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Abstract

In this dissertation, we investigate the optimization issues on four different topics
related to fault-tolerant and QoS routing in networks. Research on fault-tolerant and QoS
routing covers lots of topics from the real-world engineering problem to the computability
and computation complexity analysis, here we will focus on the algorithm design and
analysis aspect.

The first problem, which is known as the Delay-Constrained Shortest Disjoint s-t-Path
Pair Problem, is to find two edge-disjoint paths in a graph G with minimum total cost from
a source node s to a sink node ¢ which satisfies a given delay bound. This problem is N/P-
hard, so we focus on designing approximation algorithms for it. We tackle this problem
by two different methods. The first method is based on existing work, which finds two
edge-disjoint paths by using a Fully Polynomial-Time Approximation Scheme (FPTAS)
algorithm for the well-known restricted shortest path problem as a building block to find a
suitable flow and then it reduces the delay at the tradeoff of cost increase. By this method
we propose an algorithm which achieves the current best bicriteria approximation factor.
The second method uses Lagrangian Relaxation. Applying this method, we simply modify
the weight of each edge and then do binary search in the solution space. Our second
algorithm can compute a reasonable solution at a much quicker speed than all previous
algorithms.

The second problem is on the minimum-cost single-source unsplittable flow. We first
focus our efforts on two cases: either with arbitrary capacities or with very large capacities.
For a graph G with arbitrary edge capacity, we present a new algorithm to compute a
minimum-cost single-source unsplittable flow in polynomial-time. This algorithm has a
performance guarantee same as the current best bound for this problem, while the time
complexity is lower and the implementation is easier. After that we modify this algorithm
to cope with the situation when the largest demand in G is far less than the minimum
capacity in it. Our last algorithm in this area is for the minimum-cost single-source
k—splittable flow problem, it achieves the best performance guarantee so far.

The third problem is on computing the Inner-node Weighted Minimum Spanning
Trees. Here we present a general framework which can find a multi-logarithm approx-
imation algorithm for this problem. Based on this framework, we further propose two
polynomial-time approximation algorithms which can achieve a better performance guar-
antee than all existing results.

Finally we study the energy-efficient broadcasting issue in mobile ad hoc networks.
We present a distributed and localized algorithm for saving energy during a broadcast
session and show by simulation data that it is energy efficient and scalable.
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Chapter 1

Background and Motivations

As networks modernize and expand with the increasing deployment of optical technology,
the large bandwidth offered by the optical fiber has brought tremendous potential for
exploitation. Emerging multimedia-based applications require both traditional Quality of
Service (QoS) guarantees (such as bandwidth and end-to-end delay) and routing reliability
during transmission. The number of services offered to customers over a fiber network is
proliferating, but the risk of losing huge volumes of data due to a span cut or node failure
(due to equipment breakdown at a central office or other events such as fires, flooding,
etc.) has also escalated. In today’s highly competitive environment, customers have come
to expect the highest QoS, including sustained continuity of service during the time they
pay for the service. Such services include multimedia streaming, video conference and
some other real-time broadcasting programs.

At the same time, the wireless ad hoc network technology is developing very fast
and high quality video applications are expected to become available in wireless ad hoc
networks in near future. But the unpredictable nature of the wireless environment is
easily prone to link failures (e.g. due to channel fading or obstructions) and resulting path
failures and data loss. Additionally, node failures (e.g. due to power loss or mobility) are
also common in ad-hoc networks.

In both situations the reliability and survivability of a network have assumed great
importance. Reliability refers to the ability of a network to provide continuity of service
with no disruption, no matter how much the network may be damaged due to events such
as link failures or node failures. Network design for reliability includes implementation
of robust hardware and software components to lengthen the expected mean time to
failure or mean time between failures. Similarly, the availability of a network refers to
the probability that network services are accessible to users, upon request, given that the
network may experience failures and subsequent repairs. Network design for availability
includes implementation of repair models to shorten the mean time to repair. Often,
reliability and availability are collectively studied as part of network dependability where
a typical assumption is that network services are not available during failure periods. An
overriding goal, therefore, is to prevent failures, and to facilitate a quick repair if they
occur.

The survivability of a network refers to the degree to which a network maintains its
functionality in the wake of failures. A typical assumption in a survivable network design
is that network components will fail, and may remain in a failed state for an extended
period of time. Hence, focus of a survivable network design is on placement of redundant



or spare resources and implementation of strategies to dynamically make use of these
backup resources, when needed, in order to maintain network operations in the presence
of faults. The ideal goal of survivability is to make a network failure imperceptible to
the user by providing service continuity and minimizing network congestion. Since cost
is always an issue, the challenge is to provide an acceptable level of service for a set of
failure scenarios in a cost effective manner.

As a result, network designers are beginning to incorporate provision of services over
link /node-disjoint paths, so that if one path fails due to a link or node failure, the second
path can carry the traffic to its destination and thus avoid any unexpected loss of service
quality. Multiple QoS-constrained paths can also be employed to achieve better load
balance and improve quality of service in bandwidth-constrained MANETS.

Improving routing reliability by using precalculated alternate paths is one of the main
consideration of our research. Calculating appropriate alternate paths is essential if al-
ternate path routing is applied to achieve high reliability. We attempt to select multiple
disjoint paths which meet the predefined constraints on reliability and other QoS demands
such as bandwidth and end-to-end delay. Any overlapping of the alternate paths has a
major impact on reliability. Hence, common links and nodes among the paths have to be
limited.

Sometimes we need to find multiple disjoint paths between a pair of nodes with dif-
ferent bandwidth requirements. In this case, we cannot simply use the edge-disjoint
algorithm anymore. Actually, this is a variant of the more generalized unsplittable flow
problem. The unsplittable flow problem has lots of application, not only in fault-tolerant
computing, but also in other QoS routing models.

When we are building an optical network, we need to calculate the cost of all fibres
and intermediate optical switches so that the terminal users can connect their computers
to the ports in a most economical way. This is an instance of the Inner-node Weighted
Minimum Spanning Tree Problem, which is also an important topic in our research.

For QoS issues in mobile ad hoc networks, we will inevitably consider the energy-
efficiency problem since the limited energy reserve of nodes in a MANET is definitely a
bottleneck for the normal operation of the whole network. For this reason, we have also
studied the energy-concerned broadcasting problem in MANETS.

Generally speaking, the work we have performed in this thesis can be classified into
the four topics mentioned above. Since all these optimization problems are intractable,
we focus on designing approximation algorithms or heuristic algorithms for them. In the
following subsection we will describe the difficulties of these problems and our contribu-
tions.

1.1 Research Challenges and Our Contributions

e We first consider the problem of finding two Delay-Restricted Link Disjoint s-t-Paths
with minimum total cost. This is a classical AP-hard problem and has attracted
considerable attentions recently. The difficulty of this problem lies in that we have
to find two multi-constrained paths. As we know, there will usually be a tradeoff
among the constraints when a problem is multi-constrained. For example, if we
decrease the total delay of a path, we may have to face an increase of its cost. For
the single path situation, we can design a Fully Polynomial-Time Approximation



Scheme (FPTAS) algorithm even if there are more than two additive constraints.
This is because there exists a pseudo-polynomial-time algorithm for computing the
exact-length single path. Yet the two edge-disjoint paths problem does not have
such a property.

To deal with this problem, in the existing work researchers used the delay-restricted
shortest path as a basic stone. Their method first computes two edge-disjoint delay-
restricted shortest paths, then tries to decrease the delay by relaxing the cost. By
this way they could find two paths with a total delay less than 2D(1 + 1/k) and
total cost k(1 + v)(1 4+ &)OPT. We look inside this model and propose a new
method for finding a cost-bounded negative-delay cycle. This method is based on
the scaling technique and dynamic programming approach. By this method we
can bound the cost tradeoff when we decrease the delay. Our algorithms can find
two paths with total delay less than 2D(1 4+ 1/k) and reduce the total cost to
(2logk + 3.5+ 1/logk)(1 + €)OPT within O(mn*logkloglogk/e) time. Thus we
can improve the approximation factor from (1 + 1/k,0(k)) to (1 + 1/k,O(logk)),
which largely decreases the cost while the delay bound remains near optimal.

A common problem in the above model is that the designed algorithms are not
easy to implement for the complicated computing steps involved. Thus we carefully
study the underlying mathematical structure of this problem and develop a totally
new approach - Lagrangian Relaxation. By the Lagrangian Relaxation method,
we need only modify the weight of each edge and then do binary search. This
method looks easy and even naive, but we show its power by rigorous mathematical
proof based on the solution space. Our algorithm is much more time-efficient and
implementable than all previous algorithms for this problem. And we also propose
some extensions of our method for solving other problems with similar underlying
mathematical structures.

The second part of our work is on the unsplittable flow problem, which is a natu-
ral generalization of the disjoint paths problem. This problem has a large family
of variants and has attracted huge attentions in both theoretical computer science
and operations research. The feasibility question for the unsplittable flow prob-
lem is strongly NP-complete even without a budget constraint. Moreover, most
researchers have put their efforts on the version with the assumption that the max-
imum demand is no more than the minimum capacity. This assumption makes
the computation and analysis more convenient, but it does not hold on the current
Internet.

So we focus our efforts on the two extreme cases, either with small capacities or with
very large capacities. Our first work is a new algorithm for compute a minimum-
cost single-source unsplittable flow in a graph with arbitrary edge capacity. We
introduce a novel rounding technique: instead of rounding the flow, we round the
flow portion. By this method we need not to cancel flow and deal with the trou-
blesome numeric issues. The performance guarantee of our algorithm is also the
current best bound for this problem. For the situation when the largest demand
in G is far less than the minimum capacity in it, we can also use the similar tech-
nique and compute a flow with congestion depending on the relationship between
the maximum demand and the minimum capacity. We also study the minimum-



cost single-source k—splittable flow problem and present an algorithm with the best
performance guarantee obtained so far.

e The third part of our work is on the problem of computing the Inner-node Weighted
Minimum Spanning Trees. This is a rather new topic and is very useful in building
high-speed fibre networks. Although this problem was proposed as a variant of
the Minimum Spanning Tree problem, the real difficulty lies in that it is also a
generalization of the connected dominating set problem (CDS) which is strongly

NP-hard.
k

We present a general framework which can find a 5 In n-approximation Algorithm
for this problem. Our framework uses a method by repeatedly finding the minimum
k-structure in the remain graph and then contracting it. By this way we can decrease
the size of the problem step-by-step until we obtain a feasible solution. Based on
this framework, we further propose two polynomial-time approximation algorithms
which can achieve a better performance guarantee than other results. We also

consider the fault-tolerant issues in this problem.

e The last topic of this thesis is about the energy issue in mobile ad hoc networks and
wireless sensor networks. The problem of computing a minimum-energy broadcast-
ing tree in a MANET can be proved to be NP-hard by reduction from the SET
COVER problem. What’s more, we cannot afford a very complicated algorithm in
MANET since the energy capacity of a mobile node is very small. A routing pro-
tocol must also refrain itself from frequent communication since data sending and
receiving are the most energy-consuming actions. All in all, a good algorithm for
energy saving in MANET should be simple, distributed, localized and effective.

Based on the above considerations, we present a distributed and localized algorithm
for saving energy during a broadcast session. Different from the centralized approx-
imation algorithms in previous chapters, this algorithm is a heuristic algorithm.
Here we use a new localized method for computing the neighbor forwarding tree,
which decreases the communication complexity and thus the energy consumption
effectively. We compare the performance of our algorithm with some other popular
protocols by using MATLAB and we find that our solution is energy efficient and
scalable for large MANETS.

1.2 Organization of the Thesis

The remainder of this dissertation is organized as follows.

Chapter 2 provides a succinct introduction of the common terminology and some
existing results that we are going to use in following chapters. We hope that by this
chapter we can make the readers more comfortable for reading the following chapters.
Readers who are familiar with theoretical computer science or algorithm designing can
skip this chapter.

Chapter 3 addresses the problem of finding two Delay-Restricted Link Disjoint s-¢-
Paths with minimum total cost. We first show the difficulty of this problem and its
relationship with the minimum cost flow problem. Then we present an approximation
algorithm for this problem. Our algorithm is based on the previous work, but we improve
it by decreasing the cost of the returned solution to a large extent. This improvement

4



is obtained by our new technique for finding a cost-bounded negative-delay cycle. Based
on our first algorithm, we present two improved versions to further decrease the time
complexity and the solution cost. We also extend our results to the problem of computing
more than two disjoint paths.

Chapter 4 presents a totally different method for finding two Delay-Restricted Link
Disjoint, s-t-Paths with minimum total cost. Instead of using the restricted shortest path
as a basic stone, this algorithm uses the Lagrangian Relaxation method. We show how we
can bypass the extremely complicated cycle cancelling process and find a good solution
by slightly modifying the weight of each edge. Detailed proofs for the correctness and
time-efficiency of our algorithm have been presented. We also propose some extensions of
our method at the end of this chapter .

Chapter 5 extends our study from disjoint paths to the unsplittable flow problem.
We briefly survey the research topic of Disjoint paths at the beginning, then we extend
it to the single-source unsplittable flow problem. We develop an efficient algorithm for
computing a minimum-cost single-source unsplittable flow in a graph with arbitrary edge
capacity. Then we extend our algorithm to deal with some special cases such as the
situation when the largest demand in G is far less than the minimum capacity in it. After
that we study the minimum-cost single-source k—splittable flow problem and present an
algorithm with a better performance guarantee than the previous algorithms. Finally
we present some applications of the single-source unsplittable flow problem on the huge-
volume video transfer in large networks.

Chapter 6 aims to design a general framework which can find a % In n-approximation
Algorithm for computing the Inner-node Weighted Minimum Spanning Trees. We de-
scribe this framework at the beginning of this chapter and prove its correctness based on
some assumptions. Based on this framework, we further propose two polynomial-time ap-
proximation algorithms by validating the aforementioned assumptions. Later we further
consider some fault-tolerant issues in this problem. We also show how we can use the
methods for other related problems to solve the IWMST problem.

Chapter 7 is about energy efficient broadcasting in mobile ad hoc networks. Different
from all previous chapters that deal with centralized approximation algorithms, this chap-
ter study the distributed and localized algorithm for saving energy during a broadcast
session. We show by simulation that our protocol is energy efficient and very flexible and
scalable for large MANETS.

Chapter 8 gives a summary of this dissertation and discusses some future research
directions.



Chapter 2

Preliminaries

A communication network is usually abstracted as a graph, either directed or undirected.
By representing networks by graphs, we can investigate the properties of networks using
graph theory and other theoretical computational tools. The main focus of this disserta-
tion is the design and analysis of algorithms to solve various problems that are related to
survivable and QoS concerned network communication. To avoid any confusion, in this
chapter we will give a succinct introduction of the common terminology and some existing
results that we are going to use in following chapters.

2.1 Common Definitions for Network Algorithms

A graph G = (V, F) consists of a set V' of nodes (vertices) and a set F of edges (links) con-
necting nodes in V. Nodes represent communicating equipments such as routers, switches,
or computers in a network, while edges represent communication links connecting these
equipments.

In a directed graph G, edges are ordered pairs of distinct nodes. We denote an edge e
from node u to node v by u — v, where u and v are called the tail and head of the edges,
respectively. If edges are bidirectional or non-directed, then we call G an undirected
graph. We use an unordered pair {u, v} to denote an undirected edge e connecting nodes
u and v, both u and v are called endpoints of the edge. We will also call the tail and the
head of an edge its endpoints. Sometimes we will use (u, v) to denote either an undirected
edge {u,v} or a directed edge u — v. If the edges in a graph is capacitated, we will call
it a network.

We use n = |V| to denote the number of nodes and m = |E| to denote the number
of edges in graph G = (V, E). Two edges are called adjacent if they share a common
endpoint. The degree of a node is the number of edges which has this nodes as its
endpoint.

A path P = (s, (s,v1), 1, ..y Up_1, (Vg_1, 1), t) from a node s to a node ¢ in a graph G is
an alternating tuple of nodes in V' and edges in E starting from s and ending in ¢ so that
every node is adjacent to its neighboring edges. If all nodes in P are pairwise distinct we
will say P is a simple or loopless path. The nodes s and ¢ are connected if the graph
contains at least one path P from s to ¢, we will call s and ¢ the end of P and call P an
s-t path. The nodes vy, ..., v,_; are the inner nodes of P and the number of edges in P
is its length. An undirected graph is connected if every pair of nodes is connected.

Two paths are said to be edge-disjoint if they have no inner edge in common, while they



are said to be node-disjoint if they have no intermediate node in common. Clearly, two
node-disjoint paths are also edge-disjoint, but two edge-disjoint paths are not necessary
node-disjoint.

A cycle is a simple path (v, (vg, v1), V1, .., Vg1, (Vk_1, Vk), V) together with the edge
(vk,v0). A simple path contains no cycle and thus can also be called an acyclic path. A
directed graph which contains no cycle will be called a DAG (Directed Acyclic Graph).

A graph G' = (V',E') is a subgraph of G = (V,E)is V' CV and E' C E. Tt is a
spanning subgraph if V! =V and E' C E. A tree is a connected graph that contains no
cycle. A tree T is a spanning tree of G if T is also a spanning subgraph of G.

A cut is a partition of the node set V into two parts S and S = V — S. Each cut
defines a set of edges consisting of those edges that have one endpoint in S and the other
in S. An s-t-cut is defined with respect to two distinguished nodes s and ¢ and is a cut
[S, S] satisfying the property that s € S and t € S.

2.2 Some Basic Network Problems

2.2.1 Shortest Paths

Given a weighted graph G = (V| E) and cost ¢(e) € R for each e € E, the shortest path
problem (We abbreviate it by SP, throughout the thesis we will abbreviate other problems
in the same style.) is to compute the minimum cost (or shortest) path from a node s to
another node t. Here we denote by c,, the cost of edge (u,v). The cost of a path is the
summation of the costs of each edge in this path.

According to the book by Ahuja, Magnanti and Orlin, there are two optimality prop-
erties for a shortest path in G.

Property 1: If the path P = (s, (s,v1), U1, --, Vk_1, (Vg_1, 1), 1) is a shortest path from
node s to node ¢, then for every i = 1,2, ...,k — 1, the subpath (s, ...,v;) in P is a shortest
path from node s to node v;.

Property 2: Let d(j) denote the shortest path distance from node s to node j. Then
a directed path P from s to ¢ is a shortest path if and only if d(j) = d(¢) + ¢;; for every
edge (i,7) € P.

There are two general approaches for solving the shortest path problem efficiently:
label-setting and label-correcting methods.

The label-setting algorithms assign tentative distance labels to the nodes and then
iteratively identify a true shortest path distance to one or more nodes at each step. A
true distance figure will remain unchanged after it is settled, thus it is called a permanent
label.

In 1959, Dijkstra [Dij59] gave his famous shortest path algorithm with complexity
O(n?). Tt uses the label-setting method and its running time can be further reduced for
sparse graphs if we use efficient data structures. By using d-heap, Johnson [Joh77]| came
up with an algorithm of O(mlog,,, /n n) time. By using Fibonacci heap, Fredman and
Tarjan [FT84, FT87| presented an O(m + nlogn)-time implementation. While differ-
ent implementations of Dijkstra’s algorithms require all edge lengths to be nonnegative,
nonnegative edge is not a necessary condition for the existence of a shortest path.

The label-correcting algorithms maintain a distance label with each node and itera-
tively update these labels until they satisfies the optimality condition. This optimality



condition is a natural deduction of the above Property 2, it requires that d(j) < d(i) + ¢;;
for every edge (i,7) € P.

Bellman [Bel58] and Ford [FF62] proved that a shortest path exists if and only if
there does not exist a cycle with negative total cost in G. They gave a shortest path
algorithms (called the Bellman-Ford algorithm) with complexity O(mn), which uses the
label-correcting technique and allows negative length edges in (G, it can also reports error
when there exist negative cycles in G.

Although the shortest path problem is to find a shortest length path between two
nodes, both Dijkstra’s algorithm and the Bellman-Ford algorithm find shortest paths
from s to every other node in GG. There is a related problem called all-pair shortest paths
problem, which asks for the shortest paths between every two nodes in GG. In graphs
allowing negative edge lengths, Floyd [Floyd62] and Warshall [War62] gave an algorithm
with complexity O(n?), which is more efficient than applying the Bellman-Ford algorithm
on every node.

For more details, please refer to the excellent book [AMO93| by Ahuja, Magnanti and
Orlin.

2.2.2 Minimum Spanning Tree

The minimum spanning tree problem (MST) in a graph G = (V, E) with cost ¢(e) € R™ for
each e € E is to find a spanning tree of minimal total cost in G. As for the shortest path
case, optimality conditions play a central role in developing algorithms for the problem.

Cut Optimality Conditions : A spanning tree 7" is a minimum spanning tree if and
only if it satisfies the following cut optimality conditions: For every tree edge (i,7) € T,
we have ¢;; < ¢y for every edge (k,[) that is contained in the cut formed by deleting edge
(i,7) from T.

Path Optimality Conditions : A spanning tree 7" is a minimum spanning tree if
and only if it satisfies the following path optimality conditions: For every non-tree edge
(k,l) of G, we have ¢;; < ¢ for every edge (i,j) that is contained in the path in T
connecting nodes k£ and /.

The following Prim’s Algorithm [Prim57] is based on the cut optimality conditions:
We build a spanning tree from scratch by fanning out from a single node and adding edges
one at a time. It maintains a spanning tree on a subset S of nodes and adds a nearest
neighbor to S. It does so by identifying an edge (4,5) of minimum cost in the cut [S, S].
This algorithm can be implemented in O(m + nlogn) time by using Fibonacci heaps.

Based on the path optimality conditions, Kruskal [Kru56] presented the following
algorithm: We first sort all edges in non-decreasing cost order and define a set, LIST,
that is the set of edges we have chosen as part of a minimum spanning tree. Initially,
LIST is empty. We examine the edges in sorted order one by one and check whether
adding the edge we are currently examing to LIST will create a cycle with the edges
already in LIST. If it does not, we add the edge to LIST; otherwise we discard it. We
terminate when the number of edges in LIST is n — 1. At termination, the edges in
LIST constitute a minimum spanning tree. Kruskal’s algorithm can be implemented in
O(m + nlogn) time if we use a O(nlogn) time sorting algorithm.



2.2.3 Maximum Flows

Given a directed graph G = (V, E), a source node s € V, a sink node ¢t € V, and a non-
negative capacity u;; associated with each edge (7,j) € E. The Maximum Flow Problem
is to find the maximum flow from the source node s to the sink node ¢ that satisfies the
edge capacities and mass balance constraints at all nodes. We can state the problem
formally as follows:

Maximize v
Subject to
v fori=s,
Z Tij — Z zj; =4 0 forallieV —{s, t},
{5:(4,4)€E} {5:(j)eE} —v fori=t.

0<uwmj <wuy; foreach (i,5) € E.

The first family of constraints states that we have flow conservation at all nodes except
the source node s which has excess outflow v and the sink node ¢ which has excess inflow
v. The second family of constraints state that flows are non-negative and bounded by
the edge capacities. The goal is to maximize the flow leaving source s. This problem has
a dual problem: Minimum s-t-cut. This dual relationship have very important positions
in network flow problems. Lots of researchers have designed algorithms for solving the
Maximum Flow Problem. Among them the Highest-label preflow-push algorithms can be
implemented in O(n?\/m) time; the FIFO preflow-push algorithm achieves a complexity
of O(n?), this complexity can be improved to O(mnlog(n?/m)) by using a dynamic tree
data structure [AMO93] .

2.2.4 Minimum Cost Flows

Given a directed graph G = (V, E), a source node s € V, a sink node ¢ € V, a non-
negative cost ¢;; and capacity u;; associated with each edge (i,j) € E. The Minimum
Cost Flow Problem is to find a minimum cost s-t-flow f that satisfies the edge capacities,
the flow demand |f| = k£ and the mass balance constraints at all nodes. We can state the
problem formally as follows:

Minimize 2(x) = X2 e CijTij
Subject to

k fori=s,
Z Tij — Z zj;=4 0 forallieV —{s, t},
{j:(i.)€F} {j:(j)€E} —k  fori=t.
0<wzj <uy foreach (i,j) € E.
In 1971, Ford and Fulkerson published their famous book Flows in Networks [FF62],
in which they proved the Max-Flow Min-Cut theorem and presented the Ford-Fulkerson
algorithm for finding a maximum flow from s to t. In addition, they also solved the

minimum cost flow problem, using the primal-dual algorithm. According the book by
Ahuja et al, the fastest algorithm for the minimum cost flow problem is

O(min{nmlog(n®/m)log(nL), nm(loglog C)log(nL), mlogn(m + nlogn)}),
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where L is the maximum edge length, C is the larger value of £ and the maximum finite
edge capacity.

