms of the calculus. The sets of run-time values (ranged over by v) and run-time
environments (ranged over by E) of ΛBUC age given by the following grammar.

70

v ::= co constant value
| i integer
| B bit tag
| code(x, e) function code
| 〈〈v, v〉〉 closure
| (v; v, . . . , v) record value
| [v, . . . , v] bitmap value
| wrong runtime error

B ::= 〈0〉 | 〈1〉 | 〈00〉 bit tag value
EF ::= ∅ | E, v environment for free variable

EA, EL ::= ∅ | E, x : v environment for temporary variable

Function’s codes and type abstraction’s codes are closed terms, they are first-class values
in the runtime system. Closure is two word block whose components are pointers to the
function’s code and to the function’s environment record. Bitmap of a closure must be
constant [1, 1], thus we omit this in the syntax of values. Record’s values have the same
layout information as in bitmap-passing calculus. The first value (first word) v0 in a
record (v0; v1, . . . , v2) is the layout bitmap of the record. This is a sequence of tag bits
of the forms {〈0〉 | 〈1〉 | 〈00〉}. In our implementation, a bitmap value is computed by
concatenating all bit tags (using logical bitwise operators). Offsets and sizes are evaluated
to integer (denoted by i).

Terms are evaluated to values under a run-time environment of the form (EF ; EA; EL)
where EF is an usual heap block (which may consist of unboxed values) achieved from
function’s environment, EA, EL is a special structure (stack frame) where variable’s values
are allocated at fixed positions. Accessing to a value in EF , run-time system needs to
know both the offset and the size of the value, but accessing to EA and EL, only size
are required. For the sake of technical development, we represent EF as a sequence of
run-time values, omitting the layout bitmap. We also present , EA, EL as a mapping that
map from variable names to value of values.

The set of evaluation rules is given in Figure 5.3 and Figure 5.4.
In evaluation rule for arguments and local variables, we lookup the expected value

in EA and EL, respectively. Since we assume EA and EL have a structure that assign
variable’s values in fix positions, we can find the expected value by variable name as key.

The case of envs
o is different. In this case EF is a heap block consisting of unboxed

value. Thus we can get the expected value by using offset and size evaluated from o and
s.

In the evaluation rule for application (e1 e2
es), the value of e1 should be a closure.

Function’s environment is evaluated and the resulting value is used as the run-time envi-
ronment of free variables (EF) for running the function’s code. We check the consistency
of actual argument size and the values of size term by vs = sizeOf(v2).

For records, we evaluate the bit tag of given fields to get the necessary portion of the
layout bitmap. We also evaluate all field sizes and using the resulting values for checking
the size consistency. This process is just a combination of the evaluation rules for records
in bitmap-passing calculus and unboxed calculus.

Since we have passed the presentations of bitmap-passing compilation and unboxed
compilation, the remain cases are intuitively understandable.

Note that in a practical implementation, all checking operations can be omitted. The
soundness property of the target calculus can guarantee that such size conditions are

71

(EF ; EA; EL) 	BUC co ⇓ co

(EF ; EA; EL) 	BUC s ⇓ vs x ∈ dom(EA) vs = sizeOf(EA(x))
(EF ; EA; EL) 	BUC xs ⇓ EA(x)

(EF ; EA; EL) 	BUC s ⇓ vs x ∈ dom(EL) vs = sizeOf(EL(x))
(EF ; EA; EL) 	BUC xs ⇓ EL(x)

EF = {v1, . . . , vn} (EF ; EA; EL) 	BUC o ⇓ vo (EF ; EA; EL) 	BUC s ⇓ vs

vs = sizeOf(vi) vo = sizeOf(v1) + · · ·+ sizeOf(vi−1)
(EF ; EA; EL) 	BUC envs

o ⇓ vi

(EF ; EA; EL) 	BUC code(x, e) ⇓ code(x, e)

(EF ; EA; EL) 	BUC e1 ⇓ v1 (EF ; EA; EL) 	 e2 ⇓ v2

(EF ; EA; EL) 	BUC 〈〈e1, e2〉〉 ⇓ 〈〈v1, v2〉〉
(EF ; EA; EL) 	BUC e1 ⇓ 〈〈code(x, e), (vbm; ve

1, . . . , v
e
n)〉〉

(EF ; EA; EL) 	BUC e2 ⇓ v2 (EF ; EA; EL) 	BUC es ⇓ vs

vs = sizeOf(v2) ((ve
1, . . . , v

e
n); x : v2; ∅) 	BUC e0 ⇓ v0

(EF ; EA; EL) 	BUC (e1 e2
es) ⇓ v0

Figure 5.3: Operational Semantics of ΛBUC (1)

always correct for a given well-typed term. Before giving this desired property, we define
a set of typing rules for run-time values and run-time environments in Figure 5.6 and
Figure 5.5.

The type system of the bitmap-passing closure calculus is sound with respects to the
operational semantics. This property is shown by the following theorem.

Theorem 5.1 Let (ΓT ; ΓF ; ΓA; ΓL) be a well-formed context, e be an expression, and σ
be a type in ΛBUC. Let S be a ground substitution and ΓT ⊆ dom(S). Let (EF ; EA; EL)
be a run-time environment so that (EF ; EA; EL) 	BUC S((ΓT ; ΓF ; ΓA; ΓL)).

If (ΓT ; ΓF ; ΓA; ΓL) 	BUC e : σ and (EF ; EA; EL) 	BUC e ⇓ v then |=BUC v : S(σ).

5.1.2 Explicitly Typed BUC calculus – λBUC

As the same as in bitmap-passing compilation and unboxed compilation, I define an
explicitly typed calculus, written λBUC , which serves as the immediate language for the
compilation algorithm. The set of term of this calculus is given in the following syntax.

e ::= co constant
| xs temporary variable (argument or local)
| enve

e environment access (free variable)
| fcode(σ, x : τ , e) monomorphic function’s code

| tcode(σ, t, b : 〈t〉, s : |t|, e) polymorphic function’s code
| 〈〈e, e〉〉 closure
| (e ee) application
| (e τ e e) type instantiation and bit tag/size application

72

(EF ; EA; EL) 	BUC ebm ⇓ [B1, . . . , Bn]
(EF ; EA; EL) 	BUC ei ⇓ vi (EF ; EA; EL) 	BUC si ⇓ vs

i

tagOf(vi) = Bi and sizeOf(vi) = vs
i for all 1 ≤ i ≤ n

(EF ; EA; EL) 	BUC (ebm; es1
1 , . . . , esn

n) ⇓ ([B1, . . . , Bn]; v1, . . . , vn)

(EF ; EA; EL) 	BUC e ⇓ (v0; v1, . . . , vn)
(EF ; EA; EL) 	BUC o ⇓ vo (EF ; EA; EL) 	BUC s ⇓ vs

vs = sizeOf(vi) vo = sizeOf(v1) + · · · + sizeOf(vi−1)
(EF ; EA; EL) 	BUC πs

o(e) ⇓ vi

(EF ; EA; EL) 	BUC e1 ⇓ v1 (EF ; EA; EL) 	BUC s ⇓ vs vs = sizeOf(v1)
(EF ; EA; (EL, x : v1)) 	BUC e2 ⇓ v2

(EF ; EA; EL) 	BUC let xs = e1 in e2 end ⇓ v2

(EF ; EA; EL) 	 ei ⇓ Bi (1 ≤ i ≤ n)
(EF ; EA; EL) 	 [e1, . . . , en] ⇓ [B1, . . . , Bn]

(EF ; EA; EL) 	 ej ⇓ ij (1 ≤ j ≤ n)
(EF ; EA; EL) 	 [e1 + · · ·+ en] ⇓ i1 + · · · + in

(EF ; EA; EL) 	 B ⇓ B If B ∈ {〈0〉, 〈1〉, 〈00〉}
(EF ; EA; EL) 	 |i| ⇓ i

Figure 5.4: Operational Semantics of ΛBUC (2)

e ::= (e; ee, . . . , ee) record
| πe

e(e) projection
| let xe : σ = e in e end let binding
| [e, . . . , e] bitmap
| [e + · · ·+ e] offset
| 〈B〉 constant bit tag (B ∈ {0, 1, 00})
| |S| constant size (S ∈ {1, 2})

In this syntax, we distinguish two different kinds of code: code for ordinary application
fcode(σ, x : τ , e), and code for type abstraction (together with bit tag/size abstraction)
tcode(σ, t, b : 〈t〉, s : |t|, e). By applying type erasure, we will obtain a single form of code
in ΛBUC .

We also distinguish two kinds of application: one for ordinary application (e1 e2
es)

where es are size terms of e2, and other for type instantiation (together with bit tag/size
application) (e τ eb es) where eb and es are bit tag and size arguments generated from τ .

