
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Actor-based Protocol Composition Framework for

Rapid Prototyping

Author(s) Rattanaponglekha, Nuttapong

Citation

Issue Date 2011-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9926

Rights

Description
Supervisor:Associate Professor Xavier Defago, 情

報科学研究科, 修士

Actor-based Protocol Composition Framework for
Rapid Prototyping

By Nuttapong Rattanaponglekha

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Xavier Défago

September, 2011

Actor-based Protocol Composition Framework for
Rapid Prototyping

By Nuttapong Rattanaponglekha (0910210)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Xavier Défago

and approved by
Associate Professor Xavier Défago
Associate Professor Toshiaki Aoki

Associate Professor Yasushi Inoguchi

August, 2011 (Submitted)

Copyright c© 2011 by Nuttapong Rattanaponglekha

Abstract

Nowadays, the development of distributed systems and applications are larger and more
complex. In one application, we have many protocols inside that have interactions to-
gether. Protocol developers not only consider their own protocol but they also have deep
knowledge in other protocols. In each protocol, there are many hindrances, complex-
ity that distract the developing application, prototyping the algorithm and evaluating
the performance in each algorithm. The thesis has contribution in protocol composition
framework. The protocol composition framework should provide facilities to make pro-
tocol programming and protocol composition easier. The idea of protocol composition
framework is separated into 2 views, composer and protocol programmer. Composers
no need to have deep knowledge of the composed protocol that includes details such as
the cumulative state of the protocols to protect, or the handlers in which new threads
are launched. On the other hand, protocol programmers only consider their own protocol
logic, have no deep knowledge in other protocols. Protocol composition framework should
provide facilities to make protocol programming and protocol composition easier.

Our protocol composition framework is based on actor model. By using actor model,
we target to loose decoupling between protocols as much as possible and make algorithm
code be more compact and expressive. We implement some protocols in agreement prob-
lems such as consensus algorithm, atomic broadcast algorithm. We use boilerplate code
and effective code as criteria, compare the protocols on our framework with other frame-
work and pseudocode. In the evaluation, we evaluate the expressiveness of our protocol in
terms of line of code. We express the analysis of writing style compared with pseudocode
and other framework. In terms of performance overhead, we evaluate the initialization
time, the execution time and availability.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Associate Professor
Xavier Défago for all guidance and knowledge in both of academic term and non-academic
term. Professor Xavier has taught me so many things, especially in how to organize the
presentation that I had never mentioned it before.

I would also like to thank Associate Professor Toshiaki Aoki and Associate Professor
Yasushi Inoguchi for taking time to serve on my dissertation committee.

My special thank to Career Development Program for Foreign Students in JAIST and
Ministry of Education Culture Sports Science and Technology Japan, who provided me
financial support and Japanese language study for life in Japan.

I want to thank all members in Défago-Lab for their kindness. I especially thank to
Daiki Higashihara and Shintaro Hosoai for their kindness, guidance and friendships. They
gave kindness and suggestions in both of research and life in Japan.

My thanks go to Thai people in JAIST for many supports, encouragement and warm
friendship during hard time, especially in writing thesis.

Last, but not least, I wish to express my gratitude to my family and close friends,
especially to my parents for their loving support throughout my life. Moreover, I would
like to thank my niece (named as Yaya) for making me laugh by her cute face.

