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Abstract

Background: Nucleosome, the fundamental unit of chromatin, is formed by wrapping nearly 147bp of DNA
around an octamer of histone proteins. This histone core has many variants that are different from each other by
their biochemical compositions as well as biological functions. Although the deposition of histone variants onto
chromatin has been implicated in many important biological processes, such as transcription and replication, the
mechanisms of how they are deposited on target sites are still obscure.

Results: By analyzing genomic sequences of nucleosomes bearing different histone variants from human,
including H2A.Z, H3.3 and both (H3.3/H2A.Z, so-called double variant histones), we found that genomic sequence
contributes in part to determining target sites for different histone variants. Moreover, dinucleotides CA/TG are
remarkably important in distinguishing target sites of H2A.Z-only nucleosomes with those of H3.3-containing (both
H3.3-only and double variant) nucleosomes.

Conclusions: There exists a DNA-related mechanism regulating the deposition of different histone variants onto
chromatin and biological outcomes thereof. This provides additional insights into epigenetic regulatory
mechanisms of many important cellular processes.

Background
Eukaryotic genomes are packaged into chromatin, a
highly condensed structure like a bead-on-string fiber
with fundamental repeating units, the nucleosomes.
Each nucleosome is formed by wrapping 147bp of DNA
around a histone core, an octamer of proteins that con-
tains a central (H3 – H4)2 tetramer flanked on both side
by two H2A – H2B dimers [1]. Biological evidences
have increasingly shown that, far beyond simple DNA
compaction chromatin imposes ubiquitous and pro-
found effects on many important DNA-based processes,
such as transcription, DNA replication and repair [2-5].
During those processes, the structure of chromatin must
be dynamically and reversibly altered to enable or

repress the access of cellular machineries to underlying
genomic sequences.
To alter histone-DNA and histone-histone interactions

the cell has developed diverse and complicated path-
ways, such as post-translational modifications (PTMs) of
histone proteins, ATP-dependent chromatin remodeling
or replacement of canonical histones by nonallelic his-
tone variants [6]. For example, changes in the net charge
of nucleosomes by lysine acetylation would result in
increasing nucleosome mobility, making acetylated
nucleosomes easier to displace from their translational
positions [7-9]; in yeast, nucleosomes can be moved
from their default positions to energetically unfavorable
positions by ISW2 ATP-dependent chromatin remodel-
ing complex or even evicted from chromatin by orche-
strated action of RSC chromatin remodeling complex
and nucleosome-assembly protein 1 (Nap1) histone cha-
perone [10,11]; in human, nucleosomes bearing both
H2A.Z and H3.3 histone variants are observed to be
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prone to eviction [12]. Despite their important roles in
regulating chromatin structure and consequently chro-
matin-based processes, not until recently have histone
variants received considerable attention. Among the
most extensively studied histone variants are H3.3 and
H2A.Z, the isoforms of histones H3 and H2A, respec-
tively. H3.3 has been implicated in many biological
pathways in which it may function as neutral replace-
ment histone at chromatin regions where histones have
been displaced upon transcriptional activities [13], or it
may help to transmit epigenetic memory of active gene
states [14]. Recent studies have also revealed unrecog-
nized roles of this variant in chromatin remodeling
mechanisms during sexual reproduction [15] and in
forming open chromatin regions by inhibiting the bind-
ing of linker histone H1 [16]. While studies on H3.3
highly agree about its functions, controversial character-
istics have been observed for H2A.Z [17,18]. In some
cases, H2A.Z is shown to increase the stability of
nucleosomes bearing it [19] while in others it appears
that H2A.Z is easier to displace from chromatin than is
H2A [20,21]; H2A.Z has also been claimed to involve in
gene inactivation [22] and activation (or both) [23].
Nevertheless, most of previous works came into the
same conclusion that H2A.Z and H3.3 are non-
randomly distributed along the genome and those distri-
butions may reflect their biological functions [24]. So
understanding how H3.3 and H2A.Z are distributed
over the genome and its biological implication gives us
deeper insights into epigenetic mechanisms of many
important processes.
Previous works have shown that, histone variants dif-

fer from their canonical counterparts not only by their
biochemical compositions, ranging from a few amino-
acid positions to large protein domains, but also by
their incorporations into chromatin. While canonical
histones are expressed and incorporated into chromatin
during DNA replication in S phase, most histone var-
iants are synthesized throughout the cell cycle and avail-
able to nucleosome assembly pathways that occur in a
Replication-Independent (RI) manner [13,25]. For exam-
ple, it has been known in [26-28] that Swi2/Snf2-related
ATP-dependent chromatin remodeling complex SWR1,
histone chaperones Nap1 and Chz1 involve in the
assembly of Htz1 (H2A.Z in yeast), while the deposition
of H3.3 involves with the activity of histone chaperone
HIRA [29]. It still remains elusive, however, that how
histone variants H2A.Z and H3.3 are targeted to the
deposited sites [24,25,30].
The advancement of high-throughput profiling tech-