Typing rules for λBUC are defined in Figure 5.7 and Figure 5.8.

5.1.3 λML to λBUC transformation

The major key idea of closure conversion is to replace all occurrences of free variables in
a function by the corresponding references to function’s environment. In order to do this,
when transforming a function, a conventional closure conversion first computes the set
of all free variables, then constructs the function’s environment, and finally performs the

73

|=BUC EF : ΓF |=BUC EA : ΓA |=BUC EL : ΓL

|=BUC (EF ; EA; EL) : (ΓT ; ΓF ; ΓA; ΓL)

|=BUC vi : σi for each 1 ≤ i ≤ n
|=BUC (v1, . . . , vn) : (x1 : σ1, . . . , xn : σn)

|=BUC vi : σi for each 1 ≤ i ≤ n
|=BUC (x1 : v1, . . . , xn : vn) : (x1 : σ1, . . . , xn : σn)

Figure 5.5: Typing rules on runtime environments

replacement process under a compile context that takes free variable assumptions from
the the function’s environment.

In the presence of bitmap-compilation and unboxed compilation, this ordinary trans-
formation process is no longer correct due to the soundness of bit tag and size creation
algorithms. As we have seen in previous two chapters, these two algorithms generate a
bit tag/size from a type variable by looking up the corresponding bit tag/size parameter
recorded in the compile environment. If we do not carefully construct the compile context
when transforming the body of the function, these two algorithm may fail.

Let us recall the conventional free variable collection algorithm FV (e) where e is a
source expression.

FV (co) = ∅
FV (x) = {x}

FV (λx : τ .e) = FV (e) − x

FV ((e1 e2)) = FV (e1) ∪ FV (e2)

FV (Λt.e) = FV (e)

FV ((e τ)) = FV (e)

FV ((e1, . . . , en)) =
n⋃

i=1

FV (ei)

FV (πi(e)) = FV (e)

FV (let x : σ = e1 in e2 end) = FV (e1) ∪ (FV (e2) − {x})

This algorithm just returns the set of ordinary variables. In order to achieve the full set of
free variables including bit tag and size ones, I define a new function FV BUC as follows.

FV BUC(e, (ΓT ; ΓF ; ΓA; ΓL)) = FV (e) ∪ {lookuptag(t, (ΓF ; ΓA; ΓL))|∀t ∈ ΓT}
∪{lookupsize(t, (ΓF ; ΓA; ΓL))|∀t ∈ ΓT}

lookuptag(t, ΓF ; ΓA; ΓL) = b If (b : 〈t〉) ∈ ΓF or (b : 〈t〉) ∈ ΓA or (b : 〈t〉) ∈ ΓL

lookupsize(t, ΓF ; ΓA; ΓL) = s If (s : |t|) ∈ ΓF or (s : |t|) ∈ ΓA or (s : |t|) ∈ ΓL

Similarly to the bit tag/size creation algorithms, FV BUC will fail if (b : 〈t〉) or (s : |t|) is
not recorded in the given context for some t ∈ ΓT . Fortunately, the simulation relations
over contexts can guarantee that this case never happens.

74

|=BUC co : o

|=BUC i : |σ| if i = sizeOf(σ)

|=BUC i :‖σ1, . . . , σn ‖ if i = sizeOf(σ1) + · · ·+ sizeOf(σn)

|=BUC 〈B〉 : 〈σ〉 if B = tagOf(σ)

|=BUC vi : 〈σi〉 for all 1 ≤ i ≤ n
|=BUC [v1, . . . , vn] : 〈〈σ1, . . . , σn〉〉

{σ1, . . . , σn} and τ are closed types
(∅; (y1 : σ1, . . . , yn : σn); x : τ ; ∅) 	BUC e : σ
|=BUC code(x, e) : σ1 × · · · × σn →C τ → σ

{σ1, . . . , σn} are closed types

(t; (y1 : σ1, . . . , yn : σn); (b : 〈t〉, s : |t|); ∅) 	BUC e : σ

|=BUC code(b, s, e) : σ1 × · · · × σn →C ∀t.{〈t〉, |t|} → σ

|=BUC v1 : σenv →c σ |=BUC v2 : σenv

|=BUC 〈〈v1, v2〉〉 : σ

|=BUC vi : σi for all 1 ≤ i ≤ n |=BUC vbm : 〈〈σ1, . . . , σn〉〉
|=BUC (vbm; v1, . . . , vn) : σ1 × · · · × σn

Figure 5.6: Typing rules on runtime values

Using this new free variable collection function, I develop the combined algorithm,
namely BUC transformation, as a deduction system that derive compilation judgments of
the form (ΓT ; ΓF ; ΓA; ΓL) 	BUC e � e′ where (ΓT ; ΓF ; ΓA; ΓL) is a context in λBUC , e is a
source expression (in λML), and e′ is the target expression (in λBUC). The set of rules of
this system is given in Figure 5.9 and Figure 5.10.

In the compilation rules for a variables, whether it will be transformed into a variable
or an environment access in the target calculus is decided by looking up the appearance
of this variable in ΓA, ΓL or in ΓF .

In the rule for generating code (from lambda abstraction or type abstraction), FV BUC

collects all free variables including bit tag and size ones. The environment record is
constructed based on this information. Body of the function’s code will be generated
under a context containing all free variable assumptions.

In the rules for type abstractions, bit tag and size arguments are generated and inserted
based on the instance types by applying bit tag/size creation algorithms. In the rule for
records, layout information and size information are also generated from types of the
fields. For projection, offset and size of the selected field are generated from type of the
record. Other cases are easily understandable.

The compilation algorithm preserves typing. Before showing this desired properties
we redefine the simulation relations between source and target contexts as follows (simu-
lation relations over types are similarly defined as in previous two chapters).

75

(ΓT ; ΓF ; ΓA; ΓL) 	BUC co : o

x : σ ∈ ΓA (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σ|
(ΓT ; ΓF ; ΓA; ΓL) 	BUC xs : σ

x : σ ∈ ΓL (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σ|
(ΓT ; ΓF ; ΓA; ΓL) 	BUC xs : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σi| (ΓT ; ΓF ; ΓA; ΓL) 	BUC o :‖σ1, . . . , σi−1‖
ΓF = {x1 : σ1, . . . , xn : σn} i ≤ n

(ΓT ; ΓF ; ΓA; ΓL) 	BUC envs
o : σi

(ΓT ; (y1 : σ1, . . . , yn : σn); (x : τ); ∅) 	BUC e : σ
(ΓT ; ΓF ; ΓA; ΓL) 	BUC fcode(σ1 × · · · × σn, x : τ , e) : σ1 × · · · × σn →C τ → σ

((ΓT , t); (y1 : σ1, . . . , yn : σn); (b : 〈t〉, s : |t|); ∅) 	BUC e : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC tcode(σ1 × · · · × σn, t, b : 〈t〉, s : |t|, e) :

σ1 × · · · × σn →C ∀t.{〈t〉, |t|} → σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 : σenv →C σ (ΓT ; ΓF ; ΓA; ΓL) 	BUC e2 : σenv

(ΓT ; ΓF ; ΓA; ΓL) 	BUC 〈〈e1, e2〉〉 : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 : τ → σ (ΓT ; ΓF ; ΓA; ΓL) 	BUC e2 : τ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC es : |τ |
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e1 e2

es) : σ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e : ∀t.{〈t〉, |t|} → σ (ΓT ; ΓF ; ΓA; ΓL) 	BUC τ

(ΓT ; ΓF ; ΓA; ΓL) 	BUC eb : 〈τ〉 (ΓT ; ΓF ; ΓA; ΓL) 	BUC es : |τ |
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e τ eb es) : σ[τ/t]

Figure 5.7: Typing Rules of λBUC (1)

∅ ∼BUC (∅; ∅; ∅; ∅)
Γ ∼BUC (ΓT ; ΓF ; ΓA; ΓL) x ∩ dom(ΓF ⊕ ΓA ⊕ ΓL) = ∅

(Γ, arg(x : τ)) ∼BUC (ΓT ; ΓF ⊕ ΓA ⊕ ΓL; x : τ ; ∅)
Γ ∼BUC (ΓT ; ΓF ; ΓA; ΓL) x �∈ dom(ΓF ⊕ ΓA ⊕ ΓL) σ ∼BUC σ′

(Γ, local(x : σ)) ∼BUC (ΓT ; ΓF ; ΓA; (ΓL, x : σ′))

Γ ∼BUC (ΓT ; ΓF ; ΓA; ΓL) t ∩ TV (ΓT) = ∅ b ∩ dom(ΓF ⊕ ΓA ⊕ ΓL) = ∅
(Γ, tvar(t)) ∼BUC ((ΓT , t); ΓF ⊕ ΓA ⊕ ΓL; b : 〈t〉; ∅)

The binary operator ⊕ denote concatenations of two type assumptions. In this case
for arg() and tvar() (corresponding to the case of generating code in the compilation
algorithm) we choose a maximum set of assumptions for ΓF , this must be a superset of
any free variable set of well-typed term under the target context. This guarantee the
compilation algorithm never fail.