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Objective . 10
1.3 Contribution . 10
1.4 Organization . 11

2 Distributed systems & Composition framework 12
2.1 Characteristics . 12
2.2 System models . 13

2.2.1 Failure Models . 13
2.3 Agreement Problems . 14

2.3.1 Consensus . 14
2.3.2 Reliable broadcast . 15
2.3.3 Atomic broadcast . 15

2.4 Composition framework . 15
2.4.1 Model . 16
2.4.2 Neko protocol composition framework 16

2.5 Related work . 19
2.5.1 Appia . 19
2.5.2 Cactus . 20

3 Benchmark and criteria 22
3.1 Reliable broadcast . 22

3.1.1 Algorithm . 22
3.2 Consensus algorithm . 22

3.2.1 Chandra-Toueg consensus algorithm 23
3.2.2 Mostéfaoui and Raynal consensus algorithm 23
3.2.3 Paxos consensus algorithm . 24

3.3 Atomic broadcast . 25
3.3.1 Simple fixed sequencer algorithm 25
3.3.2 Simple moving sequencer algorithm 25
3.3.3 Simple privilege-based algorithm 26
3.3.4 Simple communication history algorithm 26
3.3.5 Using consensus to solve Atomic broadcast 26

1

3.4 Criteria . 26
3.4.1 Effective code . 27
3.4.2 Boilerplate code . 27

4 Problem statement 28
4.1 Problems . 28
4.2 Analysis . 31

5 Actor-based model 32
5.1 Introduction . 32
5.2 Model . 32

5.2.1 Actor model in Scala language . 33
5.2.2 Why is actor model in Scala? . 33

5.3 Comparing with Java thread . 33
5.3.1 Design and Implementation view 34

6 Yaya protocol composition framework: Design 39
6.1 Introduction . 39
6.2 Architecture . 39
6.3 Sample protocol: Pingpong protocol . 41

7 Yaya protocol composition framework: User manual 44
7.1 Overview . 44
7.2 Implementation view . 49
7.3 Getting started . 50

7.3.1 Hello world! . 50
7.3.2 Creating a configuration file . 50
7.3.3 Implementing protocols . 51
7.3.4 Starting execution . 53

7.4 More general implementation . 54

8 Yaya protocol composition framework: Usage 57
8.1 Sample application . 57
8.2 Startup and configuration . 58

9 Comparative Analysis: Expressiveness 61
9.1 Reliable broadcast . 61

9.1.1 Evaluation . 61
9.2 Consensus . 65

9.2.1 Chandra-Toueg consensus algorithm 65
9.2.2 Mostéfaoui and Raynal consensus algorithm 67
9.2.3 Paxos consensus algorithm . 69
9.2.4 Evaluation . 71

9.3 Atomic broadcast . 71
9.3.1 Evaluation . 74

2

9.4 Analysis . 74

10 Performance Analysis :Overhead 77
10.1 Execution overhead & Availability performance 78

10.1.1 Execution overhead time . 78
10.1.2 Availability performance . 79

10.2 Discussion . 80

11 Conclusion & Open Questions 81
11.1 Conclusion . 81
11.2 Open Questions . 81

A Reliable broadcast 82

B Consensus algorithm 83
B.1 Chandra-Toueg consensus algorithm [11] 83
B.2 Mostéfaoui and Raynal consensus algorithm [11] 85
B.3 Paxos consensus algorithm [8] . 86

C Atomic broadcast algorithm 88
C.1 Simple fixed sequencer algorithm [10] . 88
C.2 Simple moving sequencer algorithm [10] . 89
C.3 Simple privilege-based algorithm [10] . 90
C.4 Simple communication history algorithm [10] 91
C.5 Using Consensus to solve Atomic broadcast [9] 92

3

List of Figures

2.1 Original Architecture of Neko framework [7] 17
2.2 Present Architecture of Neko framework [7] 18

3.1 Example run of the Chandra-Toueg consensus algorithm 23
3.2 Example run of the Mostéfaoui and Raynal consensus algorithm 24
3.3 Example run of the Paxos consensus algorithm 25

5.1 Producer Consumer Application in Java Concurrency model 35
5.2 Producer Consumer Application in Scala actor model 37
5.3 Mailbox in buffer actor . 38