nologies such as ChIP-Chip and ChIP-Seq makes it pos-
sbile to map genome-wide distributions of nucleosomes
bearing different histone variants [21,31]. This offers an
unprecedented opportunity to investigate the effects of

histone variant distribution on cellular processes (e.g.
transcription) as well as its regulatory factors. More
recently, Jin et al. [32] have investigated genome-wide
distributions of nucleosomes containing different his-
tone variants, including H2A.Z, H3.3 and both (H3.3/
H2A.Z, so-called double variant histones) in human
genome. The work has shown that nucleosomes bearing
double variant histones mainly account for the enriched
patterns of histone variants observed at promoters and
other important regulatory regions of active genes.
Using the data available from Jin et al. [32], we investi-
gated whether there exist genomic features that may
help to distinguish target sites of nucleosomes bearing
different histone variants in the vicinity of promoter
regions. We found that genomic sequence contributes
partially to determining the target sites of these variants.
Moreover, dinucleotides CA/TG are remarkably impor-
tant in distinguishing target sites of H2A.Z-only nucleo-
somes with those of H3.3-containing (both H3.3-only
and double variant) nucleosomes. These results give
additional insights into epigenetic regulatory mechan-
isms of many important cellular processes.

Results and discussion
Genomic sequence partially distinguishes target sites of
double variant nucleosomes with those of nucleosomes
bearing only H3.3 or H2A.Z
High-resolution studies on crystal structure of the
nucleosome core particle have revealed that the DNA is
wrapped around the histone octamer in a flat, left-
handed superhelix [1]. Based on this finding, the notion
of sequence-dependent affinity of the histone core is
defined as the energetic cost to bend the DNA to
accommodate the superhelical path. The observation
that nucleosomes show higher affinity for particular
DNA sequences [33] has fostered many efforts to find
genomic signatures related to genome-wide nucleosome
positioning [34-37]. Although the role of genomic
sequence on nucleosome distribution is still a controver-
sial topic, it has been confirmed, both in vivo and in
vitro, that DNA sequence imparts nucleosome distribu-
tion and there actually exists genomic code for nucleo-
some positioning [38-40]. Regarding important
functions of H2A.Z, many efforts have been spent on
identifying genomic signatures that may affect its gen-
ome-wide distribution. Tolstorukov et al. [41] compared
genomic sequences of H2A.Z-containing nucleosomes
from yeast and human and concluded that human
nucleosomal sequences do not show the pattern of 10-
bp periodicity as observed in yeast. Despite trying a
handful of approaches, Gervais et al. [42] could not find
any specific DNA motif that can help to distinguish
H2A.Z-containing nucleosomal sequences from those of
nucleosomes containing canonical histones. Other
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computational approaches also failed to distinguish
H2A.Z-containing nucleosomal sequences from linker
sequences [37]. Recently, the work of Jin et al. [32] gives
the evidence that most of H2A.Z-containing nucleo-
somes observed at important genomic regions, such as
promoters, CTCF binding sites, etc. are actually double
variant nucleosomes. Taken together, we speculate that
at important genomic regions (e.g. promoters) although
histone variant-containing nucleosomes do not occupy
thermodynamically favorite locations, DNA sequence
may help to distinguish target sites of double variant
nucleosomes from those of nucleosomes bearing only
H2A.Z or H3.3.
To verify this hypothesis, we applied the computa-

tional procedure proposed by Peckham et al. [36] to the
problem of discriminating double variant nucleosomal
sequences from H2A.Z-only or H3.3-only nucleosomal
sequences. This method has shown competitive perfor-
mance for the task of discriminating “nucleosome form-
ing” sequences from “nucleosome inhibiting” sequences
and was applied sucessfully on human data [43]. The
SVM classifiers in our work were built using Radial
Basis Function (RBF) kernel (see Methods) instead of lin-
ear (dot product) kernel as used in original work.
Sequence datasets, called double-h2az and double-h33
for training SVM classifiers were created as described in
Methods. Each sequence in the training sets was repre-
sented as a 2, 772-entry vector, in which each entry is a
normalized count of the occurences of a particular
k-mer or its reverse complement, with k=1 up to 6.
These vectors were used to train SVM classifiers.
To evaluate the performances of the resultant classi-

fiers we used 10-fold cross-validation procedure.
According to this procedure, each dataset was divided
randomly into 10 subsets. The classifiers were trained
on 9 subsets and tested on the remaining one. This
training-testing procedure was repeated 10 times using a
different hold-out set at each time. To measure the per-
formances of the classifiers, we utilized the receive-
operator-characteristic (ROC) curve. The quality of the
classifier can be evaluated by calculating the area-under-
the-curve (AUC) (the “ROC score”), in which a random
classifier achieves the ROC score of 0.5 and a perfect
classifier achieves the ROC score of 1.0. The average
ROC scores from 10-fold cross validation on two
sequence datasets, double-h2az and double-h33, were
0.62 (SD ≈ 0.02) and 0.63 (SD ≈ 0.03), respectively.
These are significantly higher than the performance of
the random classifier (p = 0.3 × 10–5 and p = 0.15 ×
10–4 (t-test), correspondingly). This result shows that,
genomic sequence contributes in part to targeting dou-
ble variant nucleosomes to sites different from those of
H2A.Z-only and H3.3-only nucleosomes.