Type preservation property of the compilation algorithm is given as the following
theorem.

76

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei : σi (ΓT ; ΓF ; ΓA; ΓL) 	BUC si : |σi| for 1 ≤ i ≤ n
(ΓT ; ΓF ; ΓA; ΓL) 	BUC ebm : 〈〈σ1, . . . , σn〉〉

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (ebm; es1
1 , . . . , esn

n) : σ1 × · · · × σn

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e : σ1 × · · · × σn

(ΓT ; ΓF ; ΓA; ΓL) 	BUC o :‖σ1, . . . , σi−1 ‖ (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σi|
(ΓT ; ΓF ; ΓA; ΓL) 	BUC πs

o(e) : σi

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 : σ1 (ΓT ; ΓF ; ΓA; ΓL) 	BUC s : |σ1|
(ΓT ; ΓF ; ΓA; (ΓL, x : σ1)) 	BUC e2 : σ2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC let xs : σ1 = e1 in e2 end : σ2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei : 〈σi〉 (1 ≤ i ≤ n)
(ΓT ; ΓF ; ΓA; ΓL) 	BUC [e1, . . . , en] : 〈〈σ1, . . . , σn〉〉

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei : |σi| (1 ≤ i ≤ n)
(ΓT ; ΓF ; ΓA; ΓL) 	BUC [e1 + · · ·+ en] :‖σ1, . . . , σn ‖

tagOf(σ) = B
(ΓT ; ΓF ; ΓA; ΓL) 	BUC 〈B〉 : 〈σ〉

sizeOf(σ) = S
(ΓT ; ΓF ; ΓA; ΓL) 	BUC |S| : |σ|

Figure 5.8: Typing Rules of λBUC (2)

Theorem 5.2 Suppose Γ 	ML e : σ, for any (ΓT ; ΓF ; ΓA; ΓL) so that Γ ∼BUC (ΓT ; ΓF ; ΓA; ΓL)
then (ΓT ; ΓF ; ΓA; ΓL) 	BUC e � e′ succeeds, and (ΓT ; ΓF ; ΓA; ΓL) 	TBUC e′ : σ′ where
σ ∼BUC σ′

5.1.4 λBUC to ΛBUC transformation

We define a type erasure function that eliminates all type annotation in λBUC terms to
obtain ΛBUC terms as follows.

eraseBUC(c0) = co

eraseBUC(xs) = xeraseBUC (s)

eraseBUC(envs
o) = env

eraseBUC(s)
eraseBUC(o)

eraseBUC(fcode(σenv, x : τ , e)) = code(x, eraseBUC(e))

eraseBUC(tcode(σenv, t, s : 〈t〉, b : |t|, e)) = code((s, b), eraseBUC(e))

eraseBUC((e1 e2
es)) = (eraseBUC(e1) eraseBUC(e2)

eraseBUC(es))

eraseBUC((e τ eb es)) = (eraseBUC(e) (eraseBUC(eb), eraseBUC(es))
|1|)

eraseBUC(〈〈e1, e2〉〉) = 〈〈eraseBUC(e1), eraseBUC(e2)〉〉
eraseBUC((ebm; es1

1 , . . . , esn
n)) = (e′bm; e

′s′1
1 , . . . , e

′s′2
2)

e′bm = eraseBUC(ebm)

e′i = eraseBUC(ei), s
′
i = eraseBUC(si)

77

(ΓT ; ΓF ; ΓA; ΓL) 	BUC co � co

x : σ ∈ ΓA (ΓT ; ΓF ; ΓA; ΓL) 	S
BUC ΓA(x) � s

(ΓT ; ΓF ; ΓA; ΓL) 	BUC x � xs

x : σ ∈ ΓL (ΓT ; ΓF ; ΓA; ΓL) 	S
BUC ΓL(x) � s

(ΓT ; ΓF ; ΓA; ΓL) 	BUC x � xs

x : σ is the ith element of ΓF

(ΓT ; ΓF ; ΓA; ΓL) 	S
BUC ΓF (j) � sj for each 1 ≤ j ≤ i

(ΓT ; ΓF ; ΓA; ΓL) 	BUC x � envsi

[s1+···+si−1]

FV BUC(e, (ΓT ; ΓF ; ΓA; ΓL)) = {y1, . . . , yn}
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (y1, . . . , yn) � eenv

(ΓT ; ΓF ; ΓA; ΓL) 	TBUC (y1, . . . , yn) : σ1 × · · · × σn

(ΓT ; ({y1 : σ1, . . . , yn : σn}); x : τ ; ∅) 	BUC e � e′

(ΓT ; ΓF ; ΓA; ΓL) 	BUC λx : τ .e � 〈〈fcode(σ1 × · · · × σn, x : τ , e′), eenv〉〉
FV BUC(e, (ΓT ; ΓF ; ΓA; ΓL)) = {y1, . . . , yn}
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (y1, . . . , yn) � eenv

(ΓT ; ΓF ; ΓA; ΓL) 	TBUC (y1, . . . , yn) : σ1 × · · · × σn

b and s are fresh variables

((ΓT , t); ({y1 : σ1, . . . , yn : σn}), (b : 〈t〉, s : |t|), ∅) 	BUC e � e′

(ΓT ; ΓF ; ΓA; ΓL) 	BUC Λt.e � 〈〈tcode(σ1 × · · · × σn, t, b : 〈t〉, s : |t|, e′), eenv〉〉

Figure 5.9: BUC transformation (1)

eraseBUC(πs
o(e)) = π

eraseBUC(s)
eraseBUC(o)(eraseBUC(e))

eraseBUC(let xs : σ = e1 in e2 end) = let xs′ = e′1 in e′2 end

s′ = eraseBUC(s)

e′1 = eraseBUC(e1), e
′
2 = eraseBUC(e2)

eraseBUC([e1 + · · ·+ en]) = [eraseBUC(e1) + · · ·+ eraseBUC(en)]

eraseBUC([e1, . . . , en]) = [eraseBUC(e1), . . . , eraseBUC(en)]

eraseBUC(|S|) = |S|
eraseBUC(〈B〉) = 〈B〉

The function eraseBUC just simply eliminates type annotation in the given term.
Typing derivation should be the same for the given term and for the result. This property
is shown by the following theorem

Theorem 5.3 Suppose Γ, e, σ is a well-formed context, a term and a well-formed type
in λBUC so that Γ 	TBUC e : σ. Then we also have Γ 	BUC eraseBUC(e) : σ.

This result together with the type soundness theorem of the target calculus (The-
orem 5.1) and the type preservation theorem (Theorem 5.2) establishes that the type
system of the source calculus is sound with respect to the operational semantics realized
by λML to λBUC to ΛBUC compilation followed by evaluation of the compiled term.

78

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 � e′1 (ΓT ; ΓF ; ΓA; ΓL) 	BUC e2 � e′2
(ΓT ; ΓF ; ΓA; ΓL) 	TBUC e2 : τ (ΓT ; ΓF ; ΓA; ΓL) 	BUC τ � es

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e1 e2) � (e′1 e′2
es)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e � e′

(ΓT ; ΓF ; ΓA; ΓL) 	B
BUC τ � eb

(ΓT ; ΓF ; ΓA; ΓL) 	S
BUC τ � es

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e τ) � (e′ τ eb es)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC ei � gi (ΓT ; ΓF ; ΓA; ΓL) 	TBUC gi : σi

(ΓT ; ΓF ; ΓA; ΓL) 	B
BUC σi � bi (ΓT ; ΓF ; ΓA; ΓL) 	S

BUC σi � si

(1 ≤ i ≤ n)
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e1, . . . , en) � ([b1, . . . , bn]; gs1

1 , . . . , gsn
n)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e � e′ (ΓT ; ΓF ; ΓA; ΓL) 	TBUC e : σ1 × · · · × σn

(ΓT ; ΓF ; ΓA; ΓL) 	S
BUC σj � sj for 1 ≤ j ≤ i

(ΓT ; ΓF ; ΓA; ΓL) 	BUC πi(e) � πsi

[s1+···+si−1]
(e′)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC e1 � e′1 (ΓT ; ΓF ; ΓA; ΓL) 	TBUC e1 : σ′

(ΓT ; ΓF ; ΓA; ΓL) 	S
BUC σ′ � s (ΓT ; ΓF ; ΓA; (ΓL, x : σ′)) 	TB e2 � e′2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC let x : σ = e1 in e2 end � let xs : σ′ = e′1 in e′2 end

Figure 5.10: BUC tranformation (2)

5.2 Extension for Generating Stack Frame Layout

We have seen how bitmap information for heap-allocated objects are generated in Chap-
ter 3 and in previous section. For implementing a correct bitmap-passing garbage col-
lector, bitmap information of temporary variables used in each function also need to be
computed.