2.2.5 Shortest Disjoint Paths

Given a weighted graph G = (V| E) with cost ¢(e) € R™ for each e € E, the problem of
shortest disjoint paths (SDP) is to compute the k disjoint paths from a node s to another
node ¢ with minimum total cost of all paths. This problem is a special case of minimum
cost flow problem with flow value equals to k£ and every edge capacity equals to 1. In
1974, Suurballe [Su74] gave a successive shortest path algorithm to find & shortest disjoint
paths by recursively finding shortest paths on residual graphs. When £ is a constant, after
applying the Dijkstra’s algorithm with d-heap, this algorithm achieves the complexity of

O(m 10g1—|—m/n n) .

2.3 A Brief Introduction to the Complexity Theory

Is there a way to develop a structural understanding of algorithms or for the problems to
which we wish to apply these algorithms? This simple question opened a new research
field known as computational complexity theory in early 1970s. This theory allows us to
classify a problem into two broad classes: easy problems that can be solved by polynomial-
time algorithms and hard problems that are not likely to be solved in polynomial-time
and for which all known algorithms require exponential running time.

When studying the complexity theory, it is easier to restate a problem so that its
solution has only two answers: yes or no. In this case, the problem is called a decision
problem. In contrast, an optimization problem is a problem that is concerned with the
minimization or maximization of a certain quantity. For example, the aforementioned
shortest path problem is an optimization problem. Its decision version will be like this:
does there exist an s-t-path with total cost of no more than B?

2.3.1 Major Complexity Classes

Throughout this thesis, we shall refer to three classes of problems: P, NP and N'PC, the
latter class being the AP-complete problem. We say that a decision problem @ belongs
to the complexity class P if its yes/no solution can be obtained using a deterministic algo-
rithm that runs in polynomial number of steps, i.e., in O(n’“) steps, for some nonnegative
number k, where n is the input size.

The class NP consists of those problems for which there exist a deterministic algorithm
which, when presented with a claimed solution to an instance of this problem, will be able
to verify its correctness in polynomial time. That is, if the claimed solution leads to a yes
answer, there is a way to wverify this solution in polynomial time. Note that it is much
easier to verify that, for example, a given assignment satisfies a boolean formula, than
deciding that there is no satisfying assignment. So it is evident that P C N'P.

The class N'PC denotes the subclass of decision problems in NP that are hardest in
the sense that if one of them is proven to be solvable by a polynomial-time deterministic
algorithm, then NP = P.

Let IT and IT" be two decision problems. We say that IT reduces to IT' in polynomial-
time, symbolized as I op,y II', if there exists a deterministic algorithm A that behaves
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as follows. When A is presented with an instance I of problem II, it transforms it into an
instance I' of problem II' such that the answer to I is yes if and only if the answer to I’
is yes. Moreover, this transformation must be achieved in polynomial time.

A decision problem II is said to be N"P-hard if for every problem II' € NP we have
T poiy I1. 11 is said to be N'P-complete if IT € NP and II is N'P-hard.

The problem SATISFIABILITY is the first problem shown to be NP-complete by
Cook in 1971, now there are lots of AN'P-complete problems include the Hamiltonian
Cycle problem and the Longest Simple Path problem. The book by Garey and Johnson
provides comprehensive coverage of the computational complexity theory, it also has a
rich compendium containing information on the NP—completeness results.

When we analyze the performance of an algorithm in this thesis we assume the com-
mon RAM-model and use asymptotic analysis, the Big-Oh (O) notation. Sometimes the
running time of a graph algorithm will be expressed by a polynomial function of n,m
and some other number C given in the instance (e.g., the maximum edge cost). Such a
running time is not polynomial since the input size of C' is log C' instead of C. We call
complexity in such a form pseudo-polynomial.

2.3.2 Approximation Algorithms

There are many hard combinatorial optimization problems that cannot be solved effi-
ciently since we do not know polynomial-time algorithms for them. We are often inter-
ested in algorithms that provide a feasible but suboptimal solution in polynomial-time,
together with a provable guarantee regarding its degree of sub-optimality.

We call an algorithm A an e-approximation algorithm for a minimization problem with
optimal cost OPT, if for each instance of the problem, algorithm A runs in polynomial
time and returns a solution with cost C4, so that C4 < (1 +¢)OPT. Symmetrically, for
a maximization problem we require C4 > OPT/(1 + ¢).

An algorithm A is said to be a Fully Polynomial-Time Approxzimation Scheme (FP-
TAS) for problem @ if, for any instance ¢ of ® and for any rational number &, A returns
an e-approximation solution in time polynomial both in ¢ and in 1/e.

An FPTAS is rather powerful from a theoretical view-point, given that we do not
know an exact polynomial-time algorithm for the problem, as it allows an arbitrarily
close approximation to the optimal solution.

2.4 Modelling of Fault-tolerance and QoS Metrics

The increasin demand for using multimedia applications over the Internet has triggered
a spur of research on how to satisfy the fault-tolerance and quality of service (QoS)
requirements of these applications, e.g., requirements regarding bandwidth, delay, jit-
ter and packet loss rate. These efforts resulted in the proposals of several QoS-based
frameworks, such as Integrated Services (Intserv), Differentiated Services (Diffserv), and
Multi-Protocol Label Switching (MPLS).

Since we are interested in core algorithmic issues rather than practical implementa-
tions, we aim at exhibiting the essence of each question in a mathematically meaningful
way. Although the ultimate motivation is practical networking, in the theoretical models
we will peel off various layers of practical issues that are piled on the core algorithmic
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problem. This approach may also allow us to generalize the question, follow its own
intrinsic logics and thus get some interesting unsolved problems.

2.4.1 Motivations of QoS Routing

Traditional Internet routing protocols calculate the shortest path based on a single metric
(e.g. hop count) to determine the path between a node pair. This routing scheme has
been successfully deployed in the last two decades for routing of Best Effort traffic in the
Internet. However, the emergence of realtime multimedia services raises the question of
whether path selection can be improved when QoS requirements are taken into account.

The problem of QoS-based routing is to find a routing mechanism that determines the
path of a flow based on knowledge of both the available network resource and the QoS
requirements of the flow.

As the current broadband networks is developing faster and faster, one may argue
that bandwidth will be abundant and proper network provisioning can eliminate poten-
tial bottlenecks, so there is no need for this extra complexity. But one may also argue that
bandwidth is not abundant yet and never will be, and although the long term network ca-
pacity may be sufficient, short term periods of congestion will always arise. Furthermore,
link failures may destroy the perfect match between supply and demand. Therefore there
is a need for QoS-based routing.

2.4.2 Framework of QoS Routing

The issues and requirements related to QoS-based routing are discussed and a framework
is presented in [RFC2386], in which the following QoS-based routing objectives are listed:

1. Path selection should be based on both the network conditions (e.g. resource avail-
ability) and QoS requirements of the flow.

2. Optimization of network resource usage.

3. Graceful performance degradation under overload conditions.
QoS-metrics:

e The QoS-metrics of some links can be difficult to determine, they should be selected
and modeled carefully to meet the QoS requirements of the flow.

e (QoS-metrics which are considered useful are: bandwidth, delay, energy cost, packet
loss rate and jitter. QoS-metrics apply to both the node and the outgoing link of
that node. A uniform representation across different routing domains is required.

Metrics can be divided into three classes. Let d(e) be a metric for link e. For any
path P = (e, es, ..., €,), metric d is:

Additive if d(P) = d(e1) + d(ez) + ... + d(en);
Multiplicative if d(P) = d(eq) * d(e2) * ... x d(ey);
Bottleneck if d(P) = min{d(e1),d(es), ..., d(en)};

According to this definition, the metrics delay, jitter, cost and hop count are addi-
tive. The metric reliability is multiplicative and the metric bandwidth is concave
(bottleneck).
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There are some other issues to be considered with QoS-based routing such as the
scalability, the granularity of routing, the overall network performance, and even the
administrative controls.

It is noted that always selecting the path with the best QoS may potentially deteriorate
the overall network performance since flows might converge to some paths occupying
relatively large amount of network resources.

A routing protocol can aid to distribute information about the expected cost of QoS
paths. This information might be used to charge users, that require QoS services. QoS
route selection should be based on multiple path calculation. Alternate path calculation
is important, as the shortest path may deteriorate and cannot provide the desired QoS.

2.4.3 Fault-tolerance Design and Implementation

Many researchers count Fault-tolerance as a QoS metrics, but in this thesis we will consider
it independently, because a network design problem will be much harder if we add a fault-
tolerance requirement than the version with one more additive or multiplicative QoS
requirement.

In the most general model, both the nodes and the links can fail, but here we will
deal with a simplified model in which only the links can fail and the nodes are considered
perfect. Links can be disabled because of two factors: (a) link congestion (a situation
in which flow demand exceeds flow capacity and a link is blocked or an excessive queue
builds up at a node), and (b) failures from broken links (fibre cut or energy deficiency).

Our focus in this thesis can actually be called the topological design problem and is
an abstraction of the complete design problem. The complete design problem includes
many other considerations, such as the following:

e The capacity in bits per second of each line is an important consideration, and
connections between nodes can fail if the number of messages per minute is too
large for the capacity of the line, if congestion ensues, and if a queue of waiting
messages forms that causes unacceptable delays in transmission.

e If messages do not go through because of interrupted transmission paths or excessive
delays, information is fed back to various nodes. An algorithm, called the routing
algorithm, is stored at one or more nodes, and alternate routes are generally invoked
to send such messages via alternate paths.

e When edge or node failures occur, messages are rerouted, which may cause addi-
tional network congestion.

e Edges between nodes are based on communication lines (twisted-copper and .ber-
optic lines as well as coaxial cables, satellite links, etc.) and represent a discrete
(rather than continuous) choice of capacities.

e Sometimes, the entire network design problem is divided into a backbone network
design (discussed previously) and a terminal concentrator design (for the connections
within a building).

e Some other considerations such as political sensitivity or military security issues
sometimes govern node placement.
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Chapter 3

The Constrained Shortest Disjoint
s-t-Path Pair Problem

The growing demand for transmitting large volume data over the Internet has triggered
a spur of research on quality of service (QoS) routing which aims to satisfy requirements
regarding bandwidth, delay, jitter etc. At the same time, survivability of a network has
assumed great importance in against of losing huge volumes of data due to a link cut or
node failure.

To tackle these problems, recently some scholars have proposed some path restoration
schemes which used two disjoint paths with multiple constraints to satisfy both the surviv-
ability and the QoS requirements. Multiple QoS-constrained paths can also be employed
to achieve better load balance and improve quality of service in bandwidth-constrained
MANETsS.

Although many work have been done to find multiple node-disjoint or link-disjoint
paths in a given network [Su74, ST84], the problem of finding two disjoint QoS-constrained
paths has got little attention. So far the best work done in this area is due to [0S04, OS05],
in which the authors proposed 4 algorithms to compute two delay-constrained link-disjoint
paths with minimum total cost. If there exist two disjoint paths with delay less than D
and total cost OPT, their algorithm 2DP-1 can find two paths with total delay less than
3D and total cost (1.5+¢&)OPT. Other algorithms proposed in [OS04] can find two paths
with total delay less than 2D(1 + 1/k) and total cost k(1 +v)(1 4+ ¢)OPT.

In this chapter we propose three approximation algorithms for this problem. Our first
algorithm can find two paths with total delay less than 2D(1 + 1/k) and reduce the total
cost to (4log k+3.5)OPT, but it is a pseudo-polynomial algorithm. Our second algorithm
reduces the time complexity to O(mn*logk/e), and the cost is (4logk + 3.5)(1 +¢)OPT.
The third one further reduces the cost to (2logk + 3.5 + 1/logk)(1 + ¢)OPT within
O(mn*logkloglogk/e) time. This is an improvement over [OS04]. At the end of this
chapter, we extend this problem to the case of finding £ link-disjoint paths and present
an algorithm for it.

3.1 Model and Problem Formulation

The QoS constraints in a network can be divided into bottleneck constraints such as
bandwidth, additive constraints such as delay or jitter and multiplicative constraints such
as the packet loss rate or possibility. Bottleneck QoS constraints can be efficiently solved
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by removing links that violate the requirement. Multiplicative constraints can be reduced
to additive constraints by a logarithm transformation. So here we only consider two
additive constraints and we use delay and cost respectively to generically refer to two
different additive constraints for simplicity of exposition.

We adopt the same model as used in [OS04], in which the network is represented by a
directed graph G(V, E), where V is the set of nodes and E is the set of links. The number
of network nodes and links are respectively denoted by n = |V| and m = |E)|.

Each link | € E has a delay guarantee d; and a cost ¢; which estimates the quality of
the link in terms of resource utilization. The delay D(P) of a path P is the sum of the
delays of its links, i.e., D(P) = >, p d;. The cost C(P) of a path P is defined to be the
sum of the costs of its links, i.e., C(P) = ) ,.p ;. We shall assume that all parameters
(both delay guaranties and costs) are positive integers.

The following RSP Problem is a fundamental problem in QoS routing.

Problem RSP (Restricted Shortest Path): Given a source node s, a destination
node ¢ and a delay constraint D, find an (s, ?)-path P such that

1) D(P) < D, and

2) C(P) < C(P) for any other (s,t)-path P that satisfies D(P) < D.

Although Problem RSP is intractable, there exist pseudo-polynomial solutions. This
give rise to fully polynomial-time approximation schemes (FPTAS), whose computational
complexity is reasonable [LoR01, ESZ02]. The most efficient scheme, presented in [ESZ02],
has a computational complexity of O(mn/e), and computes a path with delay of at most
D and cost of at most (1 +¢) times the optimum, but it requires that both the delay and
the cost of each link must be positive. The algorithm in [LoR01] has a time complexity
of O(mn(1/e + loglogn)), it requires that both the delay and the cost of each link must
be non-negative. Since all algorithms in [OS04, OS05, PS06] may set the cost of a link
as zero in the residual graph, the latter algorithm was adopted and referred as Algorithm
RSP.

If we extend the Problem RSP to the case of two link-disjoint paths, we will get the
problem we want to solve:

Problem 2DP (2-Restricted Link Disjoint Paths): Given a source node s, a
destination node ¢ and a QoS requirement D, find two link-disjoint (s, ¢)-paths P; and P,
such that:

1) D(P)) < D and D(P,) < D;

2) C(P)) + C(P,) < C(Py) + C(Py) for every other pair of link-disjoint (s,#)-paths
(P1, Py) that satisfy D(P;) < D and D(P) < D.

We denote by OPT the cost of an optimal solution to Problem 2DP for (G, s,t, D).
Problem 2DP includes Problem RSP as a special case; hence, it is NP-hard. In addition, it
was proved in [OS04] that it is intractable to find a solution that does not violate the delay
constraint of at least one of the paths. Furthermore, in most cases, we cannot provide an
efficient solution without violating the delay constraint in both primary and restoration
paths. So we can formulate a solution to Problem 2DP as an («, 3)-approximation.

Definition 1 ((«, 8)-approzimations) : Given an instance (G, s,t, D) of Problem
2DP, an («, §)-approximation solution (P, P;) to Problem 2DP is a solution for which:
1) D(P) + D(P) < 20D;
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2) the total cost of two paths is at most 8 times more than that of the optimal solution,

Let P, be the primary path with minimum delay, we have D(P;) < aD and D(P,) <
2aD. Problem 2DP can be further extended to the following MCF problem:

Problem MCF (minimum constrained flow): Given a source node s, a destina-
tion node ¢ and a delay requirement D, find an (s, t)-flow f such that:

1) [fl=2

2) D(f) < 2D;

3) C(f) < C(f) for any other flow f that satisfies |f| = 2 and D(f) < 2D.

Since Problem MCF is a relaxation of Problem 2DP, the cost of the optimal solution
to Problem MCF is no more than that of Problem 2DP. In following sections we will use
MCEF in the process of computing and we will also use OPT to denote the cost of its
optimal solution for convenience.

3.2 A (1+4,(4logk + 3.5))-Approximation Algorithm
for 2DP

In this section we present our approximation algorithm, which achieves an approximation
ratio of (1+ 1, (4logk +3.5)). The basic idea of the algorithm is to identify a flow f from
the source node s to the destination node ¢ such that f = 2 and the total delay and cost
of the flow satisfy some certain bounds, then we continuously find cycles with negative
delay and bounded cost in the residual graph and augment f along these cycles. The
algorithm stops when D(f) < 2D(1 + ;).

The first step of the algorithm is to compute a flow f from s to ¢ that satisfies the
delay constraint 3D and the cost constraint (1.5 + )OPT. We use the algorithm 2DP-1
in [OS04] to achieve this.

The next step is to augment this flow in order to decrease its delay to 2D(1 + ). To
that end, we construct a residual network G(f) imposed by the flow f. Intuitively, the
residual network consists of links that can admit more flow.

Definition 2 (Residual Network) : Given a network G with unit capacities and
flow f, the residual network G(f) is constructed as follows. For each link (u,v) € G for
which f(u,v) = 0, we add to G(f) a link (u,v) of the same delay and cost as in G. For
each link (u,v) € G for which f(u,v) =1, we add to G(f) a reverse link (v, u) to G(f)
with delay —d(,,) and zero cost.

In the residual graph G(f), we use algorithm MINDELAY to find a cycle W that
&
minimum delay-to-cost ratio cycle, [DIG99] is a good survey for those algorithms. Next,
we augment flow f along W. This will decrease the total delay of f since the delay D(W)
is negative, but generally it will increase the total cost of f since the cost C(WW) must
be positive. In case the negative cycle will bring huge cost penalty, we develop a new
algorithm FINALIMPROVE which can find a negative delay cycle with bounded cost
and delay-to-cost ratio. To find a feasible negative cycle, FINALIMPROVE will guess
an estimation of OPT and call algorithm FCYCLE to check whether there exists such

a cycle or not for such a guess. If FCYCLE fails, FINALIMPROVE will update the

minimizes the delay-to-cost ratio . There are dozens of algorithm for finding such a
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guess toward a correct direction and will finally find a feasible cycle. Then it augment
the flow along this cycle and repeat the same process. FINALIMPROVE will stop when
D(f) <2D(1+1).

The final step is to decompose the flow f into two paths ﬁl, P, such that D(ﬁl) <
D(P,). To do this we can adopt the same method in [AMO93]. The following are the

detailed description of the approximation algorithm 2DisjointPaths-1 and its fellow algo-
rithms.

Algorithm 3.1. 2DisjointPaths-1(G, s, t, D, k)
Input:
G: the directed graph G=(V,E) with {d;, ¢;}ick;
s : source node;
t : destination node;
D: the delay constraint;
k : the approximation index;
Output:
(P1, Py): An (1 + %, 4log k + 3.5)-Approximation solution to Problem 2DP;
(Py, P,) < 2DP-1(G, s,t,D,%);
O« {P, P};
if D(f°) <2D(1+ ) then
return (P, P,) ;
f < MINDELAY(G, f°, D, k)
Decompose f into 131, ]32 with D(ﬁl) < D(ﬁg);
return (P, P,) ;

)

<L Y A W~

Algorithm 3.2. MINDELAY (G, f°, D, k)
Input:
G: the directed graph G=(V,E) with {d;, ¢;}ick;
1O : the original flow;
D: the delay constraint;
k : the approximation index;
Output:
: An improved flow with D(f) < 2D(1 + 1) for 2DP;
f — fO;
while D(f) >2D(1+ 1) do
Construct the residual network G(f)
of G imposed by f:
Add to G(f) each link | in G with f; = 0;
for each link (u,v) € G with fu,) =1 do
Add a link (v,u) to G(f)
with d(v’u) = —d(u’v) and Clou) = 0,
7 Find a cycle W in G(f) which
minimizes D(W)/C(W);
8 frefoneDW)/CW);
9 Augment flow f along W :
10 if C(f) >2xC(fY) and C(f) > C(f°) then ;
11 f « Finallmprove(G, f', D, k,C(f°),C(f), 1);

Lo A M~ %

Sy v A~
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Algorithm 3.3. FINALIMPROVE(G, f!, D, k,C(f?),

return f ;

Input:
G,D,k: the same as that in MinDelay;

fl .

the flow to be improved;

C(f°) : the cost of the original flow by 2DP-1;

C(f) : the cost of the next flow with D(f) < 2D(1+ 1);

W : the current minimum delay-to-cost ratio;
Output:
f': An improved flow with D(f') < 2D(1 + ) for Problem 2DP;

1

DO I D A W

9

10
11
12
13
14
15

LB «— 2D—D(fl);
if C(f) SHLB then return f;
OPT, + maz{LB, <L, CUD 3.
while D(f') > 2D(1 + =) do
Construct the residual network G(fY):
Add to G(f') each link | in G with f} = 0;
for each link (u,v) € G with f(, , =1 do
Add (?), U,) with d(v’u) = —d(u’v)&C(v u) =
W« FCYCLE(G(fY),f*,OPTs, QDO;?Tf ) )
while W = do
OPT, < 2 % OPTy;
W+ FCYCLE(G(f"), f',OPTy, 225210 ),
Augment flow f! along W ;
OPT, « OPT,)2 ;
return f! ;

Algorithm 3.4. FCYCLE(G, f%,OPTy, )
Input:
G': the residual graph;

f2 .

the flow under check;

OPT, : the lower bound of OPT;
i : the delay-to-cost ratio;
Output:

W, a negative cycle W with

1

2
3
4
5
6

D%; <p orf.

for each link | € G do
dlZdl—Cl*,u;

for each node g € f? do
W « SCYCLE(G, g,OPT,,OPTs);
if W # (0 then return W;

return 0 ;

Algorithm 3.5. SCYCLE(G,g,L,U)
Input:
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G: the residual graph G=(V,E) with {d;, c;}icr;

g : the node under check;

L,U: the lower bound and upper bound of the cycle;
Output:

W, a negative cycle W in G(f) or ().

1 S+ L
2 for eachl e E do
3 define ¢, = | ¢ /S| + 1;
4 U« |U/S|+n+1;
5 for allv # gdo
6
7
8
9

D(v,0) « oo;
D(g,0) + 0;
fori=1,2,..,U do
for v € V do
10 D(v,i) < D(v,i—1);
11 for | € {(u,v) | Cup) < i} do
12 D(v,i) < min{D(v,1),d;, + D(u,i —¢)};
13 if D(g,i) < —1 then
1 return the cycle W in the path;

15 if there exist a negative cycle W in other paths
16 then return W,
17 return () .

Theorem 3.1. If there exists a negative delay cycle W with C(W) < U and passes node
g €V, algorithm SCYCLE will find a feasible cycle W' with C(W') < C(W) + L. The
time complezity of SCYCLE is O(mnU/L).

Proof: In SCYCLE, the upper bound of cost for any cycle W is C(W) < Us <
U+ (n+1)S = U+ L. If there is a negative cycle W and suppose it is the minimum delay
cycle at the cost C(W). For all such negative delay cycles, let’s consider the one with the
minimum cost C'(W,,). Since W, is such a minimum negative delay cycle, it should
also be the minimum delay path from g to itself at a cost of no more than C(W,,).
Then within time C(W) +nS < C(Wyin) + L, D(g,C(Wyyin)) will be no more than
D(W,in)- Since the delay d; of a link [ in G is a positive integer, D(W) < —1 and lines
13,14 in SCYCLE will find a negative cycle W’ with C(W') < C(W,in)+ L < C(W)+ L.

For the computational complexity, since U = [U/S]| +n+1 = O(nU/L) and for each
1 < i < U each link is examined at most once, so the time complexity of it is O(mnU/L).
O

Furthermore, SCYCLE may identify a negative cycle when that cycle is not so far
away from g on cost.

Theorem 3.2. If there ezists a negative delay cycle W with C(W) < OPT, and % < W
in G, algorithm FCYCLE will find it and return it back. The time complexity of FCYCLE
is O(mn?).