Characteristics of sequences wrapping diffenrent
histone variants
The result above suggests us to search for sequence fea-
tures characterizing target sites of different histone var-
iants. Basically, there are two kinds of such features
[44]: one is compositional discriminative motif, which
may help to distinguish double variant nucleosomal
sequences from H2A.Z-only and H3.3-only ones; and
the other is periodic pattern, which may appear in the
set of nucleosomal sequences.
There are several approaches to find compositional

discriminative motifs. For example, Peckham et al. [36]
used a simple word counting method to compute the
frequencies of different DNA motifs and evaluated dis-
criminative power of each motif in separating “nucleo-
some forming” sequences from “nucleosome inhibiting”
ones based on its ROC score. Gupta et al. [43] com-
puted the percentages of dinucleotides from “nucleo-
some forming” and “nucleosome inhibiting” sequence
sets and found an overrepresentation of several dinu-
cleotides in “nucleosome inhibitory” and “nucleosome
favorable” sequences, such as AC/GT and CC/GG, cor-
respondingly. In our work, we used feature selection
with Fisher criterion, a simple yet effective method (see
Methods), for the task. Two sets of normalized count
vectors corresponding to double-h2az and double-h33
datasets were used to evaluate the discriminative power
of different DNA motifs. Analyzing the numbers of
occurences of 20 strongest discriminative motifs in dou-
ble-h2a.z (Table 1, ranked by F-score), we found that
H2A.Z-only nucleosomal sequences are richer in AT-
related motifs (e.g. AAT/ATT, TA, AA/TT, AAA/TTT),
which are known to be nucleosome inhibitory signals,
while double variant nucleosomal sequences are richer
in such motifs as CAG/CTG, CA/TG, C/G, which are
known to be nucleosome favoring signals [36]. For 20
strongest discriminative motifs in double-h3.3 (Table 2,
ranked by F-score), H3.3-only nucleosomal sequences
are richer in highly flexible, nucleosome favoring motifs,
such as CA/TG, ACA/TGT, CACA/TGTG, while dou-
ble variant nuclesomal sequences are richer in nucleo-
some favoring but less flexible motifs, such as CC/GG.
The periodicity has been known as one of the funda-

mental features that may appear in a set of DNA
sequences. For example, 3bp sequence period is known
to characterize coding sequences [45], while ~10bp
sequence period is known to affect the curvature, bend-
ability [46] and establish rotational setting on the his-
tone surface [31] of the DNA sequences. To identify
periodic patterns that may appear in nuclesomal
sequences wrapping different histone variants, we
employed autocorrelation analysis, which was sucessfully
applied to detect hidden sequence periodicities in sets of
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DNA sequences [47,48](see Methods). Investigating the
periodograms of DNA motifs which show strongest dis-
criminative power, we found clear periods of 2, 4, 6 of
dinucleotides CA/TG in the set of 2169 double variant
nucleosomal sequences (Figure 1); and clear periods of
2, 4, 6, 8 in the set of 348 H3.3-only nucleosomal

sequences (Figure 2) while the set of 894 H2A.Z-only
nucleosomal sequences does not exhibit this feature
(Figure 3).
The enrichment (and possibly periodic patterns) of

CA/TG dinucleotides in the genomes of many eukaryo-
tic organisms can be resulted from CpG-methylation-

Table 1 Strongest discriminative motifs corresponding to double-h2az dataset ranked by F-scores

Order Motifs F-score Richer in H3.3/H2A.Z (+) or H2A.Z-only (-) nucleosomal sequences

1 CAG 0.0961057 +

2 AAT 0.079221 -

3 TA 0.0781893 -

4 CA 0.0715567 +

5 CAGG 0.0713273 +

6 AA 0.0709853 -

7 TAA 0.0662379 -

8 AATA 0.0655541 -

9 C 0.0649125 +

10 AAAT 0.0630749 -

11 ATA 0.0595751 -

12 ATAA 0.0559362 -

13 AAA 0.0554242 -

14 AGG 0.0551005 +

15 AG 0.0541048 +

16 AAAAT 0.0516458 -

17 TAAA 0.051629 -

18 CC 0.0491037 +

19 AAATA 0.0459333 -

20 AT 0.044603 -

Table 2 Strongest discriminative motifs corresponding to double-h33 dataset ranked by F-scores