We consider a stack-based implementation, where a stack frame is allocated for each
function, and all the temporary variables used by the function are allocated in the stack
frame. The function code is implemented by a sequence of instructions in the format
x = op(x1, . . . , xn) where x, x1, . . . , xn are locations in a stack frame relative to the frame
pointer. Our strategy of compiling a source expression into an efficient target code of the
above format is outlined as follows.

1. compiling the source expression into a ΛBUC expression.

2. A-normalizing the ΛBUC expression by adopting the algorithm presented in [FSDF93].

3. minimizing the number of stack frame slots and eliminating dead code fragments
by applying a liveness analysis.

4. generating instructions from the A-normalized ΛBUC expression achieved from the
above steps.

Since bitmap information of temporary variables are required, we need to refine BUC
transformation for generating such information. In the rest of this section, I will present a
refined algorithm that can predict the stack frame layout without performing A-normalization.

79

As we have mentioned, bit tag information of temporary variables (arguments and local
variables) of each function code are needed for garbage collection. These information can
be computed from the types of temporary variables by the following strategy.

Firstly, we type each temporary variables with one of the following types.

τ ::= boxed | unboxed | t

where t stands for type variables. Let {t1, . . . , tn} be the set of type variables appearing as
types of temporary variables located in a stack frame (we shortly write “appearing in the
stack frame”). We represent the layout information of the stack frame by the following
data:

1. the number of slots of type unboxed,

2. the number of slots of type boxed,

3. a bitmap of type 〈〈t1, . . . , tn〉〉, and

4. the number of slots of each type ti.

Secondly, we refine the bitmap-passing closure conversion algorithm to compute the
necessary layout information. Among the described items, only the bitmap of type
〈〈t1, . . . , tn〉〉 needs to be concerned. Other information can be computed statically. The
syntaxes of λBUC and ΛBUC are refined so that a code expression includes its layout infor-
mation. We re-define the syntax of function code and type abstraction codes in λBUC as
fcode(eb, σ, x : τ , e) and tcode(eb, σ, t, b : 〈t〉, s : |t|, e), respectively. The syntax of code
in ΛBUC is also refined as code(eb, x, e). Addition item eb in these syntaxes represents
layout information of stack frame of the code. Here, this is the bitmap of type 〈〈t1, . . . , tn〉〉
for {t1, . . . , tn} are the set of type variable appearing in the stack frame. We refine BUC
transformation algorithm (from λML to λBUC) for generating eb by the following steps.

1. collecting all type variables {t1, . . . , tn} appearing in the stack frame;

2. translating these type variables into a bit tag terms {eb
1, . . . , e

b
n} by using bit tag

creation algorithm.

3. composing the expected bitmap, i.e. [eb
1, . . . , e

b
n].

All these steps need to be done at BUC transformation (before A-normalization). How-
ever, step (1) requires information of temporary variables residing in stack frame which is
only known after A-normalization. We seems to have another mutual dependency prob-
lem. Fortunately, we do not need to combine BUC transformation and A-normalization,
just an extension is enough to solve this problem.

We know that A-normalization algorithm translates terms in tree structure into terms
in sequential structure and each node of the tree term will be assigned to a temporary
variable. Thus we can predict the set of type variables appearing in the stack frame by
examining types of function’s arguments (which also reside in stack frame) and types of
all sub-terms of the function body.

We define two functions TV Type(σ) and TV Term(Γ, e) for predicting layout infor-
mation. The former returns a singleton set of σ if σ is a type variable. The latter collects

80

the set of type variables appearing as types of sub-terms of e including itshelf. Figure 5.11
gives the set of rules for implementing TV Term.

In these rules, we do not inspect structure of bit tag, size, bitmap, offset expressions.
These expressions do not contain any sub-expression which has type variable type because
they are generated as a composition of operations on objects of single unboxed types, i.e.
bit tag, size, bitmap, offset types.

In the rules for codes (fcode and tcode), we do not inspect the body of the code since
the sub-expressions of the body will be only bound to temporary variables of this code’s
strack frame, but not bound to any temporary variable of current code’s stack frame.

By using these functions, the two compilation rules for generating codes in BUC
transformation would be re-defined for predicting layout information as follows.

FV BUC(e, (ΓT ; ΓF ; ΓA; ΓL)) = {y1, . . . , yn}
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (y1, . . . , yn) � eenv

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (y1, . . . , yn) : σ1 × · · · × σn

Γ = (ΓT ; ({y1 : σ1, . . . , yn : σn}); x : τ ; ∅) Γ 	BUC e � e′

T1 = TV Term(Γ, e′) T2 = ∪TV Type(τ)
Γ 	BUC 〈〈t1, . . . , tm〉〉 � eb for {t1, . . . , tn} = T1 ∪ T2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC λx : τ .e � 〈〈fcode(eb, σ1 × · · · × σn, x : τ , e′), eenv〉〉
FV BUC(e, (ΓT ; ΓF ; ΓA; ΓL)) = {y1, . . . , yn}
(ΓT ; ΓF ; ΓA; ΓL) 	BUC (y1, . . . , yn) � eenv

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (y1, . . . , yn) : σ1 × · · · × σn

Γ = ((ΓT , t); ({y1 : σ1, . . . , yn : σn}), (b : 〈t〉, s : |t|), ∅) b and s are fresh variables
Γ 	BUC e � e′

{t1, . . . , tn} = TV Term(Γ, e′) Γ 	BUC 〈〈t1, . . . , tm〉〉 � eb

(ΓT ; ΓF ; ΓA; ΓL) 	BUC Λt.e � 〈〈tcode(eb, σ1 × · · · × σn, t, b : 〈t〉, s : |t|, e′), eenv〉〉
The refinement does not put any new constraint on typing system of BUC. This implies

that the type preservation property still holds for the refined algorithm. In addition, if the
compilation phases after A-normalization do not introduce any new temporary variables
whose bit tag information are not described by the generated frame layout, the refined al-
gorithm should be correct in the sense of stack frame layout. In this case we can safely say
that the type system of the source calculus is sound with respect to an operational seman-
tics implementing by a series of type-preserving compilation phases (including the refined
bitmap-passing closure conversion and A-normalization) and following by an execution of
generated instructions.

81

TV Term((ΓT ; ΓF ; ΓA; ΓL), c0) = ∅
(ΓT ; ΓF ; ΓA; ΓL) 	BUC xs : σ

TV Term((ΓT ; ΓF ; ΓA; ΓL), xs) = TV Type(σ)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC envs
o : σ

TV Term((ΓT ; ΓF ; ΓA; ΓL), envs
o) = TV Type(σ)

TV Term((ΓT ; ΓF ; ΓA; ΓL), fcode(eb, σ, x : τ , e) = ∅
TV Term((ΓT ; ΓF ; ΓA; ΓL), tcode(eb, σ, t, b : 〈t〉, s : |t|, e) = ∅

T1 = TV Term((ΓT ; ΓF ; ΓA; ΓL), e1) T2 = TV Term((ΓT ; ΓF ; ΓA; ΓL), e2)
TV Term((ΓT ; ΓF ; ΓA; ΓL), 〈〈e1, e2〉〉) = T1 ∪ T2

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e1 e2) : σ

T1 = TV Term((ΓT ; ΓF ; ΓA; ΓL), e1) T2 =
⋃

TV Term((ΓT ; ΓF ; ΓA; ΓL), e2)
TV Term((ΓT ; ΓF ; ΓA; ΓL), ((e1 e2

es)) = T1 ∪ T2 ∪ TV Type(σ)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC (e τ eb es) : σ T = TV Term((ΓT ; ΓF ; ΓA; ΓL), e)
TV Term((ΓT ; ΓF ; ΓA; ΓL), ((e τ eb es)) = T ∪ TV Type(σ)

Ti = TV Term((ΓT ; ΓF ; ΓA; ΓL), ei) for all 1 ≤ i ≤ n
TV Term((ΓT ; ΓF ; ΓA; ΓL), (ebm; es1

1 , . . . , es2
2)) = T1 ∪ · · · ∪ Tn

(ΓT ; ΓF ; ΓA; ΓL) 	BUC πs
o(e) : σ T = TV Term((ΓT ; ΓF ; ΓA; ΓL), e)

TV Term((ΓT ; ΓF ; ΓA; ΓL), πs
o(e)) = T ∪ TV Type(σ)