Proof: In FCYCLE, only edges in flow f? may have a negative delay value. So
any negative cycle must pass at least one edge and two nodes in f2. We use algorithm
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SCYCLE to check all nodes g € f2, thus we will find a negative cycle with C(W) < OPT;
if there exists one.

now let’s check the delay-to-cost ratio of this cycle W. After the modification of the
delay of each link, we have d; = d;—c;*p1. Since W is a negative cycle, Y, . (di—cxp1) < 0.

Alternatively, >,y di = > e cox p=D(W) = C(W) x p < 0, so c%)) <
Since U = L= OPT, when we call SCYCLE, its time complexity should be O(mnU/L) =
O(mn), and algorithm SCYCLE will be called at most n times. It is evident that the

time complexity of FCYCLE is O@m?). O

Theorem 3.3. Let f be an (s,t)-flow in G such that f=2 and D(f)>2D, and let G(f)

be the residual network of G imposed by f. Then there exists a circulation f in G(f) such
that D(f) < 2D — D(f) and C(f) <OPT. In this circulation there is a cycle W with
D(W) _ 2D—D(f)
c(w) =" 0PT -

Proof: See Lemma 2 and Corollary 1 in [OS04]. O

Theorem 3.4. Suppose that an algorithm A iteratively minimizes some value z such that
20 is the initial value of z, 2* is the value of z at the i-th iteration and z* is the minimum
objective function value. Furthermore, suppose that the algorithm A guarantees that, for
every iteration i, 2* — 2t > ((2* — 2*) for some constant { with 0 < ¢ < 1. Then, within

2log(20—2*)
¢

. . . 0_ %
2z/C consecutive iterations z < z* 4+ 252

terminates.

and within iterations algorithm A

Proof: This can be easily followed from [AMO93] (page 67). O

Theorem 3.5. Algorithm MINDELAY will return o flow f with delay D(f) < 2D(1+ %)
and cost C(f) < (4logk+3.5)OPT. The time complexity of MINDELAY is O(mn*OPT logk).

Proof: Algorithm MINDELAY includes two phases. The first phase is from line 2 to
line 9, which adopts the same method in [OS04] to find a minimum delay-to-cost ratio
negative cycle and augment the flow along it. The second phase is from line 11 to line
12, which uses algorithm FINALIMPROVE to find a negative cycle with guaranteed cost
and delay-to-cost ratio. We suppose that the first phase finds n; cycles and the second
phase finds ns cycles. We denote by W; the i-th cycle which will be applied to f and we
use f; to denote the state of flow f before f was augmented along W;.

For each cycle W; in the first phase, we have that C(WW;) > 1 and DWi)  2D-D(fi)

c(Ws) OPT
Which implies that D(f;)—D(fi+1) = W (i) > —D(W;) > D(g)TQD. According to Theorem
8.4, within 21%“ = 12/15’%3'; = 2log kOPT augment steps, it holds that D(f) < 2D +

DUR2D < 9p(1 4 1).
If C(W;) = h > 1, we can replace W; by h virtual unit cost cycle W2, W2, ..., W™

with D(W;) = g4 and C(W¢) = 1for 0 <z < h—1. For flow f7, it holds that D(f7) =

D(fY) +xc(gVVZ) < D(f% = D(f;), so D(W#) = u(W?) = C(II//VVS < 2D5PDT(fi) < 2D8113;f?”)_
Thus these virtual unit cycles satisfy the improvement requirement of Theorem 3.4/ and
the original n; cycles can be replaced by 2?11 C(W;) virtual unit cycles. Since within
2log kOPT augment steps D(f) < 2D(1+ ), it holds that Z;“l C(W;) < 2logkOPT.

Since there will be no more than n; < 2 log kOPT iterations in the first phase and the
algorithm for finding the minimum delay-to-cost ratio negative cycle dominates the time

complexity of each iteration. If we choose the binary search algorithm in [AMO93] (page
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152) whose complexity is O(mnlog(CD)), then the time complexity of the first phase
will be O(mn - OPT log klog(CD)); but if we choose the Burns algorithm in [Burns91,
DIG99] whose complexity is O(n?m), then the time complexity of the first phase will be
O(mn2?0OPTlogk). Here we use the latter one.

For each cycle W; in the second phase, the following Lemma 3.1 proves that 1 <

C(W;) < 20PT and g((vvgj)) < QDQBJDJg{j) for ny +1 < j < my + me. So the analy-
1

sis will be the same as in the first phase except that ( = ;557. Combine all cycles
Wo, oo, Wayy, Wiy 115 s Wany4m, together, we can find that Y7271 C(W;) < 4log kOPT.
Since the cost of the last cycle will be no more than 20 PT it holds that ZZLZIIL"Q cCwy) <
(4logk + 2)OPT. Thus the total cost of flow f returned by algorithm MINDELAY is at
most (4logk + 2)OPT + C(f°) < (4logk + 2+ 1.5)OPT.

Because the number of cycles identified in the second phase will be no more O(log kOPT),
the time complexity is O(mn*OPTlog’k). But if we check more carefully, we can find that
the average number of calls to FCYCLE for each cycle in the second phase will be around 2.
This is because the value of OPT; in line 9 and line 12 of algorithm FINALIMPROVE will
change for no more than 2log % times. Thus a more precise bound for the time
complexity is O(mn?>OPT logk). Combine the two phases together, the total complexity
of algorithm MINDELAY is O(mn?OPT logk)+ O(mn?*OPTlogk) = O(mn?*OPT logk).
O

Lemma 3.1. Let W be a cycle to be augmented in line 13 in algorithm FINALIMPROVE,
then 1 < C(W) < 20PT and DW) < 2D=DUi)  The time complexity to identify a cycle

cw) > “20PT
is O(mn?logk).

Proof: In the first three lines we set a lower bound for the cost of the optimum
solution. At first, since p is the current minimum delay-to- cost ratio for any negative

cycle in G(f), it holds that u < 2D5£T( and OPT > 22-PU) - Second, since algorithm

2DP-1 will return a flow f with C(f) < 1.5(14+¢)OPT, so C(fo)/2 is another loose lower

bound. The third bound C(fkj)LQ comes from the analysis of the cost in the first phase.

By Theorem 3.3, there exists a cycle W which satisfies gég% < 2D5£§f ) and C (W) <
OPT. So if algorithm FCYCLE cannot find a negative cycle with C(W) < OPT, and

D) < 255DUD) then it must hold that OPT, < OPT. Because if OPT, > OPT, then

QDO_ fg ) > QDOIID); ) and according to Theorem 3.2, FCYCLE will return a negative cycle
back. On the other hand, if algorithm FCYCLE finds a negative cycle with C(W) <
OPT,, then by Theorem 3.1 we have C(W) < U + L = 20PT,. Since in the previous
iteration OPTy < OPT, it follows that C(W) < 20PT.

Notice that when FINALIMPROVE is called, the first phase has already found a cycle
with cost no more than (k + 1)OPT and C(f) < 2kOPT [OS04]. So the while cycle at

line 10 will run no more than O(log %) O(log k) iterations before it finds a
cycle. And the time complexity for each cycle is O(mn?logk). |
Theorem 3.6. Algorithm 2DisjointPaths-1 computes, in O(mn*OPT logk) time, a (1 +

%, 4logk + 3.5) approzrimate solution for Problem 2DP.

Proof: The delay ratio 1 —|—% follows from the above analysis. Since the complexity of
algorithm MINDELAY is O(mn?OPT logk) while the complexity of algorithm 2DP-1 is
O(mn(loglogn + 1/¢)), it holds that the time complexity of algorithm 2DisjointPaths-1
is O(mn?*OPT logk). O
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3.3 Improve the Time Complexity

The above algorithm 2DisjointPaths-1 is a pseudo-polynomial algorithm since its time
complexity O(mn*0OPT logk) is proportional to the cost OPT of the optimal solution.
So it will not be very efficient when OPT is very large. But a good news for a pseudo-
polynomial algorithm is that usually we may adopt some cost scaling approach to reduce
the time complexity and turn it into a polynomial-time approximate solution. We can see
such kind of technique in many approximation algorithms [Has92, LoR01, ESZ02], but
here we can employ the method used in [OS04] directly since the basic framework is the
same.

Since the difficulty lies in the possible huge value of OPT’; which comes from the num-
ber of cycles to be found and augmented. If we can scale it down to a reasonable polyno-
mial bound, then the time complexity of the new algorithm will be polynomial. This is
the basic idea of algorithm 2DP-3 in [OS04] and our following algorithm 2DisjointPaths-2.

Algorithm 3.6. 2DisjointPaths-2(G, s, t, D, k)

1 (P, Py) < 2DP-1(G,s,t,D, ),
2 [0« {P,P)};

3 if D(f°) <2D(1+ 1) then

4 return (P, P,)

5 LU (— Bound(G, s,t, f, D),

6 A — 2n’

7 for each link | € E do

8 Cp < L J + 1

9 f+ MINDELAY(G fO D, k)
10 Decompose f into P,, P, with D(P,) < D(P,);
11 return (P, P,) ;

Algorithm 2DisjointPaths-2 calls the procedure BOUND to calculate the lower bound
L and the upper bound U on OPT with U/L < 2n, its time complexity is O((m +
nlogn)logn). For the details of the procedure BOUND, please refer to [LoR01, OS04].

Theorem 3.7. Algorithm 2DisjointPaths-2 computes, in O(mn*logk/e) time, a (1 +
L, (4log k + 3.5)(1 + €))-approzimation solution for Problem 2DP.

Proof: Let OPT be the cost of the original optimal solution f and let OPT" be the
optimal solution f’ in the scaled network. Then the scaled cost of f will be C'(f) =

ZezefL(CEiJ +1) < ZezeflceiJ +2n < Ze ef CX +2n = M +2n = OPT +2n =
OFT2n 4 9n. Since U/L < 2n and L < OPT < U, we have that 1< et < 2n. Thus
C'(f) = ©EL22 4 9n < 2n+4n?/e. So for the optimal solution f’ in the scaled network, we
have that OPT" < 2n + 4n?/e. Thus the time complexity of algorithm 2DisjointPaths-2
is O((m + nlogn)logn) + O(mn?logk - n?/e) = O(mn'logk/e).

now let’s consider the original cost of the returned flow O PT". Since OPT' < %+2n,
its original cost should be no more than OPT" * A < (28T 4+ 2n)A = OPT + Le <

(14+e)OPT. So the delay of the final flow will be no more than (4logk+3.5)(14+¢)OPT.
O

22



3.4 Further Decrease the Cost

C. The Final Improve Algorithm to decrease the cost of the final flow

Algorithm 3.7. FINALIMPROVE(G, f', D, k,C(f°),C(f), n)
Input:

G,D,k: the same as that in MinDelay;

ft : the flow to be improved;

C(f°) : the cost of the original flow computed by 2DP-1;

C(f) : the cost of the next flow with D(f) < 2D(1+ 1);

it @ the current minimum delay-to-cost ratio;
Output:

f*: An improved flow with D(f') < 2D(1 + 1) for 2DP;

1 LB« =000,

u 3
2 if C(f) < LB then return f;

0
3  OPT, < maz{LB, C(f , QICOéfHQ}
4 while D(f') > 2D(1 + =) do
5 Construct the residual network G(fY)
of G imposed by f':

6 Add to G(f') each link | in G for which f} = 0;
7 for each link (u,v) € G for which f;, , =1 do

8 Add a link (v,u) to G(f1)
with diy ) = —duw) and ¢y = 0;
el
9 W« FCYCLE(G(fY), f', OPTy, 225040 ).
10 while W = () do

11 OPTQ(—Q*OPTQ,

12 W « FCYCLE(G(fY), f*,OPTy QDO;’TEJ" L);
13 LB+ 9T, UB < OPT;

1 Whlle Z 1+ logk‘ do

15 OPT « UBLLE

16 W« FCYCLE(G( 1), 1, OPT,, 22 D0,
17 if W — 0 then LB « OPT};

18 else UB «+ OPT5;

19 Augment flow f! along W ;
21 return f!;

Theorem 3.8. Algorithm MINDELAY will return o flow f with delay D(f) < 2D(1+ %)
and cost C(f) < (2logk + 3.5+ 1/1logk)OPT. The time complexity of MINDELAY is
O(mn20PTlogkloglogk).

Proof: Algorithm MINDELAY includes two phases. The first phase is from line 2 to
line 9, which adopts the same method in [OS04] to find a minimum delay-to-cost ratio
negative cycle and augment the flow along it. The second phase is from line 11 to line
12, which uses algorithm FINALIMPROVE to find a negative cycle with guaranteed cost
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and delay-to-cost ratio. We suppose that the first phase finds n; cycles and the second
phase finds ns cycles. We denote by W; the i-th cycle which will be applied to f and we
use f; to denote the state of flow f before f was augmented along W;.

For each cycle W; in the first phase, we have that C'(WW;) > 1 and D(Wi) o 2D=D(fs)

c(w;) OPT
Which implies that D(f;)—D(fi11) = W (i) > —D(W;) > D(Q)TQD. According to Theorem
3.4, within 298k — 2lek  _ 9196 kOPT augment steps, it holds that D(f) < 2D +

¢ 1/0PT
0y_
DUD=2D < 9p(1+ 1).
It C(W;) = h > 1, we can replace W; by h virtual unit cost cycle W2, W2, ..., Wh=!
with D(W?) = C(W L and C(W?) =1for 0 < z < h—1. For flow fZ, it holds that D(fm) =

(fO) +xC(W§ < D(fo) = D(f;), so D(W?) = u(W?) = C(I//VVS < 2DO£T(fz) < 2Dogéfm)_
Thus these virtual unit cycles satisfy the improvement requirement of Theorem 8.4/ and
the original n; cycles can be replaced by Z;”l C(W;) virtual unit cycles. Since within
2log kOPT augment steps D(f) < 2D(1+ ), it holds that 2?11 C(W;) < 2logkOPT.

Since there will be no more than n; <2 log kOPT iterations in the first phase and the
algorithm for finding the minimum delay-to-cost ratio negative cycle dominates the time
complexity of each iteration. If we choose the binary search algorithm in [AMO93] (page
152) whose complexity is O(mnlog(CD)), then the time complexity of the first phase
will be O(mn - OPT log klog(CD)); but if we choose the Burns algorithm in [Burns91,
DIG99] whose complexity is O(n?m), then the time complexity of the first phase will be
O(mn?*OPTlogk). Here we use the latter one.

For each cycle W; in the second phase, the following Lemma 3.2 proves that 1 <

2D—D(f; .
C(W;) < (1+1/logk)OPT and 2 C(W < (1—|—1/logl(c{]O)PT for ny +1 < j < ny + ng. So the

analysis will be the same as in the first phase except that ( = W Combine all
cycles Wi, .o, Woy, W1, s Wi 4np 1 together, we can find that Y711 O(W;) < 2(1+
1/logk)log kOPT. Since the cost of the last cycle will be no more than (1+1/logk)OPT,
it holds that Y_7* /™ C(W;) < (2logk +1+1+1/logk)OPT. Thus the total cost of flow
f returned by algorithm MINDELAY is at most (2logk + 2 4+ 1/logk)OPT + C(f°) <
(2logk +2+ 1.5+ 1/logk)OPT.

Because the number of cycles identified in the second phase will be no more than
O(log kOPT), and by Lemma 8.2 the time complexity for computing each cycle is O(mn?(log k+
loglogk)). So the total time cost for the second phase is at most O(mn?OPT log k(log k+
loglogk)). If we check more carefully, we can find that the guess O PT, will be halved (at
line 20) after we find a cycle and augment the flow along it. So the value of OPT, will
be halved for no more than 2log % times, it will keep increasing at other situ-
ations. Thus a more precise bound for the time complexity is O(mn?0OPT log kloglogk).
Combine the two phases together, the total complexity of algorithm MINDELAY is

O(mn20OPT logk) + O(mn*0OPT log kloglogk) = O(mn*OPT log kloglog k). O
Lemma 3.2. Let W be a cycle to be augmented in line 13 in algorithm FINALIMPROVE,
then 1 < C(W) < (14 1/1logk)OPT and CéW) < (1+21?;)§I£{3PT' The time complexity to

identify a cycle is O(mn?logkloglogk).

Proof: In the first three lines we set a lower bound for the cost of the optimum
solution. At first, since y is the current minimum delay-to- cost ratio for any negative

cycle in G(f), it holds that u < % and OPT > 22=PU)  Gecond, since algorithm
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2DP-1 will return a flow f with C(f) < 1.5(1+¢)OPT, so C(f°)/2 is another loose lower

bound. The third bound 216; éf;lQ comes from the analysis of the cost in the first phase.

By Theorem 3.3, there exists a cycle W which satisfies g((vvgg < wagg Y and C (W) <
OPT. So if algorithm FCYCLE cannot find a negative cycle with C(W) < OPT, and

D) < 220U then it must hold that OPT, < OPT. Because if OPT, > OPT, then

ZDO_ PDT(zf ) > 2D5£;f ) and according to Theorem 3.2, FCYCLE will return a negative cycle

back. On the other hand, if algorithm FCYCLE finds a negative cycle with C(W) <
OPT,, then by Theorem 3.1 we have C(W) < U + L = 20PT;. Since in the previous
iteration OPT, < OPT, and from line 14 to line 18 we further bound that UB/LB <
1+ 1/logk, it follows that C(W) < (1 +1/logk)OPT.

Notice that when FINALIMPROVE is called, the first phase has already found a cycle
with cost no more than (k + 1)OPT and C(f) < 2kOPT [OS04]. So the while cycle at
line 10 will run no more than O(log %) = O(logk) iterations before it finds a
cycle. And the while cycle at line 14 will run no more than loglog k iterations to achieve
the bound. So the time complexity for each cycle is O(mn?(logk + loglogk)). O

The above algorithm MINDELAY is a pseudo-polynomial algorithm since its time
complexity O(mn?0OPT logkloglogk) is proportional to the cost OPT of the optimal
solution. So it will not be very efficient when OPT is very large. But a good news for a
pseudo-polynomial algorithm is that usually we may adopt some cost scaling approach to
reduce the time complexity and turn it into a polynomial-time approximate solution. We
can see such kind of technique in many approximation algorithms [Has92, LoR01, ESZ02],
but here we can employ the method used in [OS04] directly since the basic framework is
the same.

Since the difficulty lies in the possible huge value of OPT, which comes from the
number of cycles to be found and augmented. If we can scale it down to a reasonable
polynomial bound, then the time complexity of the new algorithm will be polynomial.
This is the basic idea of algorithm 2DP-3 in [OS04] and our algorithm 2QoSDP.

Algorithm 2QoSDP calls the procedure BOUND to calculate the lower bound L and
the upper bound U on OPT with U/L < 2n, its time complexity is O((m+nlogn)logn).
For the details of the procedure BOUND, please refer to [LoR01, OS04].

Theorem 3.9. Algorithm 2QoSDP computes, in O(mn*logkloglogk/e) time, a (1 +
&, (2logk + 3.5 + 1/log k) (1 + €))-approzimation solution for Problem 2DP.

Proof: Let OPT be the cost of the original optimal solution f and let OPT' be the
optimal solution f’ in the scaled network. Then the scaled cost of f will be C'(f) =

S (G +1) < S 15 420 < S, % 42 = ZUL gy — OPT | o —
% + 2n. Since U/L < 2n and L < OPT < U, we have that 1 < % < 2n. Thus
C'(f) = %{_’2" +2n < 2n + 4n2?/e. So for the optimal solution f’ in the scaled network,
we have that OPT' < 2n + 4n?/e. Thus the time complexity of algorithm 2QoSDP is
O((m + nlogn)logn) + O(mn?logkloglogk - n?/e) = O(mn*logkloglogk/e).

now let’s consider the original cost of the returned flow O PT'. Since OPT' < %—k?n,
its original cost should be no more than OPT' * A < (2L + 2p)A = OPT + Le <
(14+e)OPT. So the delay of the final flow will be no more than (2logk+3.5+1/logk)(1+

e)OPT. O
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3.5 A ((k+1)/2,(k+1)(1+¢)/2) -approximation Algo-
rithm for KRDP

Problem KRDP (k Restricted Link Disjoint Paths): Given a source node s,
a destination node ¢ and a QoS requirement D, find k link-disjoint (s, t)-paths P, ..., P
that:
1) D(P) < D,1 <i<k;
2) 3. C(P,) <X, C(P;) for every other set of k link-disjoint (s, t)-paths (P4, ..., Py) that
satisfy D(P;) < D,1<i < k.

Problem KRDP is a natural extension of Problem 2DP. In the following we extend
the algorithm for Problem 2DP in [OS04] to solve Problem KRDP.

Algorithm 3.8. k-RDP(G, s,t, D, ¢, k)
Input:
G,s,t,D,e: the same as that in 2QoSDP;
k : the number of disjoint paths required;
Output:
(P1, Py, Ps): three edge disjoint paths from s to t in G;

Identify path Py in G such that D(P;) < D by using Algorithm RSP;
i+ 1, f«{P};
while ¢ < k do
Construct the residual network G(f) of G imposed by f:
Add to G(f) each link in G that does not belong to f;
for each link (u,v) € f do
Add a link (v,u) to G(f) with
d(v,u) =0 and Clou) = 0,‘
Identify path P,y in G such that D(P;;1) < (i+ 1) - D by using Algorithm RSP;
Augment flow f along path P;::
for each link (u,v) € Py, do
12 if f(u,u) =0 then
13 f(v,u) —1;
14 else
15 Jww) < 0;
16 Decompose flow f into i + 1 edge disjoint paths ﬁl...]giﬂ
with D(P;) < ... < D(Piy1);
17 i i+1,f«{P, .., P1};
18 return {P,, ..., P} ;

© 0 3 Grds W~

~N
~N D

Lemma 3.3. Let G(f) be the residual network of G imposed by f; = {ﬁl, ey é} Then
there exists a path Py 1 € G(f) such that D(Py1) < (i +1)D and C(Py1) < OPT;,;.
Where OPT;, denotes the optimal cost of i + 1 delay-restricted link-disjoint paths.

*

Proof: Suppose f/; is the flow of the 7 + 1 delay-restricted link-disjoint paths with
the optimal cost. Let G’ C G be the union of f; and f;,; and G'(f) be the residual graph
of G’ imposed by f;. Since G’ admits a i+ 1 flow and by the Path Augmentation Theorem
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in [AMO93|, we can always identify a s-t path P;;; in G'. Furthermore, since all links in
fi has zero delay and cost, it is evident that D(P;;1) < (i+ 1)D and C(P;y1) < OPT;y;4.
O

Theorem 3.10. Algorithm k-RDP computes, in O(kmn(: + loglogn)) time, a ((k +
1)/2, (k+1)(1 + €)/2)-approzimation solution for Problem KRDP.

Proof: By Lemma 3.3, we can iteratively find the k link-disjoint paths with delay
D(Py) < D, D(P;) < 2D,... and D(Py) < kD. Their costs are C(P;) < OPT; < OPT/k,
C(P) < OPT, < 20PT/k,... and C(P;) < OPT, < OPT. Thus their total delay is
(k + 1)kD/2 while the optimal total delay is £D. And their total cost is (k + 1)OPT/2,
so the final flow is a ((k +1)/2, (k 4+ 1)(1 4 ¢)/2)-approximation solution.

Since Algorithm RSP costs O(mn(L +loglogn)) time and it will run & rounds. Thus
the time complexity of Algorithm k-RDP is O(kmn(L + loglogn)). O

3.6 A Small Example

The algorithms in this chapter is very complex to implement, and hard to understand.
To make it a little bit apprehensible, we will give an example in this section.

In the following Figure 3.1, there are 10 nodes and 13 edges in graph G, each edge has
a cost value and a delay value. The source node is s and the sink node is ¢, we want to
find two edge-disjoint paths from s to ¢ with total delay no more than 40 and minimum
possible total cost.

Figure 3.1: Each link has a cost (the first value) and a delay (the second value). The
total delay-bound is 20 * 2 = 40.

Figure 3.2: The shortest path is marked by bold lines, it has cost 26 and delay 19.