Order Motifs F-score Richer in H3.3/H2A.Z (+) or H3.3-only (-) nucleosomal sequences

1 GGA 0.08384 +

2 CA 0.0709705 -

3 GGAA 0.0655294 +

4 ACTCCC 0.0649791 +

5 ACA 0.0625949 -

6 AC 0.0595409 -

7 AGGA 0.0571402 +

8 GCTCC 0.0509788 +

9 ACAT 0.0499685 -

10 ATG 0.0499393 -

11 CTCCC 0.0469626 +

12 CC 0.0445543 +

13 CAC 0.0441645 -

14 CTCC 0.0428833 +

15 GGAAA 0.0427223 +

16 ACACA 0.0406986 -

17 GGGA 0.039697 +

18 CCCAGG 0.0386637 +

19 TGGAAA 0.0379053 +

20 CACA 0.0375203 -
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deamination process, which dominates point substitu-
tions in vertebrates [49], in which highly-methylated
CpG dinucleotide is deaminated and then mutated to
CA or TG [50,51]. This may lead to the possibility that
the observed periodicities of CA/TG are caused by

random deposition of H3.3-containing nucleosomes to
CA/TG-enriched regions generated by this process.
However, a recent work [52] has reported that H3.3 var-
iant preferentially targets CpG-rich promoters and a
large number of H3.3 promoters has low DNA

Figure 1 Periodograms of dinucleotides CA/TG with x-axis representing distance k, y-axis representing average covariance value CXX
(k). CA/TG periodicities corresponding to the set of double variant nucleosomal sequences.

Figure 2 Periodograms of dinucleotides CA/TG with x-axis representing distance k, y-axis representing average covariance value CXX
(k). CA/TG periodicities corresponding to the set of H3.3-only nucleosomal sequences.
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methylation level. Taken together with this, our result
suggests that the periodicities of CA/TG dinucleotides
may play important roles in determining the target sites
of nucleosomes containing H3.3 (both H3.3-only and
double) variant. Also, from Table 2 we can see that the
enrichment of CA/TG dinucleotides is one of the stron-
gest discriminative signals distinguishing target sites of
double variant nucleosomes from those of H3.3-only
nucleosomes. No DNA motif, however, shows dominant
effect on this target site selection. This suggests that the
role of DNA sequence may be modest compared with
that of other factors (such as chromatin remodeling
complexes, PTMs) in identifying exact locations for dou-
ble variant nucleosomes.
Previous work has shown that in both D. melanogaster

and human cells, H3.3 is deposited into transcribed
genes, promoters and gene regulatory elements [6]. It is
incorporated into genes upon transcription induction
and is associated with transcriptional elongation [24].
Recent in vitro study about the effects of histone var-
iants on transcription reported, however, that the pre-
sence of H3.3 is transparent to the transcription and the
effect of “hybrid” particles containing both H2A.Z and
H3.3 (i.e. double variant nucleosomes) was entirely
dominated by the presence of H2A.Z [53]. These results,
together with what was reported in Jin et al. [32], have
raised important questions that: why double variant
nucleosomes are present at important regulatory regions
and whether or not H3.3 simply marks sites of nucleo-
some destabilization or is itself important for mediating

the process [54]. Our result here provides a complemen-
tary answer to these questions: the presence of H3.3 in
double variant nucleosomes can help to position the
particles at specific locations in promoters; based on
that, H2A.Z, which is also included in the particles, can
execute its functions on transcription process. This is
consistent with the hypothesis that the process incor-
porating H3.3 into nucleosomes, which involves histone
chaperones and nucleosome remodelers, also facilitates
H2A.Z incorporation [54]; and with the in vitro result
that H3.3 may be just a marker of chromatin regions in
flux while the presence of H2A.Z directly affects the
transcriptional properties of the particles [53].

Conclusions
Histone variants, such as H2A.Z and H3.3, play signifi-
cant biological roles in regulating chromatin structure
and chromatin-based processes thereof. So it is impor-
tant to understand how they are targeted to the depos-
ited sites. Although it has been known that there are
several biological pathways related to the deposition of
these variants onto chromatin, the mechanisms are still
unclear. Our work here shows that, there may exist a
DNA-related mechanism regulating the deposition of
different histone variants onto chromatin. In that, highly
flexible dinucleotides, such as CA/TG, play remarkable
role in the selection of deposited sites for H3.3-contain-
ing (both H3.3-only or double variant) nucleosomes.
Moreover, recent works have also shown that H3.3-con-
taining nucleosomes are deposited to sites marked with

Figure 3 Periodograms of dinucleotides CA/TG with x-axis representing distance k, y-axis representing average covariance value CXX
(k). CA/TG show no specific periodicity among the set of H2A.Z-only nucleosomal sequences.
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active PTMs (such as H3K4Me3) [55] and this deposi-
tion is controlled by different factors depending on spe-
cific genomic regions [52]. Future studies therefore
should seek to understand how those factors coordinate
to regulate the deposition of H3.3 variant onto chroma-
tin and its relationship with transcription process.