(ΓT ; ΓF ; ΓA; ΓL) 	BUC let xs : σ1 = e1 in e2 end : σ2

T1 = TV Term((ΓT ; ΓF ; ΓA; ΓL), e1) T2 = TV Term((ΓT ; ΓF ; ΓA; (ΓL, x : σ1)), e2)
TV Term((ΓT ; ΓF ; ΓA; ΓL), let xs : σ1 = e1 in e2 end) = T1 ∪ T2 ∪ TV Type(σ2)

TV Term((ΓT ; ΓF ; ΓA; ΓL), 〈B〉) = ∅
TV Term((ΓT ; ΓF ; ΓA; ΓL), |S|) = ∅

TV Term((ΓT ; ΓF ; ΓA; ΓL), [e1, . . . , en]) = ∅
TV Term((ΓT ; ΓF ; ΓA; ΓL), [e1 + · · ·+ en]) = ∅

Figure 5.11: Algorithm for predicting stack frame layout

82

Chapter 6

Separate Compilation and Module
Language

In previous chapters, I have shown how the proposed compilation method can generate
code with layout bitmap and information for manipulating unboxed values. We have
considered a mini ML-style calculus with rank-1 polymorphism as the source calculus
in the compilation scheme. Extending this to the full set of ML Core language would
be technically easy. However, for ML module language with functors and for separate
compilation where user-define type variables may appear free in a separate module, we
need to make more efforts for compiling the language.

In order to see the problems related to separate compilation and module language, let
me first recall the bit tag creation algorithm and the size creation algorithm presented
in Chapter 3, Chapter 4, and Chapter 5. Bit tag creation and size creation algorithms
have forms Γ 	B

BUC σ � b and Γ 	S
BUC σ � s, respectively. They generate bit tag/size

term corresponding to the given type σ. In the case σ has a proper outermost type
constructor, they will return a constant bit tag/size corresponding to this type. If σ is an
abstract type variable, i.e. t, the algorithms will looking for the corresponding bit tag/size
variable recorded in the context Γ. For ML Core language, where a given source term
to be compiled is closed in sense of type, the proposed compilation algorithm sould be
sound, i.e. it should not fail for a given well-typed source term. The reason that guarantee
the soundness of the proposed algorithm is that when compiling a type abstraction term,
the algorithms always assume a set of bit tag/size parameters (by recording them in the
context) for compiling the body of the type abstraction. Thus we can always find a bit
tag/size parameter corresponding to a type variable introduced by type abstractions, the
bit tag/size creation algorithm therefore always succeeds.

In the presence of functors and separate compilation, we face a subtle problem, type
variables are not only introduced by type abstractions, but also introduced by user-define
abstract type definitions. Let’s consider the following example of two separated module
A and B.

Module A Module B
type t = int
val x : t = 1
...

type t = A.t
val x : t = A.x
val r : t * t = (x,x)

Module B generate a record (x,x) where x is imported from module A. In B,x has an

83

abstract type t which is specialized as int in A. Under the compilation scheme, generating
code for (x,x) requires us to create size and offset terms corresponding to the type variable
t. In separate compilation, A and B are compiled separately. At the time of compiling B,
the compiler does not know the actual implementation of the type variable t, then the
bit tag/size creation algorithm can not decide what bit tag/size term corresponding to
this type variable. The whole compilation process, therefore, fails.

To overcome this difficulty, I propose a simple method by which bit tags and sizes
of any user-define abstract type variables are “abstracted”. The following code shows a
resulting pseudo codes of A and B by using this method.

Module A Module B
type t = int
val tag_t : <t> = 0
val size_t : |t| = 1
val x : t = 1
...

type t = A.t
val tag_t : <t> = A.tag_t
val size_t : |t| = A.size_t
val x : t = A.x
val r : t * t =

([tag_t,tag_t],x^size_t,x^size_t)

As shown in the example, bit tag and size of each user-define type variable t are
abstracted by introducing top-level variables tag t and size t which are bound to cor-
responding terms of bit tag and size of t. We call them “top-level bit tag” and “top-level
size”, correspondingly.

If t is specialized in the current module with a proper outermost type constructor, top-
level bit tag tag t and top-level size size t will be bound to the corresponding constant
bit tag and constant size. Otherwise, t must be bound to another abstracted type defined
in other module, e.g. A.t In this case, top-level bit tag and top-level size of t will refer
to the corresponding top-level bit tag and top-level size in the other module, e.g tag t =

A.tag t and size t = A.size t

To realizing this idea in proposed compilation algorithm (BUC transformation), we
first have to extend the source calculus for module language (which I do not present here
because this is out of the thesis’s concerns). We also maintain two global mappings that
map from the set of user-define type variables to the set top-level bit tag and to the set
of top-level size. Let’s call these mappings B and S, respectively. B(t) returns a variable
representing top-level bit tag of t, and S(t) returns a variable representing top-level size
of t. The formalism of these global mapping do not violate to the principles of separate
compilation since they just syntactically map from type variable’s names to variable’s
names.

Then, I refine the compilation method by using global mapping B and S. Important
keys of this refinement are outlined as follows.

• When elaborating an user-define type definition type t = σ, the compiler inserts
two top-level bindings val tagt = eb

t and val sizet = es
t where tagt = B(t) and

sizet = S(t). eb
t , e

s
t are generated from σ by the following rules.

– eb
t = tagOf(σ) and es

t = sizeOf(σ) if σ has a proper outermost constructor.

– eb
t = B(t′) and es

t = S(t′) if σ = t′ (t′ may be an user-defined type variable in
another module such as A.t)

• Compilation rules are extended for the cases of top-level bit tag variables and top-
level size variables. We do not treat these variables as the same as other usual

84

variables (usual variables may be enclosed in function’s environment records by
closure conversion – see Chapter 5). Instead, we generate a reference for each
occurrence of top-level bit tag/size variable. This reference will be resolved at link
time by using an usual reference resolution technique. This strategy would be helpful
for reducing the burden of bit tag and size passing.

• The bit tag/size creation rules are extended with the following rules.

– Γ 	B
BUC t � eb

t where t is an user-define type variable and eb
t is a reference

resulted from the transformation Γ 	BUC B(t) � eb
t as described above.

– Γ 	S
BUC t � es

t where t is an user-define type variable and es
t is a reference

resulted from the transformation Γ 	BUC S(t) � es
t .

We meet a very similar situation when dealing with functors. Let us consider the
following example.

functor F(X : sig type t val x : t end) =

struct

val r : t * t = (X.x, X.x)

end

The functor F takes a structure S that matches the signature

sig type t val x : t end

to produce another structure containing a record of type t × t. In order to generating
code for such record, the standard compiler (as presented in previous chapters) must know
the instance type of t, which is not available before functor applications, for creating the
corresponding bitmap and size.

Adopting the compilation scheme for separate compilation, we solve this problem by
introducing top-level bit tag and top-level size for each abstract type in a structure. The
resulting pseudo code for this example would be

functor F(X :

sig

type t

val tag_t : <t>

val size_t : |t|

val x : t

end) =

struct

val r : t * t = ([X.tag_t, X.tag_t], X.x^X.size_t, X.x^X.size_t)

end

Similar to the compilation scheme for separate compilation, we present tag t and
size t in the target code by references to top-level bit tag and size variable abstracted in
the formal structure parameter X. This will be resolved at the time of functor application.
To demonstrate this process, we consider the following structure S.

85

structure S =

struct

type t = int

val x : t = 1

end

When compiling this structure, we also include information of top-level bit tag and
top-level size in the resulting code.

structure S =

struct

type t = int

val tag_t : <t> = 0

val size_t : |t| = 1

val x : t = 1

end

When applying functor F to the structure S, we generate code for the resulting structure
by

• duplicating code of the functor

• linking the code of S to the formal structure X in the duplicated code of F

• resolving all necessary references including top-level bit tags and top-level sizes

Due to the complication of module language and separate compilation implementation
(which are out of my concerns in this thesis), I just intuitively describe the idea of how
to incorporate them with my compilation scheme, omitting all technical details.

86

Chapter 7

Implementation and Optimizations

We have integrated almost all the compilation steps described (except separate compi-
lation) in our type-directed compiler (SML#) for the full set of Standard ML Language
extended with rank-1 polymorphism and record polymorphism. The compiler consists of
several type-directed compilation steps, including the following:

1. rank-1 type reconstruction,

2. flatten module compilation,

3. polymorphic record compilation,

4. source-level optimizations,

5. BUC transformation,

6. A-normalization,

7. code-level optimization, and

8. code generation.

We have also implemented an abstract machine that executes three address code work-
ing with unboxed data and a bitmap-inspecting copying collection, and have successfully
tested for the compiled code.