In the first step, we use algorithm RSP to compute a minimum-cost path from s to ¢
under the delay bound 20. The returned path is s -+ F' — C — t in Figure 3.2, its cost
is 26 and its delay is 19.
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Figure 3.3: The reversed path is marked by red color.
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Figure 3.4: The shortest path in the residual graph under delay bound 40, the solution
path has cost 42 and delay 36.

In the second step, we construct the residual graph of the above computed shortest
path under delay bound 20. We reverse the direction of each edge in this path and set
both its cost and delay value to zero .

In the 3rd step, we call algorithm RSP another time to find in this residual graph the
shortest path under delay bound 40. The solution pathis s - D - B - C — F —
G — E — t, its cost is 42 and its delay is 36.

In the 4th step, we decompose the flow computed in Step 1-3 into two paths. Since
edge C — F appears in the first path and edge F' — C appears in the second path,
we will remove them in the decomposed solution. This solution includes two paths s —
D—-B—C—tand s -+ F — G — E —t, it has total cost 35 + 32 = 67 and delay
26 + 24 = 50 > 40.

In the 5th step, we construct the residual graph of the above two paths. We reverse
the direction of each edge in this path and set its cost to zero, but we will make its delay
to be the negative value of the original one.

In the 6th step, we use our algorithm 2DisjointPaths to find in this residual graph
a set of negative delay cycles so that we will decrease the delay to the desired bound

Figure 3.5: Decompose the flow into two paths, this solution has cost 67 and delay 50.
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Figure 3.7: We can identify two negative delay cycles in this graph.

by cancelling these cycels. We can see in Figure 3.7 that there are two such cycles:
s—+A—-B—-D—sandt—FE—>G—H—t.

In the final step, we cancel the above-computed cycles on the previous flow and get
the final solution. Check in Figure 3.8 the two paths: Pi{s -+ A - B — C — t} and
Py{s - F — G — H — t}. P, has delay 20 and cost 64, while P, has delay 20 and cost
37, so this final solution has a total delay of 40 and its total cost is 101. In this example,
it happens to be the optimal solution.

> 9 d
1o 53 & o
7, 5 8, 6
<:> 7 > . Y C> ’@
3, 5 2,3
G, ~(©) >(H

Figure 3.8: The final solution: P;: cost 64, delay 20; Ps: cost 37, delay 20.

3.7 Concluding Remarks

The major contributions of this chapter are several approximation algorithms for finding
two Delay-Restricted Link Disjoint Paths with minimum total cost. For any fixed ¢ > 0
and k£ > 0, the previous best result can find a solution that violates the delay constraint by
factors of at most 1+1/k and 2(1+41/k) for the primary and restoration paths respectively
with cost £(1+7)(1+¢) times more than the optimum. Our first algorithm reduces the cost
to 4log k + 3.5 times of the optimum. Our second algorithm reduces the time complexity
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to O(mn*logk/¢e) at the penalty of a larger cost bound as (4logk+3.5)(1+¢) times of the
optimum. The third one further reduces the cost to (2logk + 3.5+ 1/logk)(1 +¢)OPT
within O(mn*logkloglog k/¢) time. Furthermore, we introduce a new technique to find
a negative cycle with bounded cost and delay-to-cost ratio, which can be applied to other
similar problems.
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Chapter 4

Solve the 2DP Problem by
Lagrangian Relaxation

In this chapter we propose a new simple and efficient approximation algorithm for the 2DP
Problem. This algorithm can find two disjoint paths with total delay less than (1+1/k)D
while the total cost is no more than the (1+k)OPT. Furthermore, either the delay or the
cost of our solution will be better than that of the optimal solution. The complexity of
our new algorithm is O(m logy , , 7 log %), which is much lower than the previous

algorithms.

4.1 A (1+7,1+k) -Approximation Algorithm for 2DP
by Lagrangian Relaxation

In this section we present our approximation algorithm, which achieves an approximation
ratio of (14, 14k). Previous algorithms are all based on the RSP Algorithm. The 2DP-1
Algorithm in [OS04] uses RSP to find the first path and then to identify an augmenting
path in the residual graph. Based on 2DP-1, other improved algorithms use the negative
delay cancelling method to minimize the delay constraint.

Here we adopt a totally different approach. The basic idea of the algorithm is to
use the Lagrangian Relaxation method to find a solution which is “nearby” the optimal
solution.

For the MCF Problem, we aim to minimize the cost C(f) of a flow f with |f| =2 and
D(f) < D. Instead of considering the delay and the cost respectively, we combine them
together. For each link [, we attach a new value w; = ¢; + a * d;. Then for a flow f we
have W(f,a) = C(f) + a* D(f). Now we need only to run a polynomial algorithm for
finding two link-disjoint paths with minimum total cost on w-weight. Given a value of
«, we can find a corresponding optimal flow f® in G with W(f*) = C(f*) + a x D(f?).
Then we can check the delay and cost of this flow, and based on them we can adjust the
value of o so that we can improve the delay and cost toward the right direction. The
algorithm stops with a flow f which satisfies D(f) < (1+ z)D and C(f) < (1+k)OPT.

There are several algorithms for finding the shortest pair of link-disjoint paths[Su74,
ST84, Bhan99]. The basic idea is to find the shortest path P; in the graph at first,
then construct the residual graph (see the following definition) for this path and find
the shortest path P, in the residual graph. Now combine the two paths and delete the

31



overlapping edges, then we can decompose them into a shortest pair of link-disjoint paths.

Definition 3 (Residual Network) [AMO93|: Given a network G with unit ca-
pacities and flow f, the residual network G(f) is constructed as follows. For each link
(u,v) € G for which f(u,v) =0, we add to G(f) a link (u,v) of the same delay and cost
as in G. For each link (u,v) € G with f(u,v) = 1 and weight w(,.) , we add to G(f) a
reverse link (v, u) to G(f) with weight —w(y ).

The same method can be used for finding & disjoint paths. In [Su74], Suurballe
gave a successive shortest path algorithm to find & disjoint paths with minimum total
cost by recursively finding shortest paths on residual graphs. By applying the Dijkstra’s
algorithm with d-heap [Dij59], this algorithm achieves a complexity of O(mlog;, ,/, 1)
if k is a constant. We will use DDP(«) to denote this algorithm running on G with a
modified cost of w; = ¢; + a * d; in the remain part of this paper.

Since our target flow should have a delay of no more than (1 + 1)D and a cost which
is less than or equal to the cost of (1+ k) times the optimal cost to the MCF Problem, we
need to find a way to approach the “neighborhood” of a feasible solution. We know that
if «v is fixed, then we can find an optimal flow. So we will naturally come to the approach
of testing different values of @ and try to find a feasible solution.

Theorem 4.1. In graph G = (V, E), let f1 be the flow with the minimum total weight
when we set w; = ¢; + a1 xd; and fo be the flow with the minimum total weight when we

set wp = ¢+ g xdp. If 0 < a1 < g, then D(f1) > D(f2) and C(f1) < C(f2).

Proof:  Since f; is the flow with the minimum total weight when we set w; =
¢ + a1 x dj, we have that W(fi, ) = C(f1) + a1 * D(f1) < C(f2) + a1 * D(f2) . Since
f2 is the flow with the minimum total weight when we set w; = ¢; + aip * d;, we have that
W (fa, a2) = C(f2) + ag * D(fo) < C(f1) + ag *x D(f1). Add the two inequations together
and use the fact that 0 < oy < ao:

a1 x D(f1) + oz x D(f2) < oy * D(f2) + o * D(f1) = D(f2) < D(f1);
C(fi)/ar+C(f2)[ae < C(f2) /o + C(f1)/2 = C(f1) < C(f2).
O

For the MCF problem, we assume that there is at least one flow f* with D(f*) < D
and C(f*) = OPT. To check whether there is such a flow or not, we can run Algorithm
DDP to find the flow with minimum total delay and compare it with D. If all disjoint
path pairs have a total delay of more than D, we simply return a message to show that
there is no such solution. Otherwise we can make sure that we will find a solution whose
performance is within a (1 + §,1 + k) factor of the optimal solution.

In the following Figure 4.1, z-axis is the cost of a flow and y-axis is the delay of a flow.
For all disjoint path pairs with the same cost C(f) and delay D(f), we can use a point
(C(f),D(f)) in the plane to denote them. Since the weight of these disjoint path pairs
will remain the same for all different values of «, we can deem them as a single pair. To
make it clear, we divide the first quadrant into 6 faces:

Fy 0 < Cost < OPT (1+1)D < Delay
Fg 0 < Cost < OPT D < Delay < (1+ 1)D
Feo 0 < Cost < OPT 0 < Delay < D

Fp OPT < (Cost D < Delay

Fr | OPT < Cost < (14 k) *OPT 0 < Delay < D

Fr (14 k)*xOPT < Cost 0 < Delay < D
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Figure 4.1: The solution space for the MCF Problem, each point in the plane corresponds
to a set of flows with the same cost and delay.

Point (OPT, D) is the unique joint point of face F and face Fp, there will be no
other solution in face F by the optimality of (OPT, D) while all other solutions in face
Fp are dominated by (OPT, D) because their cost is larger than OPT and their delay is
larger than D. Thus for any value of «, Algorithm DD P(«a) will never return a solution
in face Fo and face Fp. On the other hand, any solution in face Fz and face Ffg is a
feasible solution since it satisfies the (1 + %, 1 4 k) bound, but the problem is that the
corresponding disjoint path pair may be blocked by other disjoint path pairs in face F4
and face Fr when we are running DDP(«) with a given value of «. Fortunately, we are
sure that we can always find a point in either face Fiz or face Fiz (or, the optimal solution)
by the following theorem.

Theorem 4.2. In graph G = (V, E), if there is an optimal flow f* with D(f*) < D
and C(f*) = OPT, then there ezists a flow f® with minimum total weight when we set
w, = ¢ + a*d; and satisfies D(f*) < (1+ £)D and C(f*) < (1+k)OPT.

Proof: Let f. be the disjoint path pair with its total cost minimized and f; be the
disjoint path pair with minimum total delay, their corresponding points in the plane are
(C(fe), D(f.)) and (C(fa), D(fs)) respectively. If we connect the points of all possible
solutions returned by DD P(«) with different o(Figure 4.2), then it will form a line which
connects (C(f.), D(f.)) and (C(f4), D(fa)) in the plane (Figure 4.3). There will be no
other solution which is left to or below this line, since else it will be better than all
solutions on the line for some « and cause a contradiction.

If there is no solution in face Fp and face Fpg, then for any other solutions in face
F4 and face Fr (we need not to consider face Fz and face Fp), either its delay is larger
than (1+ £)D or its cost is larger than (1 + k) * OPT. Set v = 29T then W(f*, a) =
OPT + D « 29T = (1 4 k)OPT. While for a flow f in face F, and face Fp, either
W(f,2) = C(f) + D(f) xa > C(f) + (1 + £)D = 29T > (1 + k)OPT or W(f,a) =
C(f)+D(f)*a> (1+k)«xOPT + D« 9T > (1+ k)OPT. So W(f*, ) is the optimal
solution for oo = #*0PT and will be found by DD P(59FT),

If there are some other solutions in face Fz and face Fr, we can still set o =
and identify a near optimal solution. This is because we know that all solutions in face
F, and face Fr will be dominated by f* when a = #9¥L " So if DDP (29T returns
back a solution, it is either f* itself or another solution in face Fgz or face Fg. O

Notice that we set a = % in the above proof, this will be enough as an evidence
of the capability of the Lagrangian Relaxation method for finding a feasible solution. But

kxOPT
D
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Figure 4.2: If we connect all solutions that can be found by Algorithm DDP, then they

will form a convex and piecewise-linear line.
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Figure 4.3: The solution line will start from (C(f.), D(f.)) and end at (C(f4), D(fa))-

since OPT is not a given parameter, we cannot use it directly in our algorithm. Actually
to calculate the exact value of OPT itself is intractable. So we have to find another
practical criterion to measure the performance of a solution returned back by DDP(«).

Since a feasible solution needs to satisfy the (1 + %)D bound for its delay, we may
think of increasing the value of o if D(f*) > (14 )D and decreasing it when D(f*) < D
by adjusting the value of a. If we increase(decrease) the value of o by a certain amount,
there will be an expected decrease(increase) of the total delay. And after enough rounds
of iterations, we may fix the total delay to be no more than (1 + %)D But the problem
here is that we still cannot figure out whether its cost is within (1+ k)« OPT or not since
we do not know the value of OPT. And although we can make sure C(f*) < (1+k)OPT
if we have D < D(f*) < (1+ 1)D, there is a possibility that all such solutions will be
blocked by the flows in face F4 and face F and thus can never be found by Algorithm
DDP.

Let us reconsider the solution returned back when we set a = k*%P T its modified
total cost will be W (f, ) = C(f)+ D(f)  B9PL < W (f*, ) = C(f*) + D(f*) » ©OFT =
OPT*(1+k) = Dxax*(1+ ). This means we can compare the total cost of the solution
returned back by DDP(c) with the value of Dxa(1++) to see whether it is close enough
to the optimal solution or not. The following theorem establishes a sufficient condition
for finding a feasible solution which will satisfy both requirements.

Theorem 4.3. : Let f be the flow returned by DDP(«) which satisfies W(f,a) = D
ax (14 ), then D(f) < (1+ 1)D and C(f) < (1+ k)OPT.
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Proof: According to the assumption we have

C’(f)—i—D(f)*a:W(f,a)=D*a*(1+%).
Thus

Mﬁ*aSDMMﬂ+# é.MﬁSD*ﬂ+?.

Let f* be the optimal flow with D(f*) < D and C(f*) = OPT, then

D*a*ﬂ+%%:WUﬁwgﬂdﬁpochﬂ+a*DUU§0PT+a*D

:>D*a*%§0PT = Dxa<OPTxk

= C(f) <W(f,a) <OPT+axD < (k+1)+OPT.

We will further prove that we can find such an « by the following theorem.

Theorem 4.4. In graph G = (V, E), if there is an optimal flow f* with D(f*) < D and
C(f*) = OPT, then there exists an oy such that the flow fo returned back by DD P(cy)
satisfies W (fo,0) = D x ag % (1 + 7).

linear function of a. So if we define W'(f,a) = W(f,a) — D * a % (1 + +), then it is also
a linear function of «.

Denote U(a) = W(DDP(«), «) as the modified weight of the flow returned back by
DDP(c) and further define U'(o) = U(a) — D x o (1+ £). We can see that U’(«) is the
minimum of W'(f, «) over all possible link-disjoint path pairs, thus it is piecewise-linear
and continuous.

Given a1 < ag, let f; and fy be the flow returned back by DDP(ay) and DDP(ay)
respectively, then we have C(f1)+ D(f1)*a1 < C(fa)+D(f2)*xar < C(f2)+D(f2)*xag <
C(f1) + D(f1) * a. Thus

Proof: For any given link-disjoint path pair f in G, W(f,a) = C(f)+ D(f) *a is a
1
k

1+k , 1+k
L 3 U (052) = C(fQ) + D(fg)OjQ —Dx Qg * &

U'(en) = C(f1) + D(fi)ar — D * ay *

C(f1) + D(f1) xar < C(f2) + D(f2) xar = C(f1) = C(f2) < D(f2) *on — D(f1) *x a1
C(f2) + D(fo) x a2 < C(fi) + D(f1) e = C(f1) = C(fo) > D(f2) x ae — D(f1) * o
Ufen) = U'(0z) = () + D(fi)os ~ D # o — O(fy) = D(fr)as + Doy s o
< mﬁmr4xm%+pmmr4mf+k_Dmmrumfzk

§MﬁharJhaﬁ1+k—MﬁMaﬁJhaﬂ1:k
< (o —a)(D(f) -~ D+ 10,
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1+ k& 1+k
—C(fQ)—D(fg)a2+D*C¥2*

> D(fs) # o — D(f) # 0o+ D(fr)as — Doy’ — D(fy)a + Doy 1

1+k 1+k
+ —D(f1) *as+ D * g * ha

Ular) —U'(ag) = C(fi)+D(fi)ou — Dx oy x

> D(f1)xa; — D x*xay *

1+k
k

Since a1 < aw, we have that D(f;) > D(f;) by Theorem 4.1. If D(f;) > %D, then
(a1 — o) (D(f2) — D+ 14%) < 0. Thus U’(«) is monotone increasing when D(f*) > L£D
and similarly it will be monotone decreasing when D(f*) < D x 1% (see Figure 4.4.b).
As before, we use f. and f; to denote the disjoint path pair with minimum total cost and
minimum total delay respectively. If we set o, = k% and let f, . be the corresponding

flow, then:

Z (CYQ — al)(D %

— D(f1))-

U@ys) = Olfun) + Dlfup) # yp = D 51y 5 1
< C(f)+ DU * gy — b Clfa) #
< ot + Dk puopy R 20
Since U'(0) = C(fy) > 0 and U'(«) is continuous over [O,kcg"’)], we are sure that
there exists an aq which satisfies U'(ap) = 0 and W (fo, a0) = ag * (1 + ) * D. O

Based on the above analysis, we present the following algorithm.

Algorithm 4.1. Lag-2DP(G, s,t, D, k)
Input:
G: the directed graph G=(V,E);
s : source node;
t : destination node;
D: the delay constraint,
k : the approximation index;
Output:
{P1, P,}: two link disjoint paths from s to t in G;

1 Compute the minimum total cost flow f. and the minimum total delay flow f, in G;
2 if D(f4) > D then return "No Such Solution!”;

3 o, 0, o kcg‘i);

4 fip S Jun < fas

5 whileaq,, —«a,, >4 do

6 o — aUB;aLB ;

7 Set w; = ¢ + ax d; for each link [;

8 f < DDP(«);

9 if W(f,a)—Dxa(l++)>0thenq,, +a, f,, < f;
10 else o, <o, f,, < f;

11 if D(f,,) <D=x(1+1%)then

12 fUB = fLB ’
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18 Break the “while” loop;

14 if D(f.5) = D(f,) then Break the “while” loop;

15  Decompose flow f,, into 2 link disjoint paths P, and P, with D(P,) < D(P,);
16 return {P, P} ;

Theorem 4.5. In graph G = (V, E), if there is an optimal flow f* with D(f*) = D and
C(f*) = OPT, then Algorithm Lag-2DP will return a flow f of two link-disjoint paths
which satisfies D(f) < (1+ £)D and C(f) < (14 k)OPT.

Proof: By Theorem 4.4 we know that there exists an «ag such that the flow fy
returned by DDP(ay) satisfies U'(cg) = 0, which means that D(fy) < (14 +)D and
C(fo) < (1 + k)OPT by Theorem 4.3. Now let us consider the following three different
situations that bring Algorithm Lag-2DP to an end:

1): D(f,,) < Dx(1+41). In this situation, the final solution f,, = f,, (line 12). Since
U'(a,,) > 0 while U'(cp) = 0, we have that «,, < ap. Thus C(f,,) < C(fo) <
(1 + k)OPT by Theorem 4.1.

2): D(f,;) = D(f,,)- In this situation we have f,, = f,, = fo, since DDP(«,,) and
DDP(w,,,) return the same flow and «,, < ap < . So f,, satisfies D(f,,) <
(14 +)D and C(f,,) < (1+k)OPT.

3): a,,—a,, < 5. In this situation we can also prove that f, , satisfies the requirement
( Figure 4.4.a).
C(fy) + Dlfya) # 00 < Dot vy, = DAf,,) < 0D
C(fua) + D(fus) * @y > DU ey, = WS a,,) > DAt wa,
= W(fa,,) =OPT+Dxa,, > Dlzk xa,, = kxOPT>Dxqa,
= C(f,) <D1—l:k oy, < Dl—]:k * (0, +%) = #(Dam +1)
<R kv OPT = (14 K)OPT.

Thus we have C(f,,) < (14 k)OPT and D(f,,) < (1+ 1)D.

Since in all three situations Algorithm Lag-2DP will return a feasible solution, we
conclude that this theorem is correct. O

Notice that a solution f returned back by Algorithm Lag-2DP not only satisfies the
(14 4,1+ k) bound, but also has the following very nice property: C(f) > OPT implies
D(f) < D and if D(f) > D, then C(f) < OPT. This means that either the delay or the
cost of f will be better than that of the optimal solution (but of course not both).

Theorem 4.6. Let f. and fg be the link-disjoint path pairs with minimum total cost and
minimum total delay respectively in graph G = (V, E), Algorithm Lag-2DP will terminate

in O(m1og, ,/, nlog %) time.
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Figure 4.4: a), The situation when f,, and f,, are close to the flow f® which satisfies

U'(a) = 0. b), Function U'(e) will be monotone increasing when D(f*) > %D and

monotone decreasing when D(f*) < HED.
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Proof:  According to the proof in [Su74], the complexity of Algorithm DDP for
finding two link disjoint paths is O(mlog;,,/, n).

Since we set o, , = 0 and ¢, = k%, while the loop condition is o, — o, , > 35,
we instantly have that Algorithm Lag-2DP will end in log(kC(f4)) rounds and the time
complexity is within O(mlog;,/, nlog(kC(f4))).

Now let’s check line 11 in Algorithm Lag-2DP, we find that this step will decrease the
complexity of the whole algorithm. By Theorem 4.4, we know that U'(«) is monotone
increasing when D(f®) > “4£D and monotone decreasing when D(f®) < HED (see
Figure 4.4.b).

Let oy be the value when U'(aq) is maximum and as be the value when U’'(ay) = 0.
Then D(f*) = 45D, and D(foz) < 45D if o, > . Since o, < an < @, We
will have o, > o if oy, — @, < @2 — 1. Thus D(f*s) < HED and Algorithm
Lag-2DP will be able to return a feasible solution by line 11. So we need to analyze the
time complexity to make o, , — v, , < as — . But we do not know the exact value of o
and ao, fortunately we can estimate their difference via its relationship between U’ ().
Let us first consider the difference between U'(«) and U'(ax — 1):

Ule) = U'(a—1)

= O+ DM~ Drax TE 0(fe) D) o - 1)+ D (@ 1)« HEE
K
— C(f*) + D(f*)a — C(f@D) = D(f@V)(a—1) — %D.

If fo = fle=1) then U'(a) —U'(a—1) = D(f*) — £ D. Else then D(f®) < D(f{V)
(by Theorem 4.1). Since C(f%) + D(f%)a < C(f(a’llﬁ) — D(f@Y)a, we have U'(a) —
U'(a—1) < D(f@1)—E£D; while C(f@D)+ D(f)(a-1) < C(f*)+ D(f*) (a—1)
implies that D(f*) — 4£D < U'(a) — U'(av — 1). Now we have U'(e) — U'(ax — 1) <
D(fe ) —LED < U'la — 1) — U'(a — 2), so the value of U'(ar) — U'(o — 1) will be
monotone non-increasing when « < «; and the value of U'(a«—1) —U’(«) will be monotone
non-decreasing when o > «;.

Now if we adjust a from a; to as, then the value of U'(a) will fall down from its
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maximum to zero at a “speed” of no more than the speed around U'(ap — 1) — U’ () =
—(U'(a2) = U'(a — 1)) < BED — D(f*2). This means that each time we increase «
by 1, the value of U'(c) will decrease by less than %D — D(f*2). So we have (as —

Qi) * (%D - D(f*) > U'(a1)) =0 = a—a; > %. Since originally
Qyp— O, = k% and we can find a solution when o, , — o, , < % < ap —ay,
k

Lk
Algorithm Lag-2DP will terminate in log{kcgd) . 3,(51

1+k @ o
Since U'(ai1) > C(f.) while K DDD(f 2 D*(1+k)_Dk*D(f 2 < DR _ (k4 1), we have

()f ")} rounds (by binary search).

D
ik p_p(fa2
log{ k<42 & U,(al()f )} < log (10U — Jog UL,
Thus we can conclude that Algorithm Lag-2DP will end in O(m log; ,, ,, 7 log CUa)kE+L)

. C(fe)
time. 0

4.2 Some Extensions

The method developed in the previous chapter is very simple and efficient. Whet’s more,
we can apply the same method for solving other problems. A very natural extension is to
solve the problem of finding ¢ link-disjoint delay-restricted paths with shortest total cost.
We need only to let Algorithm DDP find ¢ paths instead of 2 in Algorithm Lag-2DP. Let
this modified algorithm be Algorithm Lag-TDP, we instantly get the following theorem.