6.1 Architecture of Yaya . 40
6.2 Yaya message sending mechanism . 41

7.1 Simulated model in Yaya protocol composition framework 44
7.2 Component module in a process . 45
7.3 Communication within a process . 45
7.4 Communication using message within a process 46
7.5 Structure of message in Yaya framework 46
7.6 YProcess class diagram . 47
7.7 Class diagram of protocol in Yaya framework 47
7.8 Class diagram of message in Yaya framework 48
7.9 Difference between composers and protocol programmers 49
7.10 Systems model from helloWorld configuration file 50
7.11 Configuration file syntax . 51
7.12 Protocol class syntax . 52
7.13 Using of createMessage method . 53
7.14 Using of sendTo method . 53
7.15 Hello World program result . 53
7.16 Composing steps for composers . 54
7.17 Restriction for composers . 55
7.18 Protocol implementing steps for protocol programmers 55
7.19 Restriction for protocol programmers . 56

8.1 Architecture of a sample Yaya application: Atomic broadcast application . 58

4

10.1 Application model for evaluation performance overhead 77
10.2 Execution overhead comparison between simulation in Yaya and Neko . . . 78
10.3 Availability comparison between simulation in Yaya and Neko 79

5

List of Tables

9.1 Comparative between implementation of Reliable broadcast on Neko and
Yaya in terms of line of code . 65

9.2 Comparative between implementation of consensus algorithm on Neko and
Yaya . 71

9.3 Summary of comparative between implementation of algorithm on Neko
and Yaya . 75

9.4 Comparative between implementation of Atomic broadcast algorithm on
Neko and Yaya . 76

6

Listings

2.1 Example of a Neko configuration file (for a simulation) 19
3.1 Example of boilerplate code . 27
4.1 Each round messages are processed according to the message type 28
4.2 Estimate phase processing code . 29
4.3 Failure detector handler code (A) . 30
4.4 Failure detector handler code (B) . 30
4.5 Chandra-Toueg consensus interface . 31
5.1 Producer.java . 34
5.2 Consumer.java . 35
5.3 Producer.scala . 36
5.4 Consumer.scala . 36
5.5 UnboundedBuffer.scala . 37
6.1 Pingpong code example implemented on Yaya 42
7.1 helloWorld.config configuration file for Hello world program (1) 50
7.2 helloWorld.config configuration file for Hello world program (2) 50
7.3 helloWorld.config configuration file for Hello world program (3) 51
7.4 Example of protocol class declaration . 51
7.5 Example of overriding launch method . 52
8.1 Configure file example . 59
9.1 Send method in reliable broadcast on Neko 62
9.2 Pseudocode of send method in Reliable broadcast 62
9.3 deliver method in reliable broadcast on Neko 63
9.4 Pseudocode of deliver method in Reliable broadcast 63
9.5 contentMatch method in reliable broadcast on Yaya 64
9.6 Start executing Chandra-Toueg consensus algorithm on Yaya 65
9.7 phase 2 of Chandra-Toueg algorithm on Yaya 66
9.8 suspect content handling on Yaya . 66
9.9 Pseudocode of Phase 3 in Chandra-Toueg consensus 67
9.10 Example code of Mostéfaoui and Raynal consensus algorithm on Neko (1) . 67
9.11 Example code of Mostéfaoui and Raynal consensus algorithm on Neko (2) . 68
9.12 Example code of Mostéfaoui and Raynal consensus algorithm on Yaya . . . 68
9.13 Example code of Paxos consensus algorithm on Neko 69
9.14 Example code of Paxos consensus algorithm on Yaya 70
9.15 Pseudocode of Read and Write content in Paxos consensus algorithm . . . 70

7

9.16 Example code of Atomic broadcast using consensus on Neko (1) 72
9.17 Example code of Atomic broadcast using consensus on Neko (2) 72
9.18 Example code of Atomic broadcast using consensus on Yaya 73
9.19 Pseudocode of Atomic broadcast using Consensus 74