In SML#, we have considered several implementation issues related to bitmap creation
and unboxed manipulation, and several optimizations to minimize runtime overhead aris-
ing by bit tag/size passing and bitmap/offset computation, and have implemented some
of them.

The rest of this chapter gives a quick glance at these implementation issues and opti-
mization.

7.1 Mutually Recursive Function Definition

For a practical implementation, the very first thing we have to do is to extend the type-
directed compilation method for dealing with recursion. The extension is not so difficult
for monomorphic recursion (where recursive function are monomorphic). In this thesis, I

87

only introduce extension for polymorphic recursion since type abstraction in the recursion
directly affects my compilation scheme.

Let’s define polymorphic recursion by the form of mutually recursive function definition
represented in the source language as follows.

let rec ∀t.f1 : τ1 → σ1= λx1 : τ1.e1

· · ·
fn : τn → σn= λx1 : τ1.e1

in e end

This term defines n polymorphic functions f1, . . . , fn which share the same set of type
abstraction t. At runtime, these functions can interoperate from one to another, forming
a recursion.

We meet a subtle problem when compiling such polymorphic functions under our type-
directed compilation method. The standard algorithm transforms polymorphic expres-
sion by inserting extra bit tag/size abstraction. It therefore transforms each polymorphic
function into a target term of the type ∀t.{〈t〉, |t|} → τi → σi. However, in the mutually
recursive function definition, type abstractions ∀t. are generally shared among the func-
tions. This is guaranteed in type reconstruction phase by regarding each occurrence of
fi in e1, . . . , en as a monomorphic function. The standard algorithm therefore does not
generate actual bit tag and size parameters for the occurrence. Obviously, this causes the
disagreement between the type of fi and the arguments of its applications.

A simple strategy to overcome this problem is to insert the same set of bit tag/size
abstractions to each function definition as follows.

let rec ∀t.f1 : {〈t〉, |t|} → τ1 → σ1 = λ{b : 〈t〉, s : |t|}λxs1
1 : τ1 : e′1.

· · ·
fn : {〈t〉, |t|} → τn → σn = λ{b : 〈t〉, s : |t|}λxsn

n : τn : e′n.
in e′ end

where ei is the transformation result of ei for each i, and e′ is the transformation result
of e. In each e′i, we solve the problem of disagreement by passing the same bit tag/size
variables {b, s} to each occurrence fj . This is done by substituting (fj t b s) for each fj

in the resulting body e′i achieved from applying the standard transformation algorithm.
One weakness of this compilation scheme, which may become serious for heavily re-

cursive invocations, is the performance penalty for passing around the same set of bit
tag/size arguments. This may become more serious when we incorporate this compilation
strategy with closure conversion. Suppose a mutual recursive code is defined in λBUC as
follows.

let rec f1 : σenv →C σ1 = c1

· · ·
fn : σenv →C σn = cn

in e end

where c1, . . . , cn are codes of form fcode(σenv, xi : τi, ei) or tcode(σenv, t, b : 〈t〉, s : |t|, ei),
σenv is the type of the common environment.

Since the bit tag/size abstractions are inserted for each function fi, a naive application
of the BUC transformation for mutual recursive functions would be

88

let rec f code
1 :σ1

env →C ∀t.{〈t〉, |t|} → τ1 → σ1

= tcode(σ1
env, t, b : 〈t〉, s : |t|, 〈〈fcode(σ1

env
′, xs1

1 : τ1, e
′
1), e

1
env

′〉〉)
· · ·
f code

n :σn
env →C ∀t.{〈t〉, |t|} → τn → σn

= tcode(σn
env, t, b : 〈t〉, s : |t|, 〈〈fcode(σn

env
′, xsn

n : τn, e′n), en
env

′〉〉)
in

let f1 : ∀t.{〈t〉, |t|} → τ1 → σ1 = 〈〈f code
1 , e1

env〉〉 in

· · ·
let fn : ∀t.{〈t〉, |t|} → τn → σn = 〈〈f code

n , en
env〉〉

in e′ end · · · end end

Two closures are generated for each function fi. The only different portion between the
environment record eenv

i from eenv
i

′ is the abstracted bit tags/sizes b, s which are used
in the body e′i. At running time, a closure 〈〈fcode(σi

env
′, xi : τi, e

′
i), e

i
env

′〉〉 may have to
be created many time depending on the recursion. Extra run-time costs for duplicate
part of eenv

i in eenv
i

′, creation of closure, and application to the second closure are other
weaknesses of this naive compilation.

In order to avoid the described runtime overhead, we consider an alternative strategy
for compiling mutually recursive function definition by assuming that mutual recursive
functions are always monomorphic. By this assumption, there’s no bit tag/size abstrac-
tions and bit tag/size applications need to be inserted. As the consequence, there’s no bit
tag/size arguments to pass around and no more closures to be created. This assumption
can be fulfilled by creating a wrapper polymorphic function f ′

i for each fi:

f ′
i = Λt.λxi : τi.

let rec f1 : τ1 → σ1= λx1 : τ1.e1

· · ·
fn : τn → σn= λx1 : τ1.e1

in (fi xi) end

The code part of the wrapper function’s closure is generated as follows

f code
i

′ = tcode(σenv, t, {b : 〈t〉, s : |t|, xs : τ},
let rec f code

1 : σ1
env →C τ1 → σ1= fcode(σ1

env, x
s1
1 : τ1, e

′
1)

· · ·
f code

n : σn
env →C τn → σn= fcode(σn

env, x
sn
n : τn, e′n)

in (〈〈f code
i , ei

env〉〉 xi) end)

Here we apply an uncurrying optimization (described later) for the wrapper function
which uncurries the bit tag, size and lambda arguments together. Although a code for
monomorphic mutual recursive function declaration are generated for each wrapper, they
will be finally shared among wrappers because they are identical.

By taking this compilation strategy, we still have to pay some performance costs for
manipulating wrappers, i.e. costs for creating wrapper closures and for passing arguments
from wrapper to the original function. But I believe this is acceptable because we only
need to invoke a wrapper once for an entire recursion loop. Furthermore, separating
polymorphic part from the mutual recursive function definition, we will have a chance
for optimization by lifting bitmap/offset computation inside the monomorphic recursive
functions to the wrapper, ensuring they are never performed twice. I will present this
optimization in Section 7.3.

89

7.2 Double-Word Alignment

The major intention of this thesis is to compile ML so that it can seamlessly interoper-
ate with other languages such as C. Supporting a natural representations of data is the
first condition to achieve this goal. However, in some specific architecture, natural rep-
resentations is not sufficient. For example, a conventional assumption for allocating data
in SPARC architecture is that addresses of floating point values must be double-word
aligned. In this situation, the expected compiler must generate codes that conform to
this assumption.

There are two places where exchanging floating point values may reside: in heap blocks
or in stack frames. Since we assume variable’s values are allocated in fixed positions in
stack frames, this would be easy to align floating point values of stack frames to double-
word aligned positions. To double-word align floating point values in heap blocks in the
presence of polymorphism is a subtle problem.

Assuming that the value of the first field in a heap block is always aligned, a simple
strategy for aligning other floating point values in the block is to insert a dummy word
before each floating point value if this value located at an odd offset.

For example, in the record (1, 1.2), the floating point value is located at offset 1. A
dummy word is inserted before this value to produce the record (1, 0w0, 1.2) that conforms
with the double-word alignment assumption.

In the presence of polymorphism, doble-word alignment is not so easy. Consider a
record (x, y) of type t1× t2, if t1 is instantiated to a single type (e.g. int, string), and t2 is
instantiated to real, the compiler needs to insert a dummy word before y, i.e. (x, 0w0, y).
In other cases of instantiation (t1 is instantiated to a double type or t2 is instantiated to
a single type), compiler does not need to align the record.

For a uniform treatment of aligning process, I introduce a representation of records
so that special fields are inserted at positions where alignment may occur. For example,
compiler transform the above record into (x, d, y) where d is the special field. This field
is typed specially so that we can compute the size of this field at run-time. If this size is
zero, no dummy word is inserted. Otherwise, run-time system must allocate the record
with a dummy word inserted at the position of d.

Now we consider how to type special fields. Let consider a record (x1, . . . , xn) of type
σ1 × · · · × σn. There are four cases that we may have to insert a dummy field (special
field) before an ordinary field xi:

• If σi is a type variable t, and {σ1, . . . , σi} contains an arbitrary type (i.e. type
variable), the compiler inserts a dummy field di of type t ⇒ σ1 × · · · × σi−1 For
example, consider record (x, y) of type t1 × t2, the compiler constructs (x, d, y)
where d has type t2 ⇒ t1.