Theorem 4.7. In graph G = (V, E), if there is an optimal flow f* of t link-disjoint paths
with D(f*) = D and C(f*) = OPT, then Algorithm Lag-TDP will return a flow f of t
link-disjoint paths which satisfies D(f) < (14+)D and C(f) < (1+k)OPT. Let f. and fq
be the t link-disjoint paths with minimum total cost and minimum total delay respectively
in graph G = (V, E), Algorithm Lag-TDP will terminate in O(tmlogy ,,, , nlog W)
time.

We can also use this method to compute the total-delay-restricted spanning tree with
minimum total cost. The modification is to replace Algorithm DDP with Algorithm MST.

Algorithm 4.2. Lag-2MST(G, D, k)
Input:
G: the directed graph G=(V,E);
D: the total delay constraint;
k : the approximation index;
Output:
T': a spanning tree of G which satisfies D(T) < (1+ +)D and C(T) < (1+ k)OPT;

Compute the MST T, with minimum total cost and T,; with minimum total delay in G;
if D(T;) > D then return "No Such Solution!”;

o, 0, a,, + kcg‘i);

T,,«1, T,, Ty

. 1
while o, —a,, > 5 do
ayptarp .
s =5

Set w; = ¢ + o x d; for each link [;
T + MST(a);

YD A W S~
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9 if W(T',a)—Dx*a(l+ %) >0thena,, <o T, ,+T;

10 else o, <o, T,, < T;

11 if D(T,,) <Dx(1+ ;) then

12 T,, < T,,;

13 Break the “while” loop;

14 if D(T,,) = D(T,,) then Break the “while” loop;

15 returnT,, ;

Theorem 4.8. In graph G = (V, E), if there is a spanning tree T* with D(T*) = D and
C(T*) = OPT, then Algorithm Lag-2MST will return a spanning tree T which satisfies
D(T) < (14 1)D and C(T) < (14 k)OPT. Let T, and T, be the spanning trees with
minimum total cost and minimum total delay respectively in graph G = (V, E), Algorithm
Lag-2MST will terminate in O(tmloglog® nlog %) time.

Proof: We adopt the algorithm presented in [GGST86] as MST() to compute the
minimum spanning tree, the complexity of this algorithm is O(mloglog* n). Other proof
is the same as that in Theorem 4.6. O

4.3 Concluding Remarks

The major contribution of this chapter is a polynomial-time approximation algorithm
for finding two Delay-Restricted Link Disjoint Paths with minimum total cost. For any
fixed number k, the previous best result can find a solution that violates the delay con-
straint by factor of at most 1+ 1 with cost k(1 4+ )(1 +¢), (v > lolgck,e > () times more
than the optimum. Our algorithm maintains the delay performance of no more than
(14 £)D and reduces the cost factor to (k + 1) times the optimum, and either the delay

or the cost of our solution will be better than that of the optimal solution.

Delay Cost Time Complexity
[0S04] 141 | (k+2logk+1)(14¢) | O(miloekoe(CD))
[PSO06] 14+ ¢ | (4logk+3.5)(1+¢) O(mn*logk/e)
This chapter | 1+ ¢ 1+k O(mlog, = nlog %)

From the above table we can see that the complexity of our new algorithm is much
lower than previous algorithms. Our algorithm can be easily extended to find more than
two edge-disjoint 2-restricted paths. What’s more, we adopt the Lagrangian Relaxation
method as a new technique to find 2-restricted link disjoint paths and trees, which can
be applied to other problems with similar characterizations.
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Chapter 5

Edge-disjoint Paths and Unsplittable
Flows

In the previous two chapters, we have studied the problem of finding multiple edge-
disjoint paths with multiple restrictions from a source node s to a sink node ¢ in graph
G. A natural extension of this problem is to find edge-disjoint paths between multiple
source-sink pairs. This problem is known as the Edge-disjoint Paths Problem (EDP),
it has attracted considerable attention in recent years from research areas such a graph
theory, VLSI design and network routing/flow. Notice that here we have multiple source
nodes and each source node has one or more corresponding sink nodes, which makes the
problem much more difficult than the single source node situation.

The Unsplittable Flow Problem (UFP) is the generalization of EDP where every edge
is capacitated and each source-sink pair has a commodity with a given demand. UFP was
introduced in the PhD theis of Kleinberg, which solidified the various stands of work on
disjoint-path problems until then and gave impetus to new research.

In this chapter we first develop an efficient algorithm for computing a minimum-cost
single-source unsplittable flow in a graph with arbitrary edge capacity. Then we consider
the special case when the largest demand in G is far less than the minimum capacity in
it. After that we study the minimum-cost single-source k—splittable flow problem and
present an algorithm with provable performance guarantee for it.

5.1 The Edge-disjoint Paths Problem
Edge-disjoint Paths (EDP)

e INSTANCE: Graph G = (V, E), a collection of [ source-sink pairs F = {(s;,1;)
s;eVit, eV, i=1,...,1, 1> 2}

e SOLUTION: A set of edge-disjoint paths Py, Ps, ..., P, where P; is an s; — t; path,
1=1,...1.

e MEASURE: The number of edge-disjoint paths.

Based on whether GG is directed or undirected and the edge-disjointness condition
one obtains four basic problem versions. Among them, an undirected problem can be
reduced to its directed counterpart by replacing an undirected edge with an appropriate
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gadget; both reductions maintain planarity. And edge-disjoint problem can be reduced to
its node-disjoint counterpart by replacing G with its line graph. Directed node-disjoint
paths reduce to directed edge-disjoint paths by replacing every vertex with a pair of new
vertices connected by an edge. There is no know reduction from a directed problem to an
undirected problem.

For general k all four basic problems are N'P-complete. The undirected vertex-disjoint
paths problem was shown to be NP-complete by Knuth in 1974 via a reduction from
SAT. This implies the N'P-completeness of directed vertex-disjoint paths and directed
edge-disjoint paths. Even, Itai and Shamir [EIS76] showed that both problems remain
NP-complete on directed acyclic graphs (DAGs). In the same paper the undirected edge-
disjoint paths problem was shown AP-complete even when T contains only of two distinct
pairs of terminals. In the case when all source nodes are the same, all four versions are in
P as special cases of maximum flwo. For planar graphs Lynch’s [Lyn75] reduction shows
NP-completeness for undirected node-disjoint paths; Kramer and van Leeuwen show that
undirected EDP is N'P-complete. The NP-completeness of the directed planar version
follows.

For fixed k, the directed versions are NP-complete even for the case of two pairs with
opposing source-sinks, i.e.,(s,t) and (¢, s)[FHW80]. Undirected node-disjoint paths, and
by implication edge-disjoint paths as well, can be solved in polynomial-time. This is an
outcome of the celebrated project of Robertson and Seymour [RS95] on graph minors. It
is notable that for fixed k, node-disjoint paths, and by consequence EDP, can be solved on
DAGs by a fairly simple polynomial-time algorithm. Earlier polynomial-time algorithms
for £ — 2 include the one by Perl and Shiloach [PS78] on DAGs and the ones derived
independently by Seymour, Shiloach and Thomassen [Shi80] for node-disjoint paths on
general undirected graphs.

For planar graphs and fixed & the directed node-disjoint path problem is in P while the
complexity of the edge-disjoint case is OPEN. When the input graph is a tree, Garg, Vazi-
rani and Yannakakis [GVY97] gave a polynomial-time algorithm to maximize the number
of pairs that can be connected by edge-disjoint paths. The algorithm extends for node-
disjoint paths. By total unimodularity, the EDP maximization problem is polynomial-
time solvable on di —trees as well, i.e., directed graphs in which there is a unique directed
path from s; to t;, for all 7; a reduction to a minimum-cost circulation problem is also
possible in this case [CLR03]. Reducing directed node-disjoint paths to EDP maintains
the di-tree property, hence the former problem is in P as well. Oberserve that directed
out-trees and in-trees are special cases of di-trees.

5.2 The Minimum-Cost Single-Source Unsplittable
Flow Problem

The unsplittable flow problem is the generalization of EDP where every edge has a positvie
capacity, and every commodity has a demand which should be routed in an unsplittable
manner. If we relax the requirement that each commodity should use exactly one path,
we will obtain the multicommodity flow problem which is well known to be solvable in
polynomial-time. When all sources of a multicommodity flow instance coincide at a vertex
s and all the sinks at a vertex ¢, we obtain the classical maximum flow problem to which
we also refer to as s-t-flow. In the chapter we will focus on the single-source case.
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Let G = (V, E) be a directed graph with edge capacities v : E — R™, a designated
source vertex s € V and k commodities each associates with a terminal ¢; and a demand
d; € R*, 1 < i < k. The Single-Source Unsplittable Flow Problem (UFP) asks for a
feasible unsplittable flow which can route d; units of commodity ¢ along a single s — ¢;
path for each 7 without violate the capacity constraint of any edge e € E. Here we use
T C V to denote the set of k terminals, |T| =k, |[V| =n, |E| =m.

In this paper we will adopt the standard model used by previous researchers. A
splittable flow on the graph G is a function f : E — R™" satisfying the flow conservation
constraints in each vertex and the source vertex s is the only vertex where the outflow
may exceed the inflow. We will say a flow satisfies all demands if the inflow minus the
outflow at each vertex except s is equal to the sum of all demands located at it. A flow f
will be called feasible if the total flow on each edge does not exceed the capacity of this
edge.

The Minimum-Cost Single-Source Unsplittable Flow Problem (MSUFP) is the edge-
weighted extension of UFP. In MSUFP, there is one more edge cost function ¢ : £ — R*.
An unsplittable flow f contains a set of paths { Py, ..., Py}, where P; starts at the source
s and ends at #;. The cost of a path P; is defined as ¢(P;) = }_,.p. c. and the cost c(f)
of a flow f is give by c(f) = > ,cpCe - fe- MSUFP asks for a feasible unsplittable flow
with minimum cost. Since UFP and MSUFP are NP-complete[KleinTh], most efforts
are devoted to designing approximation algorithms. We will use the bicriteria (c, f)-
approximation to denote a solution for MSUFP which simultaneously has congestion
index at most o and cost at most 3 times the optimal.

After been introduced by Kleinberg [KleinTh|, the UFP problem attracted consider-
able attention [Klein96, KleinTh, DGG99, KS02, Sku02]. There are three optimization
versions of it: a), the Minimum Congestion version seeks the minimum « > 1 such that
the returned solution will be a feasible unsplittable flow if all capacities are multiplied by
a. b), the Minimum Number of Rounds version aims to partition the set of commodities
into a minimum number of subsets for which we know an unsplittable flow solution. c),
the Maximum Routable Demand version wants to find a subset which has maximum total
demand and for which we know an unsplittable flow solution.

In this section we will focus on the congestion optimization version. A commonly
used congestion assumption is that the maximum demand does not exceed the minimum
capacity (i-e., dpmaz < Umin). Under this assumption Kleinberg gave the first constant
16—approximation algorithm for UFP. Later Dinitz, Garg and Goemans [DGG99| ob-
tained a congestion bound of 2 and proved that this ratio was the best possible, their
algorithm has a congestion rate 3 4 21/2 if we remove the congestion assumption. For the
MSUFP problem, Kolliopoulos and Stein [KS02] gave a bicriteria (3,2)—approximation
algorithm with ratio 3 for congestion and 2 for cost under the congestion assumption.
Built on this result, Skutella [Sku02] cleverly improve the approximation guarantee to
(3,1), which is currently the best bicriteria bound.

UFP contains several well know N P-complete problems as special cases: Partition,
Bin Packing, Scheduling on parallel machines to minimize makespan[Klein96]. Among
them the scheduling problem has a bicriteria (2,1)—approximation algorithm, and so
does its generalization - the Generalized Assignment Problem [ST93]. Naturally we will
wonder whether a bicriteria (2, 1)—approximation algorithm is possible for MSUFP. This
is the best possible bicriteria bound since Erlebach and Hall proved that for MSUFP
and arbitrary € > 0 there is no bicriteria (2 — ¢, 1)—approximation algorithm for unless
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P = N'P[EH02].

5.3 A New Approximation Algorithm for MSUFP

In this section we focus on the case without the congestion assumption, thus each edge
has arbitrary capacity. We give a (3 4+ 2v/2, 1)—approximation algorithm to MSUFP. We
adopt a different rounding method which decreases the time complexity and makes the
computation and implementation more convenient.

Basically, most previous research work follows the method which first find a minimum-
cost splittable flow that satisfies all demands, then turn this flow into an unsplittable flow
while increasing the total flow through any edge by a certain amount. The following linear
program is for the minimum-cost splittable flow problem.

Minimize E CijTij
(i.4)eE
Subject to Z Tij — Z Ty = Z dj, fOT 1=35
{5:(i.9)eE} {5:(G0)eE} {7:1<s<k}
Z Tij — Z T = —d;, forieT (51)
{5:(i9)eE} {5:(:0)eE}
Z JTiJ'— Z JTji:O, fO?"ZGV—{S}—T
{5:(i.9)eE} {5:(,1)€E}
0 < zj; < uy, for each (i,j) € E.

Since the minimum-cost splittable flow has a cost which is always no more than that
of an unsplittable flow, we can make sure the cost of a solution will be within the optimal
if it is built on the minimum-cost splittable flow and the cost never increase during the
rounding process. The tradeoff is that we may have to expand the capacity of each edge. If
we bound the cost of the solution to be no more than that of the minimum-cost splittable
flow, all existing algorithms can only guarantee a congestion rate of no less than 3 times
the capacity for each edge, under the assumption that the maximum demand does not
exceed the minimum capacity.

But if we want to remove this congestion assumption, the common minimum-cost
splittable flow will not be an ideal basic step because in such a flow a very large flow may
route a small portion along an edge that has the minimum capacity in the graph. Since
for a solution of the unsplittable flow, a commodity ¢ with demand d; cannot pass by a
bottleneck edge with capacity less than d;, we may consider add some restrictions to the
above Linear Program. In the above Linear Program, we use z;; do denote the flow size
on edge (7,7) € E; while in the following Linear Program we will replace it by xéj which
denotes the flow of commodity / on edge (i,5) € E.
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. . . . k
Minimize Y. DL Cijxdpx Ty
1<I<k (i,j)€E

Subject to > xéj - > xéz =d;, fori=sandeach demand!l €T
{5:(i.5)eE} {7:(G0)eE}
zi— Y, zhy=—d, forleTandi=1I
{5:(6.5)eE} {5:G0)eE}
ahi— Y ahy=0, forieV—{s}—T,1e€Tandi#]l
{5:(6.5)eE} {5:G0)eE}
0< xéj * dp < gy, for each (i,j) € E andl €T,
xéj =0, for each (i,j) € E with d; > u;;.
(5.2)

Next we will also first compute a minimum-cost splittable flow, then we adopt a
different rounding method which is modified from the method used in [ST93]. We will
directly use the following well-known results on splittable flows|] AMO93, Sku02].

Theorem 5.1. Let G = (V, E) be a directed graph with capacities and costs on the edges.
Moreover, there is a source vertex s € V and k sinks t1, ...ty € V with demands dq, ..., dy
respectively.

a) There exists a feasible (splittable) flow satisfying all demands if and only if, for any
subset C CV — {s}, the sum of capacities of edges in the directed cut (V — C,C) is
at least Y ;. ,.cc di- We refer to this condition as cut condition.

b) If the cut condition is satisfied and all demands and capacities are integral, then there
exists a feasible (splittable) flow satisfying all demands with minimum cost such that
the flow value on any edge is integral. Moreover, such a flow can be computed in
polynomial-time.

Let f be a minimum-cost splittable flow in G with no commodity pass by a bottleneck
edge, we will first decompose it into a set of s — ¢;—paths. For each commodity 2 in T,
there is a corresponding set of s — t;—paths with total demand d;. We can immediately
route those demands whose corresponding set has only one path, thus we assume that all
demands has multiple corresponding paths. Without loss of generality we assume that
dy > dy > ... > dy, this can be easily achieved by sorting the demands in the preprocessing
step. Now we will divide all commodities into different groups according to the size of
each demand.

[dmaz = d1, dmaz * 2]|(dmaz * 2, dmag * 2%] |- (dmaz * 2V 7", dmae * 2] (5.3)

In the above equation, 0 < z < 1 and a commodity ¢ will be classified into the j-th
group if dppes * 27 < d; < dpag * 2271, Let y be the integer satisfies deq * 2¥ < dppin <
Apmaz * 271, then we will have no more than y groups. Since we can simply remove those
empty groups, we have that the total number of groups will be no more than min{y, k}.

After we put all commodities to different groups, we will route them group-by-group.
Consider the g-th group, let d? .. be the commodity with maximum demand in it and let

max
d? .. be the commodity with minimum demand in it. Then we have d%,,, < d? . /z. We

mar — “'min

pick out the flow f; of commodities in the g-th group from f. Then for each edge e in
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fg, there is at least one commodity from the g-th group. Let them be ey, ..., e, let their
demands be de,, ..., de, and their flow be z¢, ..., 2. Let X¢ = ) .., ¢, then we can
deem X¢ as the number of Unit paths from the g-th group on edge e. Now we change
the capacity of edge e from u, to [X¢] and we let the demand of each commodity in the
g-th group be 1.

After we process all edges in f,, we will find that the current graph for f; is a graph
with a unit capacity on each edge. So we can run a minimum-cost unit flow algorithm on
it and we will get a flow f;. Finally, we decompose f; into edge-disjoint paths (they are
edge-disjoint since all edges has a unit capacity). Each of these paths in f; corresponding
to a single path in G for some commodity in the g-th group.

Algorithm 5.1. Min-Cost-UFP(G, s,T)
Input:

G: the directed graph G=(V,E) with {u;, c¢;}icE;

s : the source node;

T: the set of commodities, each commodity i has a terminal t; and a demand d;;
Output:

A Minimum-cost Unsplittable Flow satisfying all demands with a congestion bound

3+ 2/2;
Compute a minimum-cost splittable flow f without bottleneck edges in G;
Decompose f into a set of sub-flows for different groups of commodities;
Modify the edge capacities and commodity demands in each sub-flow;
Compute a minimum-cost unit flow f, for each group g;
Decompose f, into a set of paths in each group;
Find the corresponding s — t;—paths in G for each commodity i;
Route each commodity along its path.

QLS G o o

Lemma 5.1. Algorithm Min-Cost-UFP runs in polynomial-time.

Proof: As we know, the minimum-cost flow problem can be solved in polynomial-time
and a flow can be decomposed into a set of paths in polynomial-time. Furthermore,
a Linear Program is also polynomial-time solvable. Thus we are sure that Algorithm
Min-Cost-UFP can finish in polynomial-time. O

Lemma 5.2. Algorithm Min-Cost-UFP computes a solution with cost of no more than
that of the Minimum-cost Splittable Flow.

Proof: Notice that a Minimum-cost Single-source Unsplittable Flow in G is also a feasible
solution of the second Linear Program, so we have that the flow f computed in the
1—st step will have a cost less than that of the optimal solution. For each group of
commodities, we will route them respectively. Let we consider any group ¢: we find that
fq is still a feasible solution for commodities in group g after we modify the demands
and edge capacities. Since the modified graph has unit capacity on each edge and unit
demand for each commodity, by Theorem 5.1 we will find a unit flow with minimum cost
in polynomial-time. Thus the cost will not increase for any group of commodities during
the computing process. So the cost of the final solution will be bounded by that of the
optimal solution. O
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Lemma 5.3. Algorithm Min-Cost-UFP computes a solution with congestion on each edge
(i,7) of no more than (3 + 2v/2)u;.

Proof: Let us consider any given edge e in GG. Suppose it belongs to the flow f, for the
commodity group g and the capacity of e used by f,; is u = X7. After we modify the
capacity when we are computing f;, we have that the capacity of e will be [ X¢]. Thus
there will be no more than [X¢] paths for commodities in group g and the real capacities

used on e will be no more than [X¢] % d? ., while the capacity of e allotted f, will be

more than [X7]*d? ., —dJ . . So we have that the congestion cause by commodity group

¢ is no more than

dg
congle,g) = [XE] 5/ (IXE] % iy — @) < By + 01252 =,

+ulfz (5.4)

Edge e might have been used by more than one group of commodities. The extreme
case will be used by all y groups. In this case, we have that the congestion on e will be:

cong(e) = D cic, cong(e, i)

Aroae + ul/z ot dY, FuY/2

219'33, maz T Zl<z<y ui/z (5.5)
te leisyz + ue/2

ueﬁ + U/ 2.

A1

The value of u,——— ( 5 T te/z Will be lower-bounded by (34+2v/2)u, when we let z = ﬁ
Thus we can make sure that the solution computed by algorithm Min-Cost-UFP will have
a congestion on each edge (i, 3) of no more than (3 + 2v/2)u;;. 0

Theorem 5.2. Algorithm Min-Cost-UFP computes in polynomial-time an unsplittable
flow whose cost is no more than that of the optimal solution and whose congestion on
each edge (i, ) is no more than (3 + 2v/2)u;;.

Proof: This theorem follows from the above three lemmas. O

Notice here that Algorithm Min-Cost-UFP differs from all previous algorithms by
rounding the number of paths on an edge instead of the number of flows, which makes
the computation much more convenient since we need only to round them to an integer
and thus avoid the complex numeric processing steps. What’s more, we do not need to
compute the longest paths and remove the leftover flows at the very beginning, which also
decreases the whole complexity.

5.4 Algorithms for Some Special Cases of MSUFP

5.4.1 On the case when d,,,, < Unin

As we mentioned above, it is a commonly accepted assumption that dpee < Umin. In
the previous section we are dealing with the case when we do not have this restriction
and subsequently the congestion in the computed solution is larger than that of the case
with the assumption. In this section we will consider, on the contrary, the case when
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ez K Umin. For example, if dyae < Umin/10, can we compute a flow with a congestion
better than 2 +1/107

Skutella present a (3,1)—approximation algorithm for the case with the assump-
tion that djee < Upmin. More precisely, the Skutella Algorithm can compute a (2u, +
dmaz, 1)—approximation solution in polynomial-time. This algorithm first compute a
minimum-cost single-source splittable flow f, then it rounds the demand d; and any

_di _di
commodity % to dy, * gllos 7,5 by cancelling d; — dip * 9118 7w | units of s — t; flow in

f along the longest s — t; paths in f. After this it compute an unsplittable flow f’ with
congestion u, + dy,q; on the rounded f. Then it decompose f' into a set of paths in G
and route each commodity according to its corresponding path. Thus the final congestion
will be 2u, + d,,.; and the final cost will be within the optimal.

Now we see that the congestion 2u, in 2u, + d,,,; comes from the rounding procedure.

Since we have to round a demand to almost half its original size when d; —d,, 2% T
d;/2. So if dpay < Upin, and we want to further decrease the congestion, we can focus on
improving the rounding process.

The Skutella Algorithm rounds demands by a scale of 2, here we will decrease this
scale to 1+ z(0 < z < 2). Surprisingly, we find that we can apply the same rounding
technique in the previous section.

Algorithm 5.2. Min-Cap-UFP(G, z,s,7T)
Input:

G: the directed graph G=(V,E) with {u;, c;}ick;

z : the scale number;

s : the source node;

T: the set of commodities, each commodity i has a terminal t; and a demand d;;
Output:

A Minimum-cost Unsplittable Flow satisfying all demands with a congestion bound

ﬁdmaw + %ue;

1 Compute a minimum-cost splittable flow f in G;

2 Divide all commodities into different groups by the scale z;

3  Decompose f into a set of sub-flows for different groups of commodities;

4 Modify the edge capacities and commodity demands in each sub-flow;

5  Compute a minimum-cost unit flow f, for each group g;

6  Decompose f; into a set of paths in each group;

7 Find the corresponding s — t;—paths in G for each commodity 1;

8  Route each commodity along its path.

We can see that the above algorithm is almost the same as Algorithm Min-Cost-UFP
except that we compute a minimum-cost single-source splittable flow in the first step since
we have the assumption that d,,.; < Upmin NOW.

Theorem 5.3. Algorithm Min-Cap-UFP computes in polynomial-time an unsplittable
flow whose cost is no more than that of the optimal solution and whose congestion on

each edge (i,7) is no more than Z(l—az)dmax + %ue.