8

Chapter 1

Introduction

1.1 Motivation

In distributed systems, the complexity [1] of systems and the expressiveness of protocol
mechanism are hindrances to design and implementation of distributed systems. In dis-
tributed systems, there is no a central point of control with direct access to the states
of all processes, therefore decisions often require an exchange of information and com-
plex communication between the processes. The coordination of distributed processes
requires complex message-based protocols for synchronization and communication. In
the implementation of communication, there is a gap between application programs and
the lower-level hardware and software infrastructure in order to coordinate how parts
of applications are connected and how they interoperate. The application programmers
need to know about the infrastructure of the systems. Moreover, in run-time, there is a
tremendous number of messages that are passed in the systems. Programmers need to
consider which message will be delivered and how is the responding of that message. This
hindrance makes error-prone part of code, unexpected state and exception in the systems.
These obstacles impede the engineering of large system.

We provide middleware of distributed systems. Middleware helps application program-
mers to concentrate on writing their application logic rather than the low-level of system
mechanisms. Application programmers concentrate only on interface of middleware. Mid-
dleware can help to shield software developers from low-level, tedious, and error-prone
platform details, such as socket-level network programming. Middleware also provide a
consistent set of higher-level network-oriented abstractions. However, middleware is not
flexible, we have no configuration of protocols stack . In terms of configurability, we face
difficulties to implement a specify semantic property and construct services that are cus-
tomized to the needs of the application.

For configurability [2], we provide composition framework for constructing protocols stack
in the systems. composition framework requires that top-level and bottom-level interfaces
of the protocols be identical for each layer, so they can be stacked on top of each other.

9

The purpose of a composition framework is to ease the development of custom protocol
stacks [3] [4] [5]. In composition framework, the software is developed by different peo-
ple, composers and protocol programmers. Composers construct their own protocols by
composing the microprotocols [6] and making the interactions between them. Protocol
programmers consider on their own protocol logic. However, there are many unnecessary
components, complicated parts and distracted code from the main mechanisms. For ex-
ample, in concurrency model restriction [6], concurrency issues, such as protecting the
states of protocols against concurrent changes and avoiding deadlocks, cannot always be
solved by the protocol programmers on their own: the composer must be involved. In
order to do this, the composer needs to have deep knowledge of the composed protocols
that includes details such as the cumulative state of the protocols to protect, or the han-
dlers in which new threads are launched.

The complexity of a distributed system is a hindrance for designing and implementing
application in distributed systems. We use a middleware to shield software developers
from low-level, tedious, and error-prone platform details. However, we face difficulties to
construct the protocols stack in systems and define the interactions between protocols.
We provide composition framework to ease the development of custom protocol stack. In
composition framework, we have some hindrances to express the protocol mechanism and
define the interactions between the protocols.

1.2 Objective

In this project, we target on rapid prototyping by making coding syntax be easy to read,
understand (proof, debugging) and also implement protocols. We consider how to make
code be more compact and condense and also remove boilerplate code as much as possible
(expressiveness, conciseness). We aim at reducing the boilerplate code to make a code
better structured and more clear view between composers and protocol programmers.
Composers no need to have deep knowledge of the composed microprotocols [6] that
includes details such as the cumulative state of the microprotocols to protect, or the
handlers in which new threads are launched. Protocol programmers consider only on
their protocol logic and no need to provide special messages or special method for other
protocol. Protocol programmers implement their own code that seem to resemble pseudo-
code of their algorithm.

1.3 Contribution

We present a protocol composition framework based on an actor model. We leverage the
use of the Scala language to allow for a significantly more compact and natural expression
of communication protocols than with equivalent Java systems. We analyze our proto-
col composition framework compared with composition framework in Java concurrency
model in terms of expressiveness. Moreover, we measure performances of our protocol

10

composition framework (e.g., initialization overhead, availability).