• If σi is a type variable t, {σ1, . . . , σi} does not contain any arbitrary type, and the
total size of these types (which can be statically computed) is an odd number, the
compiler insert a dummy field di of type t ⇒ int. For example, consider record (x, y)
of type string × t2, the compiler constructs (x, d, y) where d has type t2 ⇒ int.

• If σi is real type, and {σ1, . . . , σi} contains an arbitrary type (i.e. type variable),
the compiler inserts a dummy field di of type real ⇒ σ1 × · · · × σi−1 For example,
consider record (x, y) of type t1 × real, the compiler constructs (x, d, y) where d has
type real ⇒ t1.

90

• If σi is real type, {σ1, . . . , σi} does not contain any arbitrary type, and the total size
of these types (which can be statically computed) is an odd number, the compiler
alway insert a dummy field 0w0 (of word type). For example, consider record (x, y)
of type string × real, the compiler constructs (x, 0w0, y).

After performing this transformation process for a source language, we can apply BUC
transformation to compile the target term in λBUC with an extension of the size creation
rule for dummy field types.

sizeOf(σ ⇒ σ1 × · · · × σn) =

if sizeOf(σ) = 2 and ((sizeOf(σ1) + · · ·+ sizeOf(σn)) mod 2) = 1

then 1 else 0

The extra computation for this size computation may be large, but we can achieve a
full compatible data representations with the target SPARC architecture. Moreover, this
computation can be optimized by extending the arithmetic optimization – the technique
I present in next section.

7.3 Optimizations

A common scenario of type-directed compilation implementation is that source level op-
timizations such as uncurrying, in-lining, common expression elimination, invariant re-
moval, etc. are performed before closure conversion. Our compilation strategy, however,
combines bitmap-passing compilation, unboxed compilation and closure conversion into a
single phase. For polymorphic language, this introduces significant extra codes for pass-
ing bit tags/sizes, and for computing bitmap/offset. Minimizing the runtime overhead
arising by these extra codes is an important task in developing a practical compiler. Such
optimizations should be done in or after BUC transformation. I realize that BUC trans-
formation is the best place for integrating them, though they would make the algorithm
much more complex.

In this section, I introduce three important optimizations which have been imple-
mented in our SML# compiler.

7.3.1 Uncurrying optimization

The common sense of uncurrying optimization is that it transforms curried functions in
the source language into multi-argument function in the target language. In our imple-
mentation, we also consider this kind of optimization in the source level optimization
phase implemented before the BUC transformation.

However, standard BUC transformation may introduces a special form of curried func-
tion: an ordinary lambda abstraction is followed by bit tag/size abstractions generated
by BUC transformation. Uncurrying them, obviously, would help us to obtain better
target codes. Let me first analyze this situation and then propose the solution for this
optimization.

Rank-1 type reconstruction mostly generates type abstraction at ordinary lambda
abstractions to form polymorphic functions (the other cases are that type abstractions are
generated for constructing polymorphic datatype). Let’s consider a polymorphic function
in the source language Λt.λx : τ .e. Bitmap-passing compilation and unboxed compilation

91

insert bit tag abstractions and size abstractions for each type variable of t. The resulting
code of these two phases would therefore be Λt.λb : 〈t〉.λs : |t|.λx : τ .e′ where b and s are
the inserted bit tag parameters and size parameters, e′ is the target term of e.

In the standard BUC transformation, we already have b and s uncurried since they are
always come together at both abstraction and application. However, BUC transformation
does not consider about uncurrying them with the ordinary lambda parameters x. As
the consequence, the resulting term in λBUC consists of two closures representing the bit
tag/size abstractions and the ordinary lambda abstaction. This is obviously an inefficient
code. Uncurrying them would helps us to obtain a better one. The resulting code in λBUC

with uncurrying optimization would be something like

〈〈Λt.λ{b : 〈t〉, s : |t|, x : τ}.e′, eenv〉〉: ∀t.{〈t〉, |s|, τ} → σ′

The next step of such uncurrying optimization is to solve the disagreement between
the type of the resulting uncurried function and its applications. After uncurrying, type of
the above function is recorded as ∀t.{〈t〉, |s|, τ} → σ′. At a type instantiation (f τ eb es),
actual bit tag parameters b and size parameters s are given. Applying the function
f at this time would cause the disagreement problem between the type of f and the
number of actual arguments. We solve this by compiling type abstraction and type
application together. For example, ((f τ) ex) would be compiled into (f τ {eb, es, ex})
where eb and es are the bit tag terms and size terms generated from τ . If such function is
instantiated without its argument, i.e. type instantiation without application followed, the
compiler first performs eta-expansion, and then merge the bit tag values and the variables
introduced by the eta-expansion. For example, a type instantiation in the source calculus
(f τ) can be eta-expanded and uncurried as λx : τ .(f τ x). This term will be compiled
into BUC with unccurying optimization as

〈〈fcode(σenv, xes : τ , (f τ {eb, es, x})), eenv〉〉
where eb and es are bit tag terms and size terms generated from τ , eenv is the environment
record generated by closure conversion in BUC transformation.

In this case, we need to pay extra performance cost for manipulating with the eta-
expanded function. How ever, I believe this cost is not too much since type instantiation
usually come together with lambda application under the rank-1 type reconstruction.

7.3.2 Sharing bitmap/offset computation

This optimization has the same spirit with common expression elimination which has been
implemented in many type directed compiler: the same value should not be computed
twice. Different from the well-known common expression elimination technique, sharing
bitmap/offset computation should be performed at BUC transformation where bitmap
and offset are generated.

I developed this optimization by taking the following strategy

1. lifting bitmap/offset to the best place where their computation can be share

2. comparing bitmaps or offsets to eliminate redundant computations.

For the first one, my strategy is to lift bitmaps/offsets to the furthermost place whe
we can compute them. This would be the place where all required tag/size are abstracted.
For example, in the code

92

Λt1.λ{b1 : 〈t1〉} · · ·Λt2.λ{b2 : 〈t2〉} · · ·Λt3.λ{b3 : 〈t3〉}.(· · · [b1, b2] · · ·)
the bitmap [b1, b2] can be composed based on bit tags b1, b2, therefore the compiler lift
this bitmap to the second abstraction as in the following pseudo code.

Λt1.λ{b1 : 〈t1〉} · · ·Λt2.λ{b2 : 〈t2〉}
let bm = [b1, b2]
in · · ·Λt3.λ{b3 : 〈t3〉}.(· · ·bm · · ·) end

Of course, under closure conversion, lifted bitmaps/offset may need to be enclosed in en-
vironment records to pass to the corresponding places. This would cost another run-time
performance, but I believe that the benefit of lifting is more larger than the performance
penalty it makes.

After lifting bitmaps, and offsets to appropriate place, the second matter is how to
identify identical bitmaps and offsets to eliminate the redundant ones. This would be done
based on types of the given bitmaps and offsets. Given two bitmaps of types 〈〈σ1

1 , . . . , σ
1
n〉〉

and 〈〈σ2
1 , . . . , σ

2
m〉〉, in order to compare them, I first compact each type σj

i into one of
the followings {u, b, d, ti} where u denotes single unboxed types, b denotes single boxed
types, d denotes double unboxed types, and ti represents a type variable. The comparison
algorithm for two bitmap types is therefore given as the following relations on two list of
types .

[] =B []

u :: L1 =B u :: L2 If L1 =B L2

b :: L1 =B b :: L2 If L1 =B L2

d :: L1 =B d :: L2 If L1 =B L2

t1 :: L1 =B t2 :: L2 If L1 =B L2 and t1 = t2

u :: L1 =B d :: L2 If L1 =B u :: L2

d :: L1 =B u :: L2 If u :: L1 =B L2

For comparing offsets, we define a function Ofs(L) that takes a list of types and return
the total sizes of layout-fixed types (u, b, d) and an ordered list of type variables. This
function is defined as follows

Ofs([]) = (0, ∅)
Ofs(u :: L) = (n + 1, S) If Ofs(L) = (n, S)

Ofs(b :: L) = (n + 1, S) If Ofs(L) = (n, S)

Ofs(d :: L) = (n + 2, S) If Ofs(L) = (n, S)

Ofs(t :: L) = (n, S � t) If Ofs(L) = (n, S)

where S � t is the operation that inserts t into the ordered list S. Given two offsets of
types ‖ σ1

1, . . . , σ
1
n ‖ and ‖ σ2

1 , . . . , σ
2
m ‖, for comparing them we first compute (n1, S1) =

Ofs([‖, , . . . , . . .‖, σ1
1σ

1
n]) and (n2, S2) = Ofs([‖, , . . . , . . .‖, σ2

1σ
1
m]). Two offsets is identical

if n1 = n2 and S1 ≡ S2.
With the comparison methods of bitmap and offsets, and the lifting strategy, we can

refine BUC transformation for sharing bitmap/offset computations.
Together with the presented compilation method for mutually recursive function def-

inition, this optimization is extremely efficient for the case in which bitmaps/offsets may

93

be lifted out to the wrapper function (or outside the wrapper function). By this way,
at the runtime, these bitmaps/offsets are only computed once for an entire recursive call
since they are already out of the computation loop. Obviously, this would help us reducing
lot of runtime overhead arising by recomputing bitmaps and offsets.