Methods
Data preparation
Nucleosome positioning analysis
Experimental ChIP-Seq data (BED files) corresponding
to “H2A.Z only”, “H3.3 only” and Double (H2A.Z/H3.3)
histone variants from human H3.3 HeLa S3 cell were
received from [32]. Nucleosome positioning profiles of
those histone variants were identified using NPS [56]
with default settings except that the parameter “mini-
mum nucleosome length” was set to 100bp. We received
totally 14565 double variant, 4876 H2A.Z-only and 2799
H3.3-only nucleosomes. The lengths of these nucleo-
somes were then truncated/extended, centered on the
nucleosome, to 150bp if the resultant lengths were
longer/shorter than 150bp. Genomic sequences corre-
sponding to these nucleosomes were extracted from
UCSC Genome Browser [57], human genome Build 36.1
(hg18 assembly). Repeats from RepeatMasker and Tan-
dem Repeat Finder were excluded in our analysis.
The gene set
UCSC Old Known Genes were extracted and then
mapped to Affymetrix U133P2 probe IDs using the
tables provided in the UCSC Genome Browser [58].
Genes without corresponding U133P2 IDs were
removed. If multiple genes map to the same U133P2 ID,
only one was retained. We also removed genes from
chromosomal regions marked with “random” or genes
from haplotype regions. The final set contained 18285
genes.
Training datasets
All nucleosomes identified above were mapped to the
vicinity of the transcription start sites (TSSs) (10000bp
upstream and 2000bp downstream) of the genes in the
gene set. Only nucleosomes belonging to these regions
were used for further analysis. After this step, we
received 2169 double variant, 894 H2A.Z-only and 348
H3.3-only nucleosomes. We then created two sequence
datasets, namely doulbe-h2az and double-h33, for train-
ing purpose. double-h2az dataset contained 800 double
variant nucleosomal sequences, selected randomly from
2169 double variant nucleosomes, and 800 H2A.Z-only
nucleosomal sequences, selected randomly from 894
H2A.Z-only nucleosomes. Similarly, double-h33 dataset
contained 300 double variant nucleosomal sequences,
selected randomly from 2169 double variant nucleo-
somes, and 300 H3.3-only nucleosomal sequences,

selected randomly from 348 H3.3-only nucleosomes
above.

Support vector machine (SVM) classifiers
Given a training set containing instance-class pairs (xi,
yi), i = 1, 2, ..., l where xi Î Rl and yi Î {–1, 1} is a class
label, an SVM classifier is a hyperplane wTj(xi) + b,
where j(xi) is a function mapping xi into a higher
(maybe infinite) dimensional space, that best separates
the two classes. The hyperplane is obtained by solving
the following primal optimization problem:

Minimize C

y w x b
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Its dual is a quadratic optimization problem:
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where e is an unit vector, C > 0 is an error penalty
parameter, Qij = yiyjK (xi,xj), K (xi,xj) = j(xi)T j(xj) is a
kernel function. In our work, we employed Radial Basis
Function (RBF) kernel K (xi,xj) = exp(–(xi – xi)

2) to
build SVM classifiers. Discriminant value for a testing
instance x given by a trained classifier is: f(x) = ∑i aiyiK
(x,xi) + b. Gist software package [59] was utilized for the
tasks of training and testing SVM classifiers.

Feature selection with Fisher criterion
Feature selection is a process of selecting a subset of rele-
vant features available from the data that most contribute
to distinguishing instances from different classes. In our
method, sequence features related to two kinds of histone
variants, double variant and H3.3 only or double variant
and H2A.Z only, were identified and ranked by their
Fisher scores (or F-score in short). This is one of statisti-
cal criteria that is simple, effective and independent of
the choice of classification method. The discriminative
strength of each feature is defined as following:
Given a dataset X with two classes, denote instances

in class 1 as X1, and those in class 2 as X2. Assume X j
k

is the average of the jth feature in Xk, the F-score of the
jth feature is:

F j
x x

s s

j j

j j

( ) =
−( )

( ) + ( )

1 2 2

1 2 2 2
(3)
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where

S x xj
k

j j
k

x X k

( ) = −( )
∈
∑2 2

(4)

The numerator indicates the discrimination between
two classes, and the denominator indicates the scatter
within each class. The larger the F-score is, the more
likely this feature is more discriminative. Gist software
package [59] was used to calculate F-scores for different
DNA motifs.