Proof: The polynomial-time computability and the optimal cost feature proof is the
same as that for Algorithm Min-Cost-UFP. For the congestion on e, it will be:
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cong(e) = > i, cong(e,i)

Doz + Ue/ 2+ oo+ oy + Ul /2

D i<i<y o + D i<i<y ut/z (5.6)
e Y oicicy 7t Ue/?

dmazﬁ + ue/z-

IA

Thus we prove the theorem. O

So given an instance of MSUFP, we can check the relationship between d,,., and

Umin- 1 dmaz > Umin, We can use Algorithm Min-Cost-UFP to compute a minimum-cost

solution with congestion 34+2v/2. Else if 2u, + dynas < mz’nzzo<z<1{dmwﬁ+ue/z}, then

we can use the Skutella Algorithm to compute a minimum-cost solution with congestion

2ue + dpaz- If dpaz < Umin, then we can use Algorithm Min-Cap-UFP to compute a
1

minimum-cost solution with congestion minz:0<z<1{dmawm + ue/z}.

5.4.2 On the case with demands from the set {p,2p}

In [KS02] Kolliopoulos and Stein propose an algorithm for the case when all demands are
from the set {p, 2p} for some p > 0 while the minimum capacity in G is 2p. Their algorithm
achieves a congestion rate of 3/2, but it does not take into account the cost of a flow.
In this subsection we will present an algorithm which compute a (3/2,1)—approximation
algorithm for this special case.

Algorithm 5.3. Min-2Demands-UFP(G, s, T)
Input:

G: the directed graph G=(V,E) with {u;, c;}ick;

s : the source node;

T: the set of commodities, each commodity i has a terminal t; and a demand d;;
Output:

A Minimum-cost Unsplittable Flow satisfying all demands with a congestion bound 3/2;
Compute a minimum-cost splittable p—integral flow f in G;
Decompose f into f, and f, for commodities with demands p and 2p respectively;
Round the capacity on each edge e in flow fy to 2p * [ f$/2p];
Compute a minimum-cost unit 2p flow f} in the modified graph of f,;
Decompose f, and f} into a set of s — t;—paths for all commodities;
Route a 2p flow along its corresponding path in f; for each commodity i with d; = 2p;
Route a p flow along its corresponding path in f, for remain commodities;

NS G W~

Theorem 5.4. Given an UFP instance (G, s,T) with demands from the set {p,2p}(p >
0), Algorithm Min-2Demands-UFP computes in polynomial-time an unsplittable flow whose
cost is no more than that of the optimal solution and whose congestion on each edge (i, j)
18 no more than %ue.

Proof: During the computing process, we only increase the capacity of any edge by at
most p in Step 3. While the minimum capacity in G is no less than 2p by assumption.
So the congestion rate is at most 3/2. For the cost, since f, is also a fractional solution
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in the modified graph for commodities with demand 2p while f} is the minimum-cost
2p—integral flow. Thus the cost of fi will be no more than that of f,. Finally, it is
evident that Algorithm Min-2Demands-UFP will finish in polynomial-time. Thus the
theorem can be proved. O

5.5 Approximation Algorithms for k-splittable Flow

The Minimum-Cost Single-Source k-Splittable Flow Problem (MSKFP) is a relaxation
of MSUFP in which we allow the demand of each commodity to be split along at most
k paths. Baier, Kohler, and Skutella have designed a (2,1)-approximation algorithm
for the Minimum-Cost k-Splittable s-t-Flow Problem in [BKS02]. Kolliopoulos consid-
ered the Minimum-Cost Single-Source 2-Splittable Flow Problem and proposed a (2,1)-
approximation algorithm in [Koll04]. In this section we will follow the methods used
by them and present two approximation algorithms for MSkKFP. For a given k, our first
algorithm will achieve a simultaneous (17;_ 5 %, 1)-approximation for the congestion and
cost while the second algorithm will find a bicriteria (1_27(,072“0;,6”1“103 0 (14 5m577), 1)-

approximation. Notice that we use k to denote the number of splittable paths instead of
the number of commodities only in this section since this problem was orginally proposed
as a k-splittable flow problem.

We adopt the same model as in [Koll04] and set dpep = mazi<i<gdi, dmin = Mini<i<gd;
and Uy, = MiNecple. We assume that dee < Umin = 1. The algorithm POWER-ALG
proposed by Kolliopoulos and Stein [Koll04] will be used as a basic stone.

Theorem 5.5. [Koll0}] Given a SUFP instance where all demands are powers of 1/2 and
an inital fractional flow solution, the algorithm POWER-ALG will find in polynomial-time
an unsplittable flow f that violates the capacity of any edge by at most dpmey — dmin and
whose cost is bounded by the cost of the initial fractional flow. a

We first extend the method in [Koll04] to the case of single-source k-splittable (k > 2)
flow. Let floory(x) denote the largest number which is a power of 1/2 and does not exceed
x. The operator [-], is defined as follows:

1/2 if x=1,
|z], =< floors(z) if 0<z<1,
0 if z=0.

Now for any given instance I we create a new UFP instance I* with no more than
k - g commodities. For a commodity ¢ with demand d; in the original instance, we create
a series of k commodities in I* with demands of {d},..d'...,df} (1 < h < k) where
di = |d;], and d! = |d; — > 1<j<ndi],- Then we remove those commodities with a zero

demand and run the POWER-ALG on I* to obtain a flow f.

Lemma 5.4. Given the UFP instance I* with initial fractional solution f¥ one can find
an unsplittable flow f which (i) violates the capacity of any edge by at most |dy,.. |, and
(ii) whose cost is bounded by the cost of the initial fractional flow f&. Flow f corresponds

to a k-splittable flow for instance I which routes Zl<j<k d! units of flow for commodity
i(i=1,..,9). o
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Proof: Since d; <1 (i =1, ...,9) and function floors(-) is a non-decreasing function, we
have that |d},,, |, is the largest demand in instance I*, by Theorem 5.5 it follows. O
Since we have routed ), ;. d] units of flow for commeodity i, the remain demand of

commodity ¢ will be d; — 37, ;. d! < 27%d;. Thus we have Y, &/ > d; —27%d; =
D i<i<k d? /d; > 1 — 27, If we scale the flow on each of the at most k s — ¢; paths used in

f by the same amount \; ﬁ € (1, = ——%), then we obtain a k-splittable flow f’
1<j<k

which satlsﬁes all demands d; and satisfies f, < Aju.+A; LdmanQ for all edges e € E Since
1 <\ < 5= and |d},..)o < 1/2 < ue/2, we have that f] < 1= (ue+1/2) < =5 Su,.

Next we use the same method proposed by Skutella [Sku02] and upgraded in [Koll04]
to bound the cost to be no more than the cost of an optimal fractional solution. Then we

can prove the following theorem.

Theorem 5.6. Given a SUFP instance I with initial fractional solution fy one can find
in polynomz'al time a k-splittable flow f' such that (i) f' satisfies all demands d; (i=1,...,9)
(it) fI < =% (ue +1/2) for all e € E and (iii) the cost of f' is bounded by the cost of

the initial fractional flow fy. O
Corollary 5.1. Given a SUFP instance I one can find in polynomial-time a k-splittable
flow solution that achieves a simultaneous (172—'6 . %, 1)-approzimation for the congestion

and cost.O

We can find that the approxnnate ratio 3 will approach 3/2 when we k increases.

. 2 1-27F'2
But it will be no less than 2 5 for any k > 2. However, we can improve this approximate

ratio by using a new operator |_J2 which is defined as follows:

. P33l if 2= mal
|z|5s =< floors(x) if 0<2 < 5mg
0 if =0

All other parts of the algorithm remain the same, thus the cost will be also bounded by
that of the optimal fractional solution. Now the task remains is to analyze the approximate
ratio for this new algorithm. For a commodity ¢ with demand d; in the original instance,
we create a series of k commodities in I* with demands of {d},...d"...,d*} (1 < h < k)
where d} = |d;]; and d? = |d; — 3", d{J’;. Let df = d; — Y, &, then df* < dF.
Notice that d¥ < d; - 2-(k=2"8*+1+llogk]) 3nd this maximum value happens only if d; is
o Tes than k- (21064] — 1) & S bk L

Thus if we scale the flow on each of the s — ¢; paths used in f by the same amount

o(k—2L18 k] 114 1og k))
Ai = d;— dA < o(k—21108 ] {11 l0gk]) 1’
demands d

Let dmae be largest demand in T, then d} .

2L10g 77~ Thus the final solution will satisfy f, < Aju.+A;|d

then we obtain a k-splittable flow f’ which satisfies all

will be the largest demand in I* and d}

maxr —

1 (e+

ma:cJ2 — {_9—(k—2l18 k] 114 |l0gk])

leong) for all edges e € F.

Theorem 5.7. Given a SUFP instance I with initial fractional solution fy one can find
in polynomial-time a k-splittable flow f' such that (i) f' satisfies all demands d; (i=1,...,9)
(i1) fI < 1_2—(k—2L1°g:LkJ+l+Llong) (te + 5mgay) for all e € E and (iii) the cost of f' is bounded
by the cost of the wnitial fractional flow fy. O
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Corollary 5.2. Given a SUFP instance I one can find in polynomial-time a k-splittable

. . . 1 1 . .
flow solution that achieves a simultaneous (1727(107”Og T lon i1 -(1—1—2Llog 77), 1)-approzimation

for the congestion and cost. a

. _ 1 1 — 1 1y _
Notice that for £ = 3 we have oo T s o)) (14 5m8%7) = 75 @ -(14+3) =

%. At this special case, the improved algorithm will return a same solution as the original
one. Here we can also bound the maximal demand in I® to be no more than 1/4, then
the scale ratio will be no more than 4/3 for each flow and the final solution will be a
(5/3, 1)-approximation for the congestion and cost.

For k > 4, since both 1,2_(k_zllog1kJ+1+uog - and (1+5ms77) are non-increasing functions,

1 1 1 1 _ gllogkl g 4+1
we have 1_27(’072“0ng+1+|.10ng)'(1+2Llogkj) < ey (U smegsr) = ollogkl—1/2 = 4-1/2 —

10 3 ollogk] 41
2 < 5 Actually m

will approach 1 when £ increases.

5.6 Applications in QoS Video-on-Demand Routing

The edge/node-disjoint problem and the unsplittable flow problem have lots of application
in huge-volume data transfer applications such as video conference and video-on-demand.
For such an application, usually we need to consider not only the network congestion but
also the reliability.

Problem. Minimum Distortion 2-Path Routing Problem (MD2PR).

Instance: Directed graph G = (V, E), weight c(e) € R, d(e) € Rt and I(e) € RT
for each e € F, where c(e) is its bandwidth capacity, d(e) is its delay and I(e) is its packet
loss probability. Without loss of generality, we assume that c(e),d(e) are integers and
0 <l(e) < 1. Since the delay of an edge in real networks is not a fixed value, we assume
that the delay value of e is exponentially distributed with mean d(e).

Suppose we want to transfer a video from s to . The video signal consists of a sequence
of frames. Let F} denote the coded bitstream of encoding the even-indexed frames and
F; the coded bitstream of encoding the odd-indexed frames. Denote their bit rates by r;
and 7y respectively.

Assume that there are two paths P, and P, connecting the sender to receiver. We
calculate the end-to-end delay of P;(1 =1,2) as D; =), p d(e).

For any edge e with capacity ¢, in P, and P», we calculate the flow R{ of P, on e as
follows:

Re min{r;, ce}, e appears only in P;,
P . min{ry + 72, e}, e appears in both P,andP;.

Then we can get the flow on P, as R; = min, ccp,{ R{}. For the end-to-end packet loss
rate L; of P;, we use the following formula:

L; =1— Pr(D; < DeadLine) * H (1—1(e))-

e,ecP

Here Pr(D; < DeadLine) is the probability that the data sent along path P; can reach
the sink ¢ before the Deadline bound, because the terminal application might skip packet
if the delay is too large, which is another kind of packet loss. This probability can be
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calculated under the assumption that any edge delay value is exponentially distributed
with mean d(e).
The final distortions corresponding to transmitting two descriptions are as follows:
. R;
3
Where «; and ; can be determined by a curve fitting tool, thus they are known a
priori.
Question 1: Given a positive bound B, are there two loop-free paths P; and P; in
G such that their total distortion Dis(P;) + Dis(P) does not exceed B?
Question 2: Given a positive bound B, are there two loop-free paths P; and P; in
G such that maxz{Dis(P;), Dis(P2)} does not exceed B?

Analysis: Since usually Question 2 is more difficult than Question 1, we consider
Question 1 first.

This problem can be classified into the Unsplittable Flow Problem family. The special
point is that we have only one sink and two demands, but we need to consider more
constraints. Beside a capacity c(e), each edge e has a delay d(e) and a loss rate I(e).
All three parameters will inflect the performance of the final solution. Since Dis(P;) =
a;x (Li+1— &) + f3i, we can see that c(e) may contribute to the part (1 — ££) when we
need to deliberately drop packets due to insufficient bandwidth, while d(e) and l(e) will
decide the unconsciously end-to-end packet loss rate L;.

Let us simplify the model to make it easier for the first step. We can assume that
a1 = ap and f; = Bo, by this we reduce Question 1 to the problem of minimize (L; +
Ly — fl 72) Now we see that both d(e) and I(e) are multiplicative factors while c(e)
is a bottleneck factor. As we know, how much water a barrel can contain doesn’t depend
on the longest board but on the shortest one. Thus we should give the flow capacity a
priority.

If the capacity requirement can be satisfied ( i.e., fll + R2 = 2), then we can further
minimize L; + Ly. Since usually the packet loss rate for a glven edge is very small and
comparatively stable, we need to pay more attention to the end-to-end delay of a path,
which might vibrate by a large extent. So we can put the capacity requirement as the
first constraint and add a end-to-end delay bound to the final solution, then we find the
two paths which minimize the total packet loss rate under these two constraints. Based
on this heuristics, we can design several algorithms with different complexity.

Algorithms: We first assume r; = ro so that we can deem them as a unit flow
(this is reasonable since here the encoded bit rates of the odd/even descriptions are
equal), we further assume that both the capacity requirement and the delay constraint
can be easily satisfied. Now our target is to minimize the total packet loss rate un-
der these two constraints. Since [(e) is a multiplicative factor, we transfer it into an
additive factor for convenient of computation. To minimize 1 — [, p(1 — l(e)) is
to maximize [], ..p(1 — I(e)), which is equal to maximize D eccplog(l — I(e)) since
[leccp(1=1(e)) = 2108 Tle.cep(1=Ue)) — 92.ceplos(1=1(e) | Gince log(1—I(e)) < 0, we can mini-

mize ), p(—log(1—l(e))) = >, .cp log(?(e)) instead of maximize }__ . plog(1—I(e)).
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Thus we will assign a new weight I'(e) = log(%m) to each edge e.

To restrict the probability that the data sent along path P; can reach the sink ¢ before
the Deadline, we can calculate a delay bound D for the mean end-to-end delay based
on the value of Deadline and the distribution of edge delays. If both paths have a total
delay of no more than D, then we are sure that packet skip rate at the terminal will be

small enough.

Algorithm 5.4. NaiveRouting(G, s,t, D, 1)
Input:
G: the directed graph G=(V,E) with {d(e), c(e),l(e)}ecr;
s : source node;
t : destination node;
D: the delay constraint;
r : the flow bandwidth;
Output:
Two Paths from s to t;

1 Calculate lI'(e) = log(l_}(e)) for each edge e and the delay bound D ;
2 c(e)«cle)/r;
3 Use Algorithm RSP to compute path P, with total delay within D
and total loss rate minimized;
Construct the residual network G(P;) of G imposed by P;:
for each link e € P; do
cle) < cle) — 1;
Use Algorithm RSP to compute path P, in G(P;) with total delay within D;
if we successfully find P, and P, then
return (P, P,) ;
0 else return FAIL;

N 0o 3 Dy Dy

Usually we will reverse the direction of the edges in an established flow in the residual
graph when we are computing the maximum flow in a given graph. But here we simply
delete the occupied bandwidth from the capacity of each edge in the established path.
The reason to do this is because we focus on finding two paths that satisfy the delay bound
D. If we reverse the direction of all edges in P;, the following P, may use some of those
reversed edges. Thus although the final solution will also be a 2r flow which contains
two s-t paths, the end-to-end delay D; and Dy might be very different and maxz{D;, Do}
might be around 2D. Then the path with large delay will be useless since all packets
delivered along it might be discarded.

The shortcoming of the Naive Routing algorithm is that it cannot guarantee that we
can always find a solution if it does exist. Thus we propose the following algorithm which
use negative cycle cancelling method.

Algorithm 5.5. NCCRouting(G, s,t, D, 1)

Input:
G: the directed graph G=(V,E) with {d(e), c(e),l(€e)}ccE;
s : source node;
t : destination node;
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D: the delay constraint;

r : the flow bandwidth;
Output:

Two Paths from s to t;

1 Calculate l'(e) = 10g(1j(e)) for each edge e and the delay bound D ;
2 cle)«cle)/r;
3 Use Algorithm RSP to compute path P, with total delay within D
and total loss rate minimized;
5 Construct the residual network G(Py) of G imposed by P :
6 Add to G(P,) each link | in G which does not appear in P;;
7 for each link (v,u) € P, do
8 if (u,v) is not in G(P,) then
9 Add a link (u,v)) to G(Py) with d((u,v)) =0 and ¢((u,v)) = 0;
10 c((u,v))) + c((u,v))) + 1;
11 Use Algorithm RSP to compute path P, in G(P;) with total delay within D;
12 Decompose the flow P; U P, into two paths P, and P, with D < Ds;
13 Run the cycle cancelling algorithm on Py until Dy < D;
14 if we successfully find P, and P, then
15 return (P, P,) ;
16 else return FAIL;

5.7 Concluding Remarks

In this chapter we consider the unsplittable flow problem. We first briefly survey the
research topic of Disjoint paths, then we extend it the single-source unsplittable flow
problem. We first develop an efficient algorithm for compute a minimum-cost single-source
unsplittable flow in a graph with arbitrary edge capacity. Our algorithm can compute a
(3+2+/2, 1)—approximation solution in polynomial-time, and the implementation is more
convenient than previous algorithms. We extend our algorithm to deal with some special
cases such as the situation when the largest demand in G is far less than the minimum
capacity in it. After that we study the minimum-cost single-source k—splittable flow
problem and we present an algorithm with best performance guarantee than previous
algorithms. Finally we present some applications of the single-source unsplittable flow
problem on the huge-volume video transfer in large networks.
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Chapter 6

Algorithms for Computing
Inner-node Weighted Minimum
Spanning Trees

6.1 Introduction

Given a graph G = (V, FE) with nonnegative costs assigned to its edges, the Minimum
Spanning Tree (MST) problem is to find the spanning tree of G' with minimum cost. This
problem is in P and many polynomial-time algorithms have been designed. A natural
generalization of this problem is to assign nonnegative costs to both nodes and edges,
and we only count the cost of the edges and inner nodes (non-leaf nodes) in the final
solution. This problem was first proposed in [FGLTWO05], by the name of minimum
spanning tree with inner nodes cost problem (MSTI). Since this paper follows the line
of [GK96, GK99, KR95|, we hereby rename the problem as the Inner-node Weighted
Minimum Spanning Tree Problem (IWMST) according to the definitions in [GK96].

The IWMST problem has lots of applications in real world. For example, we need to
calculate the cost of all fibres and intermediate optical switches when we are building a
fibre networks while the terminal users can connect their computers to the ports directly.
The construction of other electronic networks and pipe networks can be similarly modelled.

In [FGLTWO05], the authors applied the method used in [KR95] to IWMST and de-
veloped a 2 Inn-approximation algorithm. However, some of the details and proofs in it
are rather elusive. In this chapter, we study the model of IWMST and some other related
problems and we first present a general framework for developing poly-logarithmic approx-
imation algorithms in Section 3, this framework aims to find a % In n-approximation
Algorithm for the IWMST problem. Based on this framework, we further design two
polynomial-time approximation algorithms. The first one is presented in Section 4, it can
find a 2Inn-approximation solution in O(mnlogn) time. The second one proposed in
Section 5 can compute a 1.5 Inn-approximation solution in O(n2A®%) time. After this we
consider some fault-tolerant variants of IWMST in Section 6. In Section Twe also show
how we can use the methods for other related problems to solve the IWMST problem.
Finally we conclude the paper in Section 8.
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6.2 Preliminaries

Problem . Inner-node Weighted Minimum Spanning Tree Problem (IWMST).
Instance: Undirected graph G = (V, E), weight c¢(e) € R* for each e € FE and weight
w(v) € R* for each v € V, a positive bound B.

Question: Is there a spanning tree 7" for G such that the sum of the weights of the edges
in T and the weights of the inner (non-leaf) nodes in T does not, exceed B?

Although this problem was proposed as a variant of the Minimum Spanning Tree prob-
lem, the real difficulty lies in that it is also a generalization of the connected dominating
set problem (CDS). If we set c¢(e) = 0 for each e € E and w(v) = 1 for each v € V, then
it is exactly the classical CDS problem. If we set c(e) = 0 for each e € E but preserve
w(v) for each v € V| then it becomes the node weighted connected dominating set prob-
lem (NWCDS) [GK96]. However, IWMST is different from the edge weighted connected
dominating set problem by including the leaf-edge costs (EWCDS). So we can expect a
poly-logarithmic approximation algorithm for IWMST although EWCDS was proved to
be as difficult as the set TSP problem in [GK96].

6.3 A % In n-approximation Algorithm Framework for
IWMST

In this section we generalize the method used in [GK96, GK99, KR95] and propose a
framework of developing poly-logarithmic approximation algorithms for the IWMST prob-
lem. Starting from the node set, we use a greedy policy to connect a set of isolated nodes
which is “optimal” in each iteration according to some heuristics, thus by less than n
iterations we can connect all nodes in the graph. To find an “optimal” set, we first define
the following structure:

Definition 4: A k-structure in G is a tree structure subgraph of G with at least &
nodes and satisfies some certain constraints.

Since we want find a solution for the IWMST problem here, we will adopt the minimum
average cost as the heuristic to be applied on a k-structure. The average cost of a given
k-structure is its total cost divided by the number of nodes (not necessary the nodes in
the original graph) inside it. To calculate the total cost of a given k-structure, we will
add up the cost of all edges and all inner-tree nodes (which are not paid before). If we
want to “contract” a k-structure, we remove the cost of all these unpaid edges and nodes
in the original graph, by which we say that these edges and nodes are “paid” by this
k-structure.

We can use three different colors {white, gray, black} to differentiate whether a node
is paid or not. Originally all nodes and edges of the graph are in white color. When we
want to contract a k-structure, we alter the color of all inner nodes and edges paid by
this k-structure to black while those leaf nodes in white will be changed into gray. Thus
a contracted k-structure has a black backbone whose nodes and edges are paid (by this
k-structure and all previous contracted k-structures contained in it).

To present our algorithm, we need to propose the following two assumptions in ad-
vance:

Assumption 1: Any solution to the IWMST problem can be decomposed into a set
of k-structures without increasing the cost.
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Assumption 2: The minimum average cost k-structure located at any node in a
given graph can be computed in polynomial time.

Based on the above two assumptions, we present the main framework in the following
figure.

Algorithm 6.1. Framework-IWMST(G)
Input:

The undirected graph G = (V, E) with {wy}yey and {ce}ecr;
Output:

A spanning tree T(V, E") with Y g ce + 3 w, < 2 InnOPT ;

0 Xumyen 11>1
while there are more than k node in G
Find a k-structure in G with minimum ratio;
Contract the above k-structure to a single super-node;
Update G;
Connect the remain nodes optimally;
Unwrap all the super-node in the solution;
Connect each leaf-node to its nearest neighbor which is an inner tree node;
Return back the final spanning tree.

O 3D W~

Theorem 6.1. If the k-structure in line 2 satisfies Assumptionl and Assumptz'on? then
the greedy algorithm Framework-IWMST will find a solution of cost at most 5 Inn times
the optimal.