7.3.3 Arithmetic Optimization

Arithmetic optimization is another important optimization for reducing run-time over-
head arising by bitmap/offset computations. In our implementation, bitmap and offset
computations are broken down into simple arithmetic operation such as “+”, “and”,
“or”, “�”, and “�” (the last four operators are logical and, logical or, shift left, and
shift right). When computing a set of bitmaps/offsets, some parts of the computations
can be shared. For example, the bitmap [b1, b2, b3] and the bitmap [b1, b2, b4] can share
the same arithmetic computation for the first two bits, i.e. [b1, b2].

In order to finding and removing the identical computation, let us consider first a
simple algebra where primitives are integers and variables and operators are “+”, “and”,
“or”, “�”, and “�”. We define functions ArithB, ArithO, ArithT , and ArithS that
transform bitmap types, offset types, bit tag types, and size types into expressions in the
given algebra.

ArithO([]) = 0

ArithO(σ :: L) = ArithS(σ) + ArithO(L)

ArithB([]) = 0

ArithB(σ :: L) = ArithT (σ) and (ArithB(L) � ArithS(σ))

ArithT (σ) = 0 If σ is an unboxed type

ArithT (σ) = 1 If σ is a boxed type

ArithT (t) = b If b : 〈t〉
ArithS(σ) = 1 If σ is a single type

ArithT (σ) = 2 If σ is a double type

ArithT (t) = s If s : |t|

Note that the cases ArithT (t) and ArithS(t) are given by the bit tag and size creation
algorithms which generate the corresponding bit tag/size variable.

Using these transformations, each bitmap or offset can be transformed into an expres-
sion of the algebra. Each expression represents a computation tree where the outer nodes
are either constants or variables, the inner nodes are operators, the root represent the re-
sult. Given a set of bitmaps and offsets, we can transform them into a set of expressions
which are also represented by a forest of computation trees.

We can optimize the whole computation by transforming the computation forest into
an acyclic directed graph, by unifying identical sub-trees and replacing some sub-trees to
the simpler one. (for example. the tree of expression 0 and e can be replaced by the tree
of 0).

In this thesis, I do not give the full implementation of this optimization in details.

94

Chapter 8

Conclusion and Future Directions

So far in this thesis, I have presented a type-directed compilation method that support
an interoperable memory management where integers, floating point values and other
atomic data are naturally represented, and each run-time object includes a layout bitmap
for tracing garbage collection.

The key idea of this method is to pass bit tag and size information of types to run-time
for composing the necessary bitmap , and for manipulating unboxed values.

To achieve this, the type-directed compilation statically computes bit tags/sizes when-
ever layout of objects of types are fixed, introduces bit tag/size parameters for each ab-
stract type variable, and passes them to corresponding computation codes for bitmap and
offsets (which are using for manipulating unboxed values).

I have solved the problem of mutual dependency among the type-directed compila-
tion, closure conversion, and A-normalization. The compilation method has been further
refined for separate compilation and module language.

Beside the theoretical development of this method, I have also presented several im-
plementation issues and optimizations which are successfully integrated in our SML#
compiler.

There are few further issues to be consider in the near future:
Implementation for separate compilation. Although I have proposed the solution for

separate compilation, implementing this solution would make much more efforts and much
more problems to be solved. As far as I know, there does not exists any true separate
compilation for ML in which programs can be separately compiled in to codes and link
together or to other language’s binary objects. This would be a big issue for considering.

Optimization. Current optimizations are strong enough to make a significant perfor-
mance advantage in comparison to other ML dialects such as SML/NJ. There is still room
for further optimizations for reducing performance cost arising by bitmap/offset compu-
tation. The biggest one might be a source-level optimization for reducing polymorphism
whenever they are not required. Other state-of-the-art optimizations are also included in
the to-do list of my future research.

Register Allocation. Until now, our SML# does not have register allocations yet. Con-
sidering this in the presence of bitmap-inspecting garbage collection is another interesting
issue for my future research.

95

Bibliography

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM,
13(11):677–678, 1970.

[CWM98] Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. Intensional poly-
morphism in type-erasure semantics. In International Conference on Func-
tional Programming, pages 301–312, 1998.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 207–212, New York,
NY, USA, 1982. ACM Press.

[Fra94] Pascal Fradet. Collecting more garbage. In LFP ’94: Proceedings of the 1994
ACM conference on LISP and functional programming, pages 24–33, New
York, NY, USA, 1994. ACM Press.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In Proceedings ACM SIGPLAN
1993 Conf. on Programming Language Design and Implementation, PLDI’93,
Albuquerque, NM, USA, 23–25 June 1993, volume 28(6), pages 237–247.
ACM Press, New York, 1993.

[Gol91] Benjamin Goldberg. Tag-free garbage collection for strongly typed program-
ming languages. In PLDI ’91: Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and implementation, pages 165–
176, New York, NY, USA, 1991. ACM Press.

[HHJW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. Type classes in Haskell. ACM Transactions on Programming Lan-
guages and Systems, 18(2):109–138, March 1996.

[HJ94] Fritz Henglein and Jesper Jorgensen. Formally optimal boxing. In POPL ’94:
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 213–226, New York, NY, USA, 1994. ACM
Press.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using in-
tensional type analysis. In Conference Record of POPL ’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 130–141, San Francisco, California, 1995.

96

[IK00] A. Igarashi and N. Kobayashi. Garbage collection based on a linear type
system, 2000.

[JL91] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In Proceedings of the 5th ACM
conference on Functional programming languages and computer architecture,
pages 636–666, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[Kah87] G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical As-
pects of Computer Sciences on STACS 87, pages 22–39, London, UK, 1987.
Springer-Verlag.

[KT92] A. J. Kfoury and J. Tiuryn. Type reconstruction in finite rank fragments of
the second-order lambda-calculus. Inf. Comput., 98(2):228–257, 1992.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 177–188, Albequerque, New
Mexico, 1992.

[MDCB91] R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc
approach to the implementation of polymorphism. ACM Transactions on
Programming Languages and Systems, 13(3):342–371, July 1991.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of
memory management. In FPCA ’95: Proceedings of the seventh international
conference on Functional programming languages and computer architecture,
pages 66–77, New York, NY, USA, 1995. ACM Press.

[MMH96] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure
conversion. In Symposium on Principles of Programming Languages, pages
271–283, 1996.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F
to typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):527–568, 1999.

[Oho95] Atsushi Ohori. A polymorphic record calculus and its compilation.
ACM Transactions on Programming Languages and Systems, 17(6):844–895,
November 1995.

[Oho99] Atsushi Ohori. A curry-howard isomorphism for compilation and program
execution. In Typed Lambda Calculus and Applications, pages 280–294, 1999.

[Oho04] Atsushi Ohori. Register allocation by proof transformation. Sci. Comput.
Program., 50(1-3):161–187, 2004.

[OT97] Atsushi Ohori and Tomonobu Takamizawa. An unboxed operational seman-
tics for ml polymorphism. Lisp Symb. Comput., 10(1):61–91, 1997.

97

[OY99] Atsushi Ohori and Nobuaki Yoshida. Type inference with rank 1 polymor-
phism for type-directed compilation of ML. In International Conference on
Functional Programming, pages 160–171, 1999.

[PJ93] John Peterson and Mark Jones. Implementing type classes. In PLDI ’93: Pro-
ceedings of the ACM SIGPLAN 1993 conference on Programming language
design and implementation, pages 227–236, New York, NY, USA, 1993. ACM
Press.

[SS98] Bratin Saha and Zhong Shao. Optimal type lifting. In TIC ’98: Proceedings
of the Second International Workshop on Types in Compilation, pages 156–
177, London, UK, 1998. Springer-Verlag.

[Thi95] Peter J. Thiemann. Unboxed values and polymorphic typing revisited. In
FPCA ’95: Proceedings of the seventh international conference on Functional
programming languages and computer architecture, pages 24–35, New York,
NY, USA, 1995. ACM Press.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A type-directed optimizing compiler for ML. In Proc. ACM SIGPLAN ’96
Conference on Programming Language Design and Implementation, pages
181–192, 1996.

[Tol94] Andrew P. Tolmach. Tag-free garbage collection using explicit type parame-
ters. In LISP and Functional Programming, pages 1–11, 1994.

98