Autocorrelation analysis
Correlation functions measure the enrichment of certain
pairs of motifs at a distance of k bp. To calculate XX-
autocorrelation fuction we followed the method
described in [48]. Given a motif X and a DNA sequence
S, we count in the entire S the number N kXX

S ( ) of pairs
of two identical motifs X and X separated by k base
pairs. There are L – k – l + 1 pairs in a sequence of
length L, where l is the length of the motif. Conse-
quently, the probability to find the pair X – X at the dis-
tance k can be estimated as:

P k N k L k lXX XX
S( ) ( ) / ( )= − − + 1 (5)

The probability to find a single motif X, denoted by PX
(k), can be estimated as:

P k N L k lX X
S( ) / ( )= − − + 1 (6)

where N X
S is the number of motif X in the sequence

S. If the pairs at a distance k are statistically indepen-
dent we have: PXX(k) = PX(k) * PX(k). Thus the differ-
ence, CXX(k) = PXX(k) – PX(k) * PX(k), measures the
correlation at a distance of k base pairs. A positive peak
of the covariance CXX(k) implies that there are more
X – X pairs at a distance of k than expected by chance.
The mean covariance function for a set of sequences
was calculated by averaging individual functions over all
the sequences in the set.

Acknowledgements
We would like to gratefully thank Mr. Chongzhi Zang and his colleagues for
kindly sharing their experiment data. The first and the third authors have
been supported by Japanese Government Scholarship (Monbukagakusho) to
study in Japan. The second author is supported by NAFOSTED (Vietnam’s
National Foundation for Science and Technology Development).
This article has been published as part of BMC Genomics Volume 11
Supplement 4, 2010: Ninth International Conference on Bioinformatics
(InCoB2010): Computational Biology. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2164/11?issue=S4.

Author details
1School of Knowledge Science, Japan Advanced Institute of Science and
Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan. 2Hanoi National
University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam.

3Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau
Giay, Hanoi, Vietnam.

Authors’ contributions
NTL and TBH defined the research problem. NTL and BHH designed the
experiment. NTL, BHH and TBH drafted the manuscript. All authors
contributed to and approved the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 2 December 2010

References
1. Luger K, Mader AW, Richmond AK, Sargent DF, Richmond TJ: Crystal

structure of the nucleosome core particle at 2.8 A resolution. Nature
1997, 389:251-260.

2. Groth A, Rocha W, Verreault A, Almouzni G: Chromatin Challenges during
DNA Replication and Repair. Cell 2007, 128(4):721-733.

3. Li B, Carey M, Workman JL: The Role of Chromatin during Transcription.
Cell 2007, 128(4):707-719.

4. Corpet A, Almouzni G: Making copies of chromatin: the challenge of
nucleosomal organization and epigenetic information. Trends in Cell
Biology 2008, 19:29-41.

5. Probst AV, Dunleavy E, Almouzni G: Epigenetic inheritance during the cell
cycle. Nature Reviews Molecular Cell Biology 2009, 10:192-206.

6. Henikoff S: Nucleosome destabilization in the epigenetic regulation of
gene expression. Nature Reviews Genetics 2008, 9:15-26.

7. Waterborg JH: Dynamics of histone acetylation in vivo. A function for
acetylation turnover? Biochemistry and cell biology 2002, 80(3):363-378.

8. Reinke H, Horz W: Histones Are First Hyperacetylated and Then Lose
Contact with the Activated PHO5 Promoter. Molecular Cell 2003,
11(6):1599-1607.

9. Zhao J, Diaz JH, Gross DS: Domain-Wide Displacement of Histones by
Activated Heat Shock Factor Occurs Independently of Swi/Snf and Is Not
Correlated with RNA Polymerase II Density. Molecular and Cellular Biology
2005, 25(20):8985-8999.

10. Whitehouse I, Tsukiyama T: Antagonistic forces that position nucleosomes
in vivo. Nat. Struct. Mol. Biol. 2006, 13(7):633-640.

11. Lorch Y, Maier-Davis B, Kornberg RD: Chromatin remodeling by
nucleosome disassembly in vitro. Proc. Natl. Acad. Sci. U.S.A. 2006,
103(9):3090-3093.

12. Jin C, Felsenfeld G: Nucleosome stability mediated by histone variants
H3.3 and H2A.Z. Genes and Development 2007, 21(12):1519-1529.

13. Henikoff S, Ahmad K: Assembly of variant histones into chromatin. Annual
review of cell and developmental biology 2005, 21:133-153.

14. Ng RK, Gurdon JB: Epigenetic memory of active gene transcription is
inherited through somatic cell nuclear transfer. Proc. Natl. Acad. Sci. U.S.A.
2005, 102(6):1957-1962.

15. Ooi SL, Henikoff S: Germline histone dynamics and epigenetics. Current
opinion in cell biology 2007, 19(3):257-265.

16. Braunschweig U, Hogan GJ, Pagie L, van Steensel B: Histone H1 binding is
inhibited by histone variant H3. The EMBO journal 2009, 28(23):3635-3645.

17. Guillemette B, Gaudreau L: Reuniting the contrasting functions of H2A.Z.
Biochemistry and cell biology 2006, 84(4):528-535.