Proof: Suppose that tree 7™ is an optimal solution. Let t1,%s,...,t; be the set of k-
structures selected in the first 7 iterations. Denote G; as the updated graph and T* as the
updated T* after t1,1, ..., t; are contracted, then it follows that || = |T;=,| — (|t;| = 1)
where |T}| is the number of nodes in 7;*. Start from G = G, if we contract ¢, into a
single super-node and remove the weight of all nodes and edges which have paid to %,
then some nodes in 7™ may be connected together without increasing the weight of 7.
We can run a minimum spanning tree algorithm in this updated 7™ and get another tree
Ty which spans G;. Thus the weight of 77 is no more than that of 7. By this way we
can get that OPT = w(T*) > w(Ty) > w(Ty).. > w(T}).

Now let’s consider G;_; in the i-th iteration. According to the assumption, any so-
lution to the IWMST problem can be decomposed into a set of k-structures without
increasing the cost. Thus 7* ; in G;_; could also be decomposed into a set of k-structures
Ky, K, ..., Kj, let the number of nodes in each of them be | K|, |Ks|, ..., |Kj|. Since t; is

the k-structure with the minimum ratio in G;_;, we have “ﬁ) <Y wi) g <r <j. Thus

|Kr| 2
S i< Y ww) = S =0 Y k< 3
1<r<j 1<r<y

1<r<j 1<r<y

Z Z

By the definition of a k-structure, we have |¢;| > k which implies that [t;| —1 > £2L[¢;].
Since |T}| = |1} 4] — (Jt;| — 1), it follows that

k k—1 w(t;)
ol * _ 1 <: * v *
T = [T = (= 1) < (T = < m - I
T k=1 w(t) g k=1 w(t) k=1 w(t)
= < l-— = In In(1——— < -
] S TR () < == ury Fw(r)
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The last step uses the approximation In(1 + z) < x. Now suppose that the algorithm
finish in z iterations, summing over all ¢4, %o, ..., ¢, we will have:

T —1w (T2, E—1 w(t)
O 2 7% = 2 WCp) = 2

1<z 1<ei<2

15 -1
= ln(|T(i‘) =Inn > wk(T*)k 1<Z w(t) = Z w(t;) < - f : Inn - w(T*).
<ilz 1<4<2
O
With the above L lnn approximation algorithm framework for IWMST, we reduce
the job of designing a ;*; In n-approximation Algorithm to the job of finding a k-structure
which satisfies Assumptlonl and Assumption2. In the following two sections, we will follow
this path and present two approximate algorithms which can achieve a factor of 2Inn,
and 1.5Inn respectively.

6.4 A 2Inn-approximation Algorithm for IWMST

The simplest structure which includes at least 2 nodes is an edge. We can use this when
we are computing a minimum spanning tree, which is exactly the idea of the famous
Kruskal’s Algorithm for MST [Kru56]. But here we have to take into account the cost of
all inner-tree nodes, which looks similar to a node weighted and edge weighted connected
dominating set with the leaf edge cost. Thus we need to count in at least the cost of
one node in the edge, unfortunately sometimes a tree cannot be decomposed into a set of
disjoint edges without increasing the total cost. For example, a tree with a center node
and n — 1 leaf nodes cannot be decomposed since for each edge we will count the center
node once.

Figure 6.1: In the optimal solution, the subtree roots at a has a cost of 34. But during
the calculation, if we decompose it into 4 edges, the total cost counted will be 64. Else
if we only assign the cost of node a to edge ab, then the cost of of ae will be 5, which is
smaller than the current optimal edge uv.

The reason why we cannot use an edge as a 2-structure here lies in that we do not
know how to distribute the cost of an inner node to its children if it has no less than 2
children. To bypass this, we choose the 2*-star as a 2-structure.

Definition 5: A k*-star is a bipartite graph of the form K, with n >k — 1.

We can see that an edge is the minimum 2*-star.(Figure 6.1)

Lemma 6.1. Any solution to the IWMST problem with no less than 2 nodes can be
decomposed into a set of 27 -stars without increasing the cost.
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Proof: We can prove this lemma by induction on the number of nodes n in the tree.
Start from n = 2, it is evident to see that this is a 2*-star whose cost can be optimally
computed (Figure 6.2.(a)). Suppose the lemma is correct for 2 < n < 4 and consider
a tree with n = 7+ 1 nodes (Figure 6.2.(b)). Set an arbitrary leaf u as the root, then
randomly select an inner node v and check whether it has an inner node as a child. If
all its children are leaves, we choose v as the center of a 27-star and contract it. Else we
go down the tree from one of its inner node child until we reach an inner node who has
only leaf children and contract the 2" -star located there. Thus we can reduce the number
of nodes in the tree by at least one and then we can apply the induction hypothesis to
further decompose the remain parts.

Now let’s check the cost of the original tree and the decomposed 2"-star sets. Since
the cost of a solution to the IWMST problem will only count the weight of all edges and
inner nodes in the tree, the weight of a leaf node can be neglected. Consider the tree in
Figure 6.2.(c). Suppose we will contract the 2"-star (sub-tree T},) located at inner node
a. Before the decomposition, the cost of the tree is ¢(T7) + 6+ 8+ 2+ 8+ 5 = ¢(T1) + 29.
While the cost after the decomposition is ¢(77) + 6+ ¢(T,) = ¢(T7) 4 29, which is the same
as that before the decomposition.

By the above analysis, we can conclude that the decomposed 2% -star set will cover all

nodes in the solution tree without increasing the cost. a
8 8
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Figure 6.2: (a) A tree with 2 nodes is a trivial 2*-star. (b) An inner node v which has
only leaf node children can be contracted as a 2%-star. (c¢) The image of the tree before
the decomposition of the 2" -star located at node a. (d) The remain part and the 2*-star
sub-tree after the decomposition.

Algorithm 6.2. Min2*Star(G")
Input:
The undirected graph G' = (V', E'), each node in V' is a sub-tree in G;
Output:
A 2% -Star with the minimum average cost in G';
Set the current minimum 27 -Star as an empty set with an upper-bound average cost;
for each node v € V' do
if v is a white node:
Compute the cost cost(, ) of each unpaid edge (v,u) € E'
case 1, u is a white node: cost(y ) = Clyu);
case 2, u is a super node:
if the incoming node h € V' of (v,u) in u is black, then cost(, ) = (v p);
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8 else cost(yu) = Cwn) +w(h);

9 For all edges connecting to the same super node,
choose the one with minimum cost;

10 Sort all neighbor nodes according to the connecting

costs by non-decreasing order N}, .., Ni;

11 Leti,1 <i < j bethe minimum index that " =Skt ity MO Eisesin )
12 Set {v, N/, .., N} and their edges as the minimum 2*-Star located at v;
13  else if v is a super node:
14 Compute the cost cost(,,) of each unpaid edge (v,u) € E' whose outgoing
node g is black, using the same method as that for the white node above,

divide this cost by 2 and set it as its average connecting cost;

15 For all edges going out from a gray node g in v, compute the minimum 2% -Star
located at g, using the same method as that for the white node above;
16 Choose one edge going out from a black node or the set of edges going out from

going out from a gary node with the minimum average cost
as the minimum 2% -Star located at v;

17 if the average cost of this 27 -Star is less than the current minimum 2% -Star
or with more nodes at the same average cost;

18 Set this 21 -Star as the minimum 2% -Star;

19 return the final minimum 27 -Star;

Lemma 6.2. The k*-star with the minimum average cost in graph G' can be computed
in O(mlogn) time.

Proof: Given a center v and j neighbor nodes N}, N2 ..., Ni(j > k — 1), with cost
costy N1y < costynz) < .o < cost(m Ni)- We want to find the set which contains v and
no less than £ — 1 neighbor nodes with minimum average cost. Given three positive
number {A, B,C'}, we have that % > (C implies 4 > 4t¢ > (C and % < C implies

B — B+1
+ icost . . .
4 < % < C. Thus the series ) Elsi’fl CPwN) will be monotonically decreasing at
first (except that w(v) < cost(, n1y) and then monotonically increasing. Let i, k—1 <14 < j

.. . w(v)+3 1 <p<; COSt k w(v)+2 1 <p<it1 COSt ky . .
be the minimum index that =2t @ Ng) == w.Ny) it can be easil
1+1 142 ’

followed that {v} U{N},..., N} is the minimum k*-star of v. So we can conclude that a
minimum average cost kT -star located at any node in G’ can be optimally computed (if
the minimum degree in the graph is no less than k£ — 1). Since we will check all nodes
in G', the algorithm will return a k*-Star with minimum average cost in G’. As for the
time complexity, at each white node and gray node we need to sort its neighbors, this
will cost no more than O(nlogn). Since each edge in G’ will attend such kind of sorting
in 2 iterations, the total cost will be within O(mlogn) time. O

Corollary 6.1. Algorithm 6.2 computes, in O(mnlogn) time, a 2lnn-approximation
solution for the IWMST problem.

Proof: Since the number of nodes will decrease by at least one in each iteration, algo-
rithm 6.2 will finish in at most n iterations. So the time complexity is within O(mn logn).
Combine Lemma 6.1 and Lemma 6.2, this conclusion can be naturally followed from The-
orem 6.1. O
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6.5 A l.5Inn-approximation Algorithm for IWMST

To compute a 1.5Inn-approximation solution for IWMST, we need to find a feasible
3-structure. Can we follow the method used in algorithm Min2*Star(G’) and use the
3T-Star structure? Unfortunately, we cannot use the 3*-Star since it cannot express the
following 3-structure in Figure 6.3.(b).

Definition 6: A 3*-crab rooted at u is a tree with n > 3 nodes and all other node in
this tree has less than 3 nodes in its subtree.

Lemma 6.3. Any solution to the IWMST problem with no less than 3 nodes can be
decomposed into a set of 3T -crabs without increasing the cost.

Proof: To prove this lemma, we need only to modify the decompose method, others
can be similarly followed from Lemma 6.1. A tree rooted at u with 2 children is a trivial
3*-crab whose cost can be optimally computed (Figure 6.3.(a)). By induction on the
number of nodes n in the tree, suppose the lemma is correct for 3 < n < 7 and consider
a tree with n = i + 1 nodes (Figure 6.3.(c)(d)(e)). Set an arbitrary leaf u as the root,
then randomly select an inner node v and check whether the sub-tree rooted there has no
less than 3 nodes or not. If the number of nodes is less than 3, go upside along the tree
until we find an inner node has no less than 3 offspring nodes. Now check whether there
is a child of this inner node who has a 3T-crab rooted there. If there is no such child, we
choose v as the center of a 3T-star and contract it. Else we go down the tree from one
of such inner node child until we reach an inner node who has no 3*-crab children and
contract the 3T-crab located there. Thus we can reduce the number of nodes in the tree
by at least two and then we can apply the induction hypothesis to further decompose the
remain parts. O

5
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Figure 6.3: (a) A tree located at u with 2 children is a trivial 3"-crab and also a 3*-star.
(b) A 3*-crab which is not a star. (c)(d)(e) An inner node v which has more than 3
subtree nodes and has no 3*-crab node as a child can be contracted as a 3*-crab.

Now we need to design an algorithm to compute the 3*-crab with the minimum average
cost rooted at any given node in graph G'.

Let N!* be the set of neighbor nodes of node v and N>* be the set of nodes which
are within 2-edge distance from node v. Given a node u € N*, we use C.* to denote the
minimum cost for connecting u to v. Given a node v € N}* and another node z € N*, we
use Cf;‘,z} to denote the minimum cost for connecting both u and z to v. We can use the

method in Algorithm Min2*Star(G') to compute C,* for each u € N;*. As for CF; . if u
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and z are not connected but both of them are included in N,*, them C%: , = C}* + C;*.
If u and z are connected and exactly one them (say, u) is included in N}*, them C{ZZ’Z}
equals the sum of C* + w(u) and the cost of connecting u to v. If u and z are connected
and both of them are included in N}*, then we have three methods to add u and z into
the tree (i.e., both u and z are children of v in or just one of them), C{szz} will be the
minimum value among these three cases. If u and z are not connected and at least one of
them is not included in N}*, or v and z are connected but both of them are not included
in N}*, then we assign the maximum value to it.

Algorithm 6.3. Min3"-KCrab(G’,v, k)
Input:
G' = (V',E"), v €V is a gray node or white node, k > 2 is an integer;
Output:
A 3t-Crab of v with k nodes in G' and the average cost minimized;
1 Construct a new graph G, on N?*, in which the cost of an edge between any
two r?odes w and z is Cf;,z} if C{QZ,Z} <0 ;
if k is an odd number:
Add |[N*| — (k — 1) dummy nodes into G,;
Connect each dummy node to all nodes in N** with zero cost dummy edges;
Find the minimum weight perfect matching in G,;
return the % pairs which are not connected by dummy edges in the matching.
else if £ is an even number:
For each node x € N}* do
Delete x and all its edges from G,,;
Add |N?*| — (k — 2) dummy nodes into G,,;
Connect each dummy node to all nodes in N** — {z}
with zero cost dummy edges;
12 Find the minimum weight perfect matching in this G,;
13 Set the final cost of this matching as its own cost plus C*;
14 Select the one with minimum final cost among the above matchings;
15 Let y be the single node outside of this matching;
16 return
y and the % pairs which are not connected by dummy edges in the matching.

NN O 0 3 S G W
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Lemma 6.4. Algorithm Min3"-KCrab(G',v, k) can compute the 37-Crab of v with k
nodes in G' and minimized average cost in O(|N}*|2|N2*|?) time.

Proof: Suppose TF(k > 3) is the 3*-crab rooted at v with exactly k nodes whose
average cost is minimized. If k¥ is an odd number, then there are k — 1 nodes from N?2*.
These nodes can either connect v directly or via another neighbor node of v. Thus v will
have an even number of single-node branches and the other nodes will form a set of twin-
nodes branches. So we can pair all single-node branches according to the non-decreasing
order of their connecting costs. These node pairs and the twin-nodes pairs will form a
%—pair matching in G,. Since we will find the minimum weight perfect matching in this
G, whose cost comes from such a %-pair matching, it follows that the cost of the final
solution is minimized.
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If £ is an even number, then there is at least one single-node branch and the re-
main nodes can be paired by the same way as above. We will try all nodes in N}* and
subsequently find the minimum average cost 37-Crab of v with & nodes in G'.

To compute the minimum weight perfect matching in G, we can use the implementa-
tion of the famous Edmonds’ algorithm [Edm65a, Edm65b] designed by Gabow [Gab90)]
with time complexity of O(n(m + nlogn)) (which is currently the best known result in
terms of n and m). Since the number of nodes in G, is |[N?*| and the number of edges is
within |N}*|*|N2*| while we will try kicking out a node for at most | N}*| times, the total
time complexity will be within O(|N | x (|N2*| * (|NX*| * [N2*| + |[NL*| * log|N}*|))) =
O(IN*[2INZ'[2). 0

Algorithm 6.4. Min3"-Crab(G’)
Input:

The undirected graph G' = (V', E'), each node in V' is a sub-tree in G;
Output:

A 31-Crab with the minimum average cost in G';

1 Set the current minimum 3*-Crab as an empty set with an upper-bound average cost;
2  for each node v € V' do
3 if v is a white node:
4 Use the method in Algorithm Min2* Star(G') to compute C* for each u € N}*;
5 Compute C{QZ,Z} for each pair {u,z} C N** according to the above analysis;
6 for 3 <i <|N*|+1do
7 Call Algorithm Min3*-KCrab(G', v, i) to compute
the minimum 3™ -crab with i nodes;
8 Select the one with minimum average cost in the above computed 3" -crabs;
9 else if v is a super node:
10 Compute C* and C{QZ,Z} by the same way as for the white node;
11 For all gray node g in v, compute its minimum 3% -Crab use Min3*-KCrab(G', g,1);
12 Sort the connecting cost for each neighbor node u and the average cost of each
minimum 3% -Crab located at a gary node according to the non-decreasing order;
13 Choose the one with minimum average cost in the following three combinations:

1)the minimum two edges, 2) the minimum 3*-Crab,
3) the minimum edge and the minimum 3*-Crab ;

14 if the average cost of this 3T-Crab is less than the current minimum3*-Crab
or with more nodes at the same average cost;

15 Set this 3t -crab as the minimum 3% -crab;

16 return the final minimum 3" -crab;

Corollary 6.2. Algorithm 6.4 computes, in O(n?A®) time (A is the mazimum degree),
a 1.5 Inn-approrimation solution for the IWMST problem.

Proof: By Lemma 6.4, we can compute the minimum average cost 3*-Crab of v
with k£ nodes in G’ for any white node or gray node v. The gray node case will only be
checked when we are computing the minimum average cost 37-Crab of the dominating
super node. For a super node, we can deem its core as a zero cost node since the inner
nodes have been paid before. Thus we need only to consider the minimum two single-node
branch and the minimum 3*-Crab located at one of its gray node. Thus Algorithm 6.4
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will succeed in finding the minimum average cost 3*-Crab of any node v in G'. According
to Theorem 6.1, by the assumptions proved in Lemma 6.3 and Lemma 6.4, we are sure
that Algorithm 6.4 will return a 1.5 In n-approximation solution for the IWMST problem.

Now let’s check the time complexity. Since |N}*| < A and |N2*| < A? while the edges
in |[N2*| will be no more than |N}!*|?, the cost of computing the minimum average cost
3T-Crab of any node v will be within A°. Since we will run no more than n/2 iterations
and in each iteration we will check at most n nodes, the total time complexity will be
bounded by O(n?AS). 0

6.6 Fault Tolerant IWMST in Metric Space

In metric space, the cost of each edge in G satisfies the triangle inequality. For the metric
IWMST, we can use algorithms for the metric facility location problem as basic stones.
The following procedure is based on the work of [JMS02].

6.6.1 A Simple Algorithm for Metric IWMST

1. We turn an instance of IWMST into an instance of Facility Location by deem each
node in G as both a facility with open cost as the weight of this node and a client
with demand 1. Let ¢ be the number of current time step which starts from 0.
At time 0, all nodes are unconnected, all facilities are unopened, and the budget of
every node j, denoted by B;, is initialized to 0. At every moment, each node j offers
some money from its budget to each unopened facility 2. The amount of this offer
is computed as follows: If j is unconnected, the offer is equal to maz(B; — ¢;j,0)
(i.e., if the budget of j is more than the cost that it has to pay to get connected to
i, it offers to pay this extra budget to ¢ ); If j is already connected to some other
facility ', then its offer to facility 7 is equal to max(cy; — ¢;j,0) (i-e., the amount
that j offers to pay to ¢ is equal to the amount j would save by switching its facility
from i’ to ).

2. While there is an unconnected node, increase the time, and simultaneously, increase
the budget of each unconnected node at the same rate (i.e., every unconnected node
j has B; =t at time t), until one of the following events occur. If multiple events
occur at the same time, process them in an arbitrary order.

a) For some unopened facility i, the total offer that it receives from cities is equal
to the cost of opening 7. In this case, we open facility ¢, and for every node j
(connected or unconnected) which has a non-zero offer to i, we connect j to i.
The amount that j had offered to 7 is now called the contribution of j toward
1, and j is no longer allowed to decrease this contribution.

b) For some unconnected node j, and some facility 7 that is already open, the
budget of j is equal to the connection cost between j and ¢. In this case, we
connect node j to facility 4. The contribution of j toward ¢ is zero.

3. For every node j, set a; (the share of j of the total expenses) equal to the budget

of j at the end of algorithms. Notice that this value is also equal to the time that
j first gets connected.
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4. Connect all the opened facility nodes by a minimum spanning tree in G.

We denote the above algorithm as the JMS algorithm. It computes a 3.105—approximation

solution for metric IWMST. We will extend this algorithm for computing the fault-tolerant
IWMST problem.

6.6.2 The Fault-tolerant Metric IWMST Problem

Here we will consider two variants of the IWMST problem for reliability consideration.
The first version focuses on the leaf nodes, while the second one focuses on the backbone
nodes.

Fault-tolerant Metric IWMST Problem (Version 1) (FMIwmst1)

e INSTANCE: Undirected graph G = (V, E), weight c(e) € R* for each e € F and
weight w(v) € R for each v € V, a positive bound B.

e SOLUTION: A backbone tree T in G.

e MEASURE: The total weights of nodes and edges in 7" plus summation of the cost
to connect at least 2 nodes in 7" for each node in G — T

We can modify the JMS algorithm to deal with the Problem FMIwmstl. Now that
each leaf node need to be connected to at least two inner nodes, we have to set the demand
as 2 for each node in G. In the first two steps, we will say a node unconnected if it is not
connected to any opened facility and we will say it is connected if it has already connected
to two opened facilities. For the case when a node is connected to exactly one opened
facility, we will check it in both situation. Other steps remain the same. This algorithm
has an approximation ratio 1.62 for computing the facilities to be opened. Since the
minimum spanning tree in the final step will be no more than two times the cost of the
optimal solution, we have that we can compute a 3.62—approximation solution for this
problem.

Fault-tolerant Metric IWMST Problem (Version 2) (FMIwmst2)

e INSTANCE: Undirected graph G = (V, E), weight c(e) € R* for each e € E and
weight w(v) € R for each v € V, a positive bound B.

e SOLUTION: A 2—connected subgraph 7T in G.

e MEASURE: The total weights of nodes and edges in 7" plus summation of the cost
to connect at least 1 node in 7" for each node in G — T..

To solve the Problem FMIwmst2, we need only to add one more step at the end
of the JMS Algorithm. After we compute the minimum spanning tree, we can run the
approximation algorithm for metric travelling salesman which turn a minimum spanning
tree into a circle with cost no more than 3/2 times the cost of the minimum spanning
tree. Thus we can compute in polynomial-time a 4.62—approximation solution for this
problem.
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6.7 Some Other Related Problems

Problem 2. Node Weighted Steiner Connected Dominating Set Problem
(NWS-CDS).

Instance: Undirected graph G = (V, E), weight w(v) € R* foreach v € V,aset RCV,
a positive bound B.

Question: Is there a set S C V such that each node in R has at least one neighbor node
included in S and the sum of the weights of the nodes in S does not exceed B?

Lemma 6.5. A polynomial approximation algorithm for the node weighted steiner con-

nected dominating set problem with factor k would imply a polynomial approrimation
algorithm for the IWMST problem with factor k.

Proof:We can reduce the IWMST problem to the NWS-CDS problem. Given an
instance of IWMST problem G = (V, E), we construct a new graph G' = (V', E'). For
each node u € V, we add it to V' with the same weight. For each edge (u,v) € E, we
add a new node z to V' and set f(z) = ¢((u,v)). Then we add two edges (u,w) and
(w,v) to E', all edges have no weight. Set R = V', we can see that an optimal solution
for the NWS-CDS problem on G’ is exactly the optimal solution for the IWMST problem
on G. And for any polynomial approximation algorithm of the NWS-CDS problem, this
reduction will preserve the factor on the IWMST problem. O

Problem 3. Node Weighted Steiner Tree Problem (NWS-T).

Instance: Undirected graph G = (V, E), weight w(v) € R for each v € V,aset RC V,
a positive bound B.

Question: Is there a tree 7' for G such that all nodes in R are connected by 7" and the
sum of the weights of the nodes in 7" does not exceed B?

Lemma 6.6. A polynomial approximation algorithm for the node weighted steiner con-
nected dominating set problem with factor f(n) would imply a polynomial approzimation
algorithm for the IWMST problem with factor f(n) + In A.

Proof:We can solve the IWMST problem by using a approximation algorithm for the
NWS-T problem. Given an instance of IWMST problem G = (V, E), we can construct
an instance for the weighted set cover problem in which V is the universe set. For each
node v in V' we build a set s, which include this node and all its neighbor nodes, we set
its weight as w(s,) = w(v) + 3_, ,wer ¢((v,u)). Then we can use a weighted set cover
approximation algorithm to find a dominating set in G.

Now we clear the weight on all nodes in the dominating set and its neighbor edges.
For each uncovered edge, we put a new node on it and move its weight to this node.
Then we run the polynomial approximation algorithm of the NWS-T problem with the
dominating set as the required terminal set.