18. Zlatanova J, Thakar A: H2A.Z: view from the top. Structure 2008,
16(2):166-179.

19. Park YJ, Dyer PN, Tremethick DJ, Luger K: A new fluorescence resonance
energy transfer approach demonstrates that the histone variant H2AZ
stabilizes the histone octamer within the nucleosome. The Journal of
biological chemistry 2004, 279(23):24274-24282.

20. Zhang H, Roberts DN, Cairns BR: Genome-wide dynamics of Htz1, a
histone H2A variant that poises repressed/basal promoters for activation
through histone loss. Cell 2005, 123(2):219-231.

21. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K:
Dynamic regulation of nucleosome positioning in the human genome.
Cell 2008, 132(5):887-898.

22. Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F,
Gaudreau L: Variant histone H2A.Z is globally localized to the promoters
of inactive yeast genes and regulates nucleosome positioning. PLoS
biology 2005, 3(12):e384.

Le et al. BMC Genomics 2010, 11(Suppl 4):S3
http://www.biomedcentral.com/1471-2164/11/S4/S3

Page 8 of 9

http://www.biomedcentral.com/1471-2164/11?issue=S4
http://www.ncbi.nlm.nih.gov/pubmed/9305837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9305837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17320509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17320509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17320508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19027300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19027300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19234478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19234478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12123289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12123289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17575053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17575053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16212490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15684086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15684086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18275809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15020582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15020582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15020582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16239141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16239141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16239141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18329373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16248679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16248679?dopt=Abstract


23. Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL,
Rando OJ, Madhani HD: Histone variant H2A.Z marks the 5’ ends of both
active and inactive genes in euchromatin. Cell 2005, 123(2):233-248.

24. Talbert PB, Henikoff S: Histone variants—ancient wrap artists of the
epigenome. Nature Reviews Molecular Cell Biology 2010, 11(4):264-275.

25. Jin J, Cai Y, Li B, Conaway RC, Workman JL, Conaway JW, Kusch T: In and
out: histone variant exchange in chromatin. Trends in biochemical sciences
2005, 30(12):680-687.

26. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C: ATP-driven exchange
of histone H2AZ variant catalyzed by SWR1 chromatin remodeling
complex. Science 2004, 303(5656):343-348.

27. Luk E, Vu ND, Patteson K, Mizuguchi G, Wu WH, Ranjan A, Backus J, Sen S,
Lewis M, Bai Y, Wu C: Chz1, a nuclear chaperone for histone H2AZ.
Molecular cell 2007, 25(3):357-368.

28. Straube K, Blackwell JJS, Pemberton LF: Nap1 and Chz1 have Separate
Htz1 Nuclear Import and Assembly Functions. Traffic 2010, 11(2):185-197.

29. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y: Histone H3.1 and H3.3
complexes mediate nucleosome assembly pathways dependent or
independent of DNA synthesis. Cell 2004, 116:51-61.

30. Orsi GA, Couble P, Loppin B: Epigenetic and replacement roles of histone
variant H3.3 in reproduction and development. The International journal
of developmental biology 2009, 53(2-3):231-243.

31. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF:
Translational and rotational settings of H2A.Z nucleosomes across the
Saccharomyces cerevisiae genome. Nature 2007, 446(7135):572-576.

32. Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G: H3.3/H2A.Z
double variant-containing nucleosomes mark ’nucleosome-free regions’
of active promoters and other regulatory regions. Nature Genetics 2009,
41(8):941-945.

33. Thastrom A, Lowary PT, Widlund HR, Cao H, Kubista M, Widom J: Sequence
Motifs and Free Energies of Selected Natural and Non-natural
Nucleosome Positioning DNA Sequences. Journal of molecular biology
1999, 288(2):213-229.

34. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK,
Wang JPZ, Widom J: A genomic code for nucleosome positioning. Nature
2006, 442(7104):772-778.

35. Ioshikhes IP, Albert I, Zanton SJ, Pugh BF: Nucleosome positions predicted
through comparative genomics. Nature Genetics 2006, 38(10):1210-1215.

36. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS,
Struhl K, Weng Z: Nucleosome positioning signals in genomic DNA.
Genome Research 2007, 17(8):1170-1177.

37. Yuan GC, Liu JS: Genomic sequence is highly predictive of local
nucleosome depletion. PLoS computational biology 2008, 4:e13.

38. Chung HR, Vingron M: Sequence-dependent nucleosome positioning.
Journal of molecular biology 2008, 386(5):1411-1422.

39. Fraser RM, Keszenman-Pereyra D, Simmen MW, Allan J: High-resolution
mapping of sequence-directed nucleosome positioning on genomic
DNA. Journal of molecular biology 2009, 390(2):292-305.

40. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y,
LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E: The DNA-encoded
nucleosome organization of a eukaryotic genome. Nature 2009,
458(7236):362-366.

41. Tolstorukov MY, Kharchenko PV, Goldman JA, Kingston RE, Park PJ:
Comparative analysis of H2A.Z nucleosome organization in the human
and yeast genomes. Genome Research 2009, 19(6):967-977.

42. Gervais AL, Gaudreau L: Discriminating nucleosomes containing histone
H2A.Z or H2A based on genetic and epigenetic information. BMC
Molecular Biology 2009, 10(18).

43. Gupta S, Dennis J, Thurman RE, Kingston R, Stamatoyannopoulos JA,
Noble WS: Predicting human nucleosome occupancy from primary
sequence. PLoS computational biology 2008, 4(8):e1000134.

44. Bolshoy A: Revisiting the relationship between compositional sequence
complexity and periodicity. Computational biology and chemistry 2007,
32:17-28.

45. Trifonov EN: Translation framing code and frame-monitoring mechanism
as suggested by the analysis of mRNA and 16 S rRNA nucleotide
sequences. Journal of molecular biology 1987, 194(4):643-652.

46. Herzel H, Weiss O, Trifonov EN: 10-11 bp periodicities in complete
genomes reflect protein structure and DNA folding. Bioinformatics 1999,
15:187-193.

47. Tolstorukov MY, Virnik KM, Adhya S, Zhurkin VB: A-tract clusters may
facilitate DNA packaging in bacterial nucleoid. Nucleic Acids Research
2005, 33(12):3907-3918.

48. Kumar L, Futschik M, Herzel H: DNA Motifs and Sequence Periodicities. In
Silico Biology 2006, 6(1-2):71-78.

49. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G,
Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T,
Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J,
Nusbaum C, Rozen S, TJ TJH, Lipshutz R, Chee M, Lander ES: Large-scale
identification, mapping, and genotyping of single-nucleotide
polymorphisms in the human genome. Science 1998,
280(5366):1077-1082.

50. Coulondre C, Farabaugh JHMPJ, Gilbert W: Molecular basis of base
substitution hotspots in Escherichia coli. Nature 1978, 274(5673):775-780.

51. Razin A, Riggs AD: DNA methylation and gene function. Science 1980,
210(4470):604-610.

52. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S,
Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC,
Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C,
Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD,
Zheng D, Allis CD: Distinct factors control histone variant H3.3
localization at specific genomic regions. Cell 2010, 140(5):678-691.

53. Thakar A, Gupta P, McAllister WT, Zlatanova J: Histone Variant H2A.Z
Inhibits Transcription in Reconstituted Nucleosomes. Biochemistry 2010,
49(19):4018-4026.

54. Henikoff S: Labile H3.3+H2A.Z nucleosomes mark ’nucleosome-free
regions’. Nature Genetics 2009, 41(8):865-866.

55. Delbarre E, Jacobsen BM, Reiner AH, AL ALS, Kuntziger T, Collas P:
Chromatin Environment of Histone Variant H3.3 Revealed by
Quantitative Imaging and Genome-scale Chromatin and DNA
Immunoprecipitation. Molecular biology of the cell 2010, 21(11):1872-1884.

56. Zhang Y, Shin H, Song JS, Lei Y, Liu XS: Identifying Positioned
Nucleosomes with Epigenetic Marks in Human from ChIP-Seq. BMC
Genomics 2008, 9(537).

57. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D: The human genome browser at UCSC. Genome Research 2002,
12(6):996-1006.

58. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D,
Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids
Research 2004, 32:D493-D496.

59. Pavlidis P, Wapinski I, Noble WS: Support vector machine classification on
the web. Bioinformatics 2004, 20:586-587.

doi:10.1186/1471-2164-11-S4-S3
Cite this article as: Le et al.: Sequence-dependent histone variant
positioning signatures. BMC Genomics 2010 11(Suppl 4):S3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Le et al. BMC Genomics 2010, 11(Suppl 4):S3
http://www.biomedcentral.com/1471-2164/11/S4/S3

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/16239142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16239142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20197778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20197778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16257529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16257529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17289584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19929865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19929865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14718166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19412883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19412883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19633671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19633671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19633671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17620451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18225943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18225943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19070622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19427325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19427325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19427325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19092803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19092803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19246569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19246569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725940?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725940?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17983838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17983838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2443708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2443708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2443708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10222405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10222405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16789915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9582121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9582121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9582121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/355893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/355893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6254144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211137?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211137?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20387858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20387858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19639024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19639024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20375147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20375147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20375147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12045153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990457?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Genomic sequence partially distinguishes target sites of double variant nucleosomes with those of nucleosomes bearing only H3.3 or H2A.Z
	Characteristics of sequences wrapping diffenrent histone variants

	Conclusions
	Methods
	Data preparation
	Nucleosome positioning analysis
	The gene set
	Training datasets

	Support vector machine (SVM) classifiers
	Feature selection with Fisher criterion
	Autocorrelation analysis

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