Since the weighted set cover problem can be approximated to In A, if there is a poly-
nomial approximation algorithm for the NWS-T problem with factor f(n), then our final
solution can be bounded by f(n) + In A. O
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6.8 Concluding Remarks

In this chapter we have designed a general framework which aims to find a %ln n-
approximation Algorithm for the IWMST problem. Based on this framework, we further
propose two polynomial-time approximation algorithms. The first one can find a 21Inn-
approximation solution in O(mnlogn) time, while the second one can compute a 1.5 In n-
approximation solution in O(n?A®%) time. We also show how we can use the methods for
other related problems to solve the IWMST problem. The techniques in our framework
can be extended to some other related problems. For future work we can follow this
method to develop algorithms with more tight bound such as %]n n. We will also further
study the metric version of this problem.
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Chapter 7

Energy Efficient Broadcasting
Algorithms in MANETSs

7.1 Introduction

A Mobile Ad Hoc Network (MANET) is a mobile network with dynamic, sometimes
rapidly-changing, random, multihop topologies which usually contains relatively bandwidth-
constrained wireless links. MANET can be rapidly deployed without relying on pre-
existing fixed network infrastructure and thus has potential applications in military mis-
sion, emergency disaster relief and etc.

Each node in a MANET has a limited energy resource and an omnidirectional an-
tenna to transmit and receive signals. A communication session can be established ei-
ther through a single-hop transmission if the communication parties are close enough or
through relaying by multi-hop path otherwise.

In this chapter we focus on the design of algorithms for energy-efficient broadcast com-
munications. A broadcast message originated from a source node needs to be forwarded
to all the other nodes in the network, which is an important mechanism to communicate
information such as states updating packets and other control data in a MANET. There
are already some existing solutions, most of which are globalized and each node needs
knowledge of the whole network topology to make decision. But a small local alternation
may cause global changes in any MST based structure and must be propagated throughout
the network for any globalized solution, which may bring unacceptable communication
overhead for ad-hoc networks. Thus a scalable protocol should let each node decide on its
own behavior based only on the information from all nodes within several-hop distance.
Usually the less the knowledge required, the more scalable the protocol would be. So
it would be ideal if nodes make decisions based solely on the knowledge of its 1-hop or
2-hops neighbors, and the distances to them. Such distributed algorithms and protocols
are called localized [CAR03, CHU02, QVL02, WL99|.

According to the source node distribution, the current existing protocols can be
roughly classified into two families: topology control oriented protocols and broadcast
oriented protocols. The first family assigns the transmission power for each node and
the network is connected independently of broadcast utilization, while the second fam-
ily considers the broadcast process from a given source node. According to the antenna
transmission angle, we can also distinguish three communication models: one-to-all model,
one-to-one model and variable angular range model[CAR03|. Here we are mainly inter-
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ested in broadcast oriented protocols in one-to-all communication model in MANET by
using omnidirectional antennas, in which a node can send data to many neighboring nodes
via a single transmission. This feature is called the wireless multicast advantage and is
very useful for broadcasting communications.

Our main contribution in this paper is that we propose an algorithm that only requires
local information and extend it into a distributed protocol. In our localized protocols,
each node requires only the 2-hop distance neighborhood info, i.e., the knowledge of its
distance to its neighboring nodes and the neighbor-distance info of them. Here we do
not need GPS service, distances can be measured mutually by using signal strength, time
delay or more sophisticated techniques like microwave distance[Ben00]. The information
needed here are far less than that needed by existing protocols like BIP[WNEO00] for large
scale MENETs.

The rest of this chapter is organized as follows. Section 2 gives the MANET model,
which is essentially the same as that used in other existing protocols. Section 3 shortly
analyzes the target and presents a centralized algorithm CNFT, then it is extended to the
localized algorithm DNF'T and based on it a protocol is proposed. In Section 4, we give
the results of simulations showing the energy savings obtained by using our protocol and
compare it with some other existing protocols. Section 5 concludes this chapter.

7.2 System Model

Before we present our algorithm, it is necessary to give a short description of the basic
system model for Energy Efficient Broadcasting in a MANET.

At first, we assume throughout this paper that there is ample bandwidth, and that
each node has enough transceivers to accommodate all service requests. In real application
we can neglect those nodes without enough bandwidth to attend the communication.
Second, we assume in our algorithm that the nodes in a MANET are static, actually
current there is few energy efficient protocols which take into account the mobility and
we will further our research to this issue in our next step. Third, we assume that each node
in a MANET has equipped an omnidirectional antenna. A node also has the capacity to
modify the area of coverage with its transmission. It is this kind of transmission power
control that allows to reduce significantly the energy consumption and so to increase
lifetime of the network. However, the adjustment of transmission signal strength usually
brings connectivity change and topology alterations. Hence, nodes have to manage their
transmission area under the constraint that the network should remain connected.

In broadcasting communication, we can represent a MANET by a directed graph
G = (V,E) where V is the set of nodes and E is the set of edges. Without loss of
generality, we assume that G is double connected. Since we only require that a broadcast
message from the source can be transmitted to all nodes in the network, then what we
need is the connectivity from source node to all other nodes and thus a directed spanning
tree T rooted at the source node is enough[NTCS99].

Each node has a power resource and the consumption rate of power is related to the
distance to the furthest node it can and want to communicate directly. The maximum
power level that a node 7 can use is p*** and the related distance it can reach is "%,
while the corresponding neighbor nodes of 7 is N/***. We assume that each node ¢ has a
set of discrete power levels P; (or else at any power level in the range [0, p/***]) and a set
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of vicinity radius R;, it can dynamically adjust its transmitting power according to the
distance of the receiving nodes and environment for the purpose of energy conservation.

For example, we show the neighborhood of a node s by using different energy lev-
els in the following Figure 7.1. According to this graph, node s can use four different
communicating ranges with energy consumption rates. By steadily increasing its signal
strength, node s can find out that N} = {r}, N2 = {r,t,u}, N3 = {r,t,u,v,w,x},
N} = N™@ = {r t u,v,w,z,y,2}. Consequently, a node can know the rough relative
distances to its neighbor nodes even when there is no GPS equipment. We can also draw
the neighborhood tree NT; of s, which is showed in the right side of Figure 7.1. Finally,
we can get the whole connectivity map by combining all neighborhood trees of nodes in

V.

Figure 7.1: Left: The neighborhood of s by different energy levels. Right: NT.

Thus we have E = {(u,v)|lu,v € V A dist(u,v) < ri**}, where dist(u,v) is the
distance between node u and node v. We adopt a commonly used wireless propagation
model whereby the received signal power attenuates as =, where r is the transmission
range and « is a propagation loss constant that takes value between 2 and 5 [Rap96,
KKK97]. If we take into account the environment and the overhead for signal processing
and energy needed for successful reception and MAC control messages, then the general
energy consumption formula for a node u in the final broadcasting tree T" will be

E(u) = k- maz{dist(u,v)|(u,v) € T}* + c.

The problem of constructing the minimum-energy, source-based broadcast tree for each
newly arriving broadcast session request involves the choice of transmitter-power levels
and relay nodes. As noted earlier, we mainly consider the transmission energy. Thus,
the total energy of the broadcast tree is simply the sum of the energy expended at all
transmitting nodes in the tree; leaf nodes will not transmit and will not contribute to this
quantity. Since we are considering session traffic, all transmitting nodes transmit for the
entire duration of each session. Therefore, the total transmission energy is proportional
to the total power needed to maintain the whole tree. Hence, we evaluate performance in
terms of the total power £(T) required to maintain the tree 7. Which is:

E(T) =) Eu).

However, the problem of computing such a tree 7" that can minimize the value of
E(T) was already proved to be N'P-Complete and so there won’t exist a polynomial-time
centralized algorithm for it until P = NP[CHE02, GJ79].
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7.3 A Power Efficient Protocol for Broadcasting

We start from the simple small MANETSs with destinations all reachable from the source
directly, and then extend our approach to larger multi-hop MANETSs by means of a recur-
sive technique. There is a crucial difference between wired and wireless networks. In wired
networks, the broadcasting problem can be formulated as the well-known minimum-cost
spanning tree (MST) problem, which can be solved in polynomial-time [GHS83]. This
formulation is based on the existence of a cost associated with each link in the network and
the total cost of the broadcast tree is simply the sum of the link costs. However, the situa-
tion in wireless networks is different because of the wireless multicast advantage property
which permits all nodes within communication range to receive a transmission without ad-
ditional expenditure of transmitter power. Therefore, the standard MST problem, which
reflects the link-based nature of wired networks, does not capture the node-based nature
of wireless ad hoc networks with omnidirectional antennas.

7.3.1 The centralized algorithm

Let us first consider the simple case where all nodes are within one hop and thus they
know the distance of each other, which will form a whole graph. We use the link-based
minimum energy path tree (MEPT) as the initial step. The main reason we take MEPT
is that it performs quite well even as a final solution to our problem. As discussed above,
although MST structure closely resembles energy requirements of a unicast routing task,
it does not necessarily capture the structural properties in case of broadcasting. Unicast is
a one dimension routing task, while broadcast in a plane is a two dimension routing task.
If we draw the MST and MEPT of the same MANET under two different situation: use
distance as edge weight in one and use power consumption as weight in another. We will
find that the MST in both case are the same, while the MEPTs will be totally different.
And what’s more, we randomly generate a small graph and use linear programming to find
the minimum energy path tree (MEBT), then we find that usually the MEPT topology
is more close to the MEBT, which can be seen from Figure 7.2.

a. MST b. MEPT c. MEBT
Figure 7.2. The MST, MEPT and MEBT of a small MANET.

Notice that although we use link-based MEPT, which doesn’t exploit WMA, the eval-
uation of its cost takes into consideration the WMA. We will now describe in detail our
algorithm, which we call Centralized Neighbor Forwarding Tree and refer to as CNFT.
An example is provided in Figure 7.3. Let us first introduce some notations. Let G be
the graph, C' denote the set of covered nodes in a network, 71" the set of core transmitting
nodes of the broadcast tree, and U the set of uncovered nodes. Notice that the contents
of the above sets change throughout the execution of the CNFT, and that the sets do not
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hold any information about the MEPT. Initially, C' = r, where s is the source node.

Algorithm 7.1. CNFT
C={s}, T={s}, U=G—-C;
Compute the MEPT of s;
For each unvisited node t in T do
Let f be the neighbor of t in MEPT with maximum energy distance;
T =T U{f}, set p(t) as the necessary power level to cover f;
For all nodes d in N U do
C=Cu{d},U=U-{d};
For all nodes u in U do
If there is no other node in T on the path u — t then
Let v be the nearest node covered by t, T =T U {v};
Mark t as visited;

© D A W~
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For any transmitting node, the CNFT algorithm will add two kind of forwarding
transmitting nodes for it. One is the uncovered neighbor node in its MEPT with maximum
distance, this node must be set as a transmitting node not only because it will save energy
but also because it is necessary for maintain the connectivity of the result broadcasting
tree. And we also use its distance to set the power level of the current source node. For
this node, there will be no other shortcut node between itself and the current source node.
Consider the node v in the following Figure 7.3(a). It will not be selected since w is a
shortcut node. Actually any node in the circle between node v and v will be a shortcut
node for v as long as we let the power consumption rate be proportional to the square of
the radius.

a). v is not in 7" because of w. b).w will be selected into T by x.
Figure 7.3. The selection of transmitting nodes in CNFT.

Another kind of transmitting node will be selected by the request of those uncovered
neighbor nodes. When a uncovered node find that there is another transmitting node on
its shortest path to the current source node, it will deem itself as in a safe status, which
means that it will be covered later. Else it will request that one of the covered node in
its shortest path to the source node should be set as a transmitting node. And this node
should make all other uncovered nodes in this branch to be safe. For example, in the
above Figure 7.3(b): suppose v is the first kind of transmitting node selected by node s,
and so w will be marked as covered but not as a transmitting node at first; then node x
will find that it is not safe since its shortest path is © — w — s, so w will also be set as
a transmitting node and this will also make the other two uncovered nodes safe.

Proposition 1: When Algorithm CNFT is finished, U = (.
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Proof: We will prove this proposition by proving the following loop invariant: U # () =
there exists unvisited node in 7. This is evidently true at the initial step. For the following
runs, we can check the “for” loop in line 8. Since for any uncovered node, there will be a
transmitting node to make it safe. And when we come to the run when this transmitting
node is deemed as a source, the algorithm should either cover that uncovered node or find
another transmitting node to make it safe. So this loop invariant is always true. And
when Algorithm CNFT is finished, all nodes in 7" will be visited and thus U = ().

We can run CNFT on the following Figure 7.4. Node s will initiate the algorithm.
It will add v to T at first, then set its radius and cover {a,b,0,u,v}. All nodes in the
branch of v will be safe, but the branch of u is not and they will make s to add u into
T too. u will add w into T and cover {w, m,l,k}. w will add ¢ into T and cover {g}.
v will add ¢, z,z into T and cover {c,z,z}. z will add d into 7" and cover {d,e,p}. z
will add y into T and cover {y,i,5}. y will add h into T and cover {h,g,i}. Now all
the nodes are all covered. Notice that nodes although ¢, d, h,q are added into T', they
cannot find any more uncovered neighbor node and will not join the transmitting. The
complexity of this algorithm is O(n?) at the worst case and can be improved to O(n?)
by using some smoothing technique. On the other hand, usually the number of mobile
hosts within a hop distance is within two digits. So Algorithm CNFT can be extend to a
scalable distributed algorithm.

9 o
o
o
o o)
o
se o
o
o o o o)
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o o
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a). A MANET with node S as the source. b). The result broadcasting tree.
Figure 7.4. A small running example of CNFT.

7.3.2 The distributed algorithm

Since the above centralized algorithm only consider a small graph within one hop distance,
it cannot be used in a real MANET, in which the transmitting radius of each node is
limited and usually a multi-hop path is necessary for two nodes to communicate with
each other. So we need to extend it to the distributed case, the following Distributed
Neighbor Forwarding Tree Algorithm will be run at each transmitting node ¢ during the
broadcasting tree building session.

Algorithm 7.2. Algorithm DNFT

1 Combine the whole graph of N"** and the 2-hop nodes to form G’ ;
Cover t and get the uncovered node sets U in G';
Compute the MEPT of t in G';
Let f be the neighbor of t in MEPT with maximum energy distance;
Mark f as a T node, set p(t) as the power level to cover f;
For all nodes d in N*" U do

D Gr ™ W
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7 C=CuU{d}, U=U-{d};

8 For all nodes u in U do

9 If there is no other unvisited T' node on the path u — t then
10 Let v be the nearest node covered by t, T =T U{v};

11 Mark t as visited;

In the distributed case, for the first time, a source node s will initiate a broadcast
session by send out a broadcast tree construction request message < btc,;q > to all his
neighbors reachable by power level p; ... Based on Algorithm DNFT, the nodes in the
MANET will cooperatively discover the set of transmitting nodes :

e The source node s:

1. Send a broadcasting tree construction request message < btcs;q > to all his
neighbors reachable by power level p7**;

2. Based on the AC'K message from all neighbors, compute N."**;

3. Based on the N;"** message from each neighbor v, compute the 2-hop graph
G';

4. Run Algorithm DNFT to compute the transmitting neighbor set;

5. Send < btt, ;4 > to all transmitting neighbors.

e On receipt of a btc message at node v:

1. Send back an AC'K message;
2. Broadcast its own btn message;
3. Based on the AC'K message from all neighbors, compute its N;***;

4. Send back an N message.

e On receipt of a btn message: Send back an ACK message.

e On receipt of a btt message: Run the same procedures as a source node.

A node will discard an already received message in this session. And after it every
transmitting node will have a list of neighbor transmitting nodes. Every node will know
which node cover himself. Now a source node will broadcast the data according to the
range computed in the tree construction session. And only those transmitting nodes will
forward the data according their computed power rang respectively. All the duplicated
message will be discarded, and all other common nodes need only to receive data from a
transmitting node. The following Figure 7.5 shows the cover map of a 60 nodes 1km x 1km
MANET computed by our protocol.
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d). The MEPT using energy as edge weight

N

e). The energy efficient broadcasting tree.

f). The broadcasting relay map.
Figure 7.5. A running result example for DNFT.

7



7.4 Performance Evaluation

We conducted a simulation study to evaluate our protocol and compared its performance
with the RBOP protocol proposed by J. Cartigny et. al in [CAR03]. The authors showed
that RBOP was one of the first presented distributed algorithms for computing the energy
efficient broadcasting tree in a MANET and that its performance could compete with the
centralized BIP protocol in [WNEOQO].

The parameters used in our simulations are almost the same as those in [CARO03] for
consistency. The number of nodes n is always 100 and nodes are static. The maximum
communication radius 7™ is fixed to 5*50 meters. Nodes are uniformly distributed
in a square area whose size is adjusted to obtain a given density (from 6 nodes per
communication zone to 30). For each measure, 5000 broadcasts have been run. Because
of ideal MAC layer and the proved integrality nature of our protocol, we are sure that all
nodes receive broadcasted messages. Hence, the reachability is always 100. The observed
parameter is the energy consumption according to two commonly used energy models:
k=1,a=2c=0and k =1, = 4,c = 108[RM99, LiR01]. For each broadcast session,
we calculate the total energy consumption:

E(T) =) E(u).

Usually £(T) is very large, so we divided it by the total energy consumption needed
for blind flooding prtocol with maximal range:

gfloodin_q =n X (Ra + C).

The percentage number of this quotient is named to be the average Expended Energy
Ration (EER):
EER =100 x g(T)/gflooding-
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a). The EER of a = 2,¢ = 0. b). The EER of o = 4, ¢ = 10°.
Figure 7.6. The comparison of the Expended Energy Ratios(EER) of the simulation results.
We show the comparison of DNFT with RBOP, BIP and RTCP in Figure 7.6, from

which we can observe that our DNFT is better than RBOP. This is because RBOP will
choose all its RNG-neighbors as transmitting nodes. But sometimes the distance from
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the source node to its RNG-neighbors will be far different to each other, and some short
range nodes will be unnecessarily put into transmitting. In DNFT, only the uncovered
neighbor with the maximum distance will be selected at the first step. And the other
transmitting nodes are also selected when it is necessary to maintain the connectivity of
the whole graph. So the final number of transmitting nodes in the graph in DNFT will
be less than that in RBOP.

It is not surprising to see that the best algorithm is the globalized BIP, since with
the whole knowledge one can always make better choice. But when the density rises, the
difference between all these protocols converge together. And the direction is certainly
downward since with high density the blind flooding will choose more unnecessary nodes
as transmitting nodes.

7.5 Conclusion

In this chapter we first present the CNFT Algorithm for the computation of an energy
efficient broadcasting tree in a small MANET, we prove its validity and its efficiency. Then
we extend it to the distributed case algorithm DNF'T, based on it we propose our protocol
for the construction of an energy efficient broadcasting tree in large MANETSs. Finally
we demostrate by simulation that our protocol is more energy efficient than RBOP, and
it is also very flexible and scalable for large MANETS.
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Chapter 8

Summary and Future Work

In this final chapter, we summarize our research on the design of fault-tolerant and QoS
routing algorithms. Then, we conclude with some topics for future research.

8.1 Summary

In this thesis we concentrate on computing fault-tolerant edge-disjoint paths, finding QoS
concerned flow algorithms, building low cost routing structures and designing energy-
efficient broadcasting schemes in wireless networks. Generally, the work presented in this
thesis can be summarized as follows:

e The problem of finding two Delay-Restricted Link Disjoint s-t-Paths with minimum
total cost is the first focus of our work. This is a classical NP-hard problem and
has attracted considerable attentions recently. In this thesis we first showed the
difficulty of this problem and its relationship with the minimum cost flow problem.
Based on the existing work, we presented an approximation algorithm for this prob-
lem. Previous result could reduce the delay of paths to be near-optimal, but the
cost sacrifice was too large. We looked inside the existing model and proposed a
new technique for finding a cost-bounded negative-delay cycle. By this technique
we can bound the cost tradeoff while reducing the delay. Our result has improved
the approximation factor from (1+1/k,O0(k)) to (1+1/k,O(logk)), thus it reduced
the cost by factor @ while maintaining the same delay bound of the previous
result. Following this line, we proposed two improved versions to further reduce
the time complexity and the solution cost. However, these versions have a com-
mon problem of containing too complicated computing steps to be implemented.
To make it simple and efficient, we analyzed the mathematical structure of this
problem and developed a totally new approach of applying Lagrangian Relaxation.
With this method, we only need to modify the weight of each edge and then do
binary search. This method looks easy and even naive, but we validated its power
by rigorous mathematical proof. Our algorithm is much more time-efficient and
implementable than all previous algorithms for this problem. Furthermore, we also
proposed some extensions of our method for solving other problems with similar
underlying mathematical structures.

e The unsplittable flow problem is a natural generalization of the disjoint paths prob-
lem. This problem has a large family of variants and has attracted huge attentions
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in both theoretical computer science and operations research. In this thesis we
studied several versions of this problem. Our first result was a new algorithm for
computing a minimum-cost single-source unsplittable flow in a graph with arbitrary
edge capacity. We introduced a novel rounding technique: instead of rounding the
flow, we round the flow portion. By this method we need not to cancel flow and
to deal with the troublesome numeric issues. We proved that the approximation
factor of our algorithm was also the current best bound for this problem. What’s
more, we found that our algorithm was also very useful for the situation when the
largest demand in G is far less than the minimum capacity in it. Later we stud-
ied the minimum-cost single-source k—splittable flow problem and we presented an
algorithm with the best performance guarantee so far.

e The Inner-node Weighted Minimum Spanning Tree structure is very useful in build-
ing high-speed fibre networks. In this thesis we presented a general framework
which can find a % In n-approximation algorithm for solving this problem. Our
framework employed a method of repeatedly finding the minimum k-structure in
the remain graph and contracting it. Both the correctness and the polynomial-time
computability of our approach have been proved. Based on this framework, we fur-
ther developed two polynomial-time approximation algorithms which can achieve a
better performance guarantee than all existing results. Two different fault-tolerant
versions of this problem have been studied, one version for avoiding leaf-node failure
and another for avoiding backbone failure. We have proposed simple but efficient
algorithms for both of them.

e Finally, we have investigated the energy-efficient broadcasting issue in mobile ad
hoc networks and wireless sensor networks. After we examined the routing model
and the energy-consumption mechanism in mobile computing, we proposed a cen-
tralized heuristic algorithm for computing a broadcasting tree in a wireless network.
Grounded on this centralized algorithm, we designed a distributed and localized al-
gorithm for saving energy during a broadcast session. We introduced a new localized
method for computing the neighbor forwarding tree, which reduced the communi-
cation complexity and thus the energy consumption. We conducted experiments
by using MATLAB, the simulation data validated the high energy-efficiency and
scalability of our protocol.

8.2 Future Work

Fault-tolerant and QoS routing is an extremely flourishing area. In the future, the research
presented in this thesis can be extended in the following directions:

e For the two Delay-Restricted Link Disjoint s-t-Paths Problem, it will be a very
challenging topic to design a bicriteria (1 + «, 1+ §)—approximation algorithm (0 <
a < 1/2,0 <3< 1/2). This means that we need to find a solution with both delay
and cost near optimal. We know such kind of Fully Polynomial-Time Approximation
Schemes (FPTAS) exist for the constrained shortest path problem, and [PY00] shows
that some problems have an FPTAS even under more than two constraints. But
usually this kind of problems have a pseudo-polynomial-time algorithm.
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For the Minimum-Cost Single-Source Unsplittable Flow Problem. Currently the
best bicriteria approximation factor for this problem with the congestion assumption
is (3, 1) and it has been proved that a (2—¢, 1)-approximation algorithm is impossible
if P # NP. So we are really wondering about the existence of a (2, 1)-approximation
algorithm for it.

For the Minimum-Cost Single-Source Unsplittable Flow Problem without arbitrary
edge capacity, our algorithm achieves a (3 4 21/2, 1)-approximation solution. Can
we improve on the congestion rate?

We will consider the problem of finding the capacitated steiner tree problem. Such
a steiner tree can act as a sub-structure for routing multi-commodity flows if they
can be transferred at different times. Furthermore, we will consider the capacitated
2-connected sub-graph problem. This problem aims to find a fault-tolerant sub-
structure for delivering a given set of commodities.

The metric version of Inner-node Weighted Minimum Spanning Tree Problem will
also be further studied in our future work. We will also consider its applications in
optical networks.

For the QoS routing issues in MANETS, we will continue our efforts on designing
energy-efficient algorithms. We will consider the problem of maximum-lifetime rout-
ing for this topic. We will also extend our protocol to multicast communications.
Then we will study the case where the MANET model changes, such as to add
mobility into the MANET and to alter the transmission pattern of the antennas.
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