1.4 Organization

In chapter 2, we explain about the background and related work of this research and
explain our benchmarks(algorithms in agreement problem) and criteria in Chapter 3.
We address the problems of the research in chapter 4. In chapter 5, we describe the
actor model which is used to implement our prototype of composition framework. In
chapter 6 and 8, we propose our composition framework prototype, explaining architecture
and usage of our framework. In chapter 9, we evaluate and analyze expressiveness of
our framework comparing with Neko in terms of line of code and we then evaluate the
performance overhead of our framework in chapter 10. Finally, in chapter 11, we conclude
our research and describe about continuing research part.

11

Chapter 2

Distributed systems & Composition
framework

Distributed systems consist of a collection of autonomous computers, connected through
a network and distribution middleware, which enables computers to coordinate their ac-
tivities and to share the resources of the system, so that users perceive the system as a
single, integrated computing facility.

2.1 Characteristics

In distributed systems, there are multiple autonomous components which are not shared
by all users and some resources in systems may not be accessible. Software runs in concur-
rent processes on different processors, so there are multiple point of control and multiple
point of failure. Common characteristics are following:

Resource sharing One process can be able to use any hardware, software, data anywhere
in the system. So, resource manager needs to control access, provide naming scheme and
control concurrency.

Openness Openness is concerned with extensions and improvements of distributed sys-
tems. New components have to be integrated with existing components. Systems should
easily interoperate.

Concurrency Components in distributed systems are executed in concurrent processes.
Components need to access and update shared resource (e.g. variables, databases, device
drivers). If concurrent updates are not coordinated, integrity of the system may be vio-
lated (e.g. lost updates, inconsistent data).

Scalability Distributed systems need scalability to accommodate more users and re-
spond requests faster by not changing the components when scale of a system increases.

12

Fault Tolerance In distributed system, there are multiple point of failure, components
(e.g. processes, channels) may fail. It is important to specify the assumptions on failures,
including expected semantics of failures.

Transparency Distributed systems should be perceived by users and application pro-
grammers as a whole rather than as a collection of cooperating components.

2.2 System models

Distributed systems are modeled as a set of processes Π = {p1, p2, ..., pn} that interact by
exchanging messages over communication channels [11]. There exist a number of models
that restrict the behavior of components (e.g. processes, devices, data, network) in dis-
tributed systems. Models have two uses:

Abstract models [11] Distributed algorithms are designed for a model of the environ-
ment. In other words, they are only guaranteed to work in a certain environment if the
assumptions of the model hold in that environment. It is desirable that such models be (1)
general, to allow algorithm designed for the model to work in a variety of environments,
and (2) simple, to allow a simple expression for algorithms, and easy correctness proofs.

Descriptive models [11] Models can provide a description of existing environments.
Their main use is analyzing the performance of distributed algorithms. Compared to
abstract models, this kind of model is usually detailed and complex, to allow accurate
performance estimates, though the level of detail and complexity depends on the goals of
the performance study.

2.2.1 Failure Models

In distributed systems, the components, both processes and channels, may fail. It is im-
portant to determine how the correctly system can protect itself against failure. The type
of fault models are following:

Crash model A process is said to crash if it executes its local algorithm correctly up to
some moment, and then does not execute any step thereafter.

Byzantine behavior A process is said to Byzantine if it executes arbitrary steps that
are not in accordance with its local algorithm. In particular, a Byzantine process may
send messages with an arbitrary content.

13

2.3 Agreement Problems

Agreement problems are a fundamental class of problems in distributed systems. In dis-
tributed systems, there are possibilities that the failure will occur in processes or channels.
Therefore, participating processes need to make a decision and must agree on some com-
mon decision with the same.
In this section, we give definitions for three agreement problems: consensus, reliable
broadcast and atomic broadcast

2.3.1 Consensus

Consensus problem(defined in [11]) is a main problem in agreement problems that many
problems in agreement can be reduced into consensus problem. Each process will propose
its own value, and then each of them will receive the same decision value, which is one
of the proposed values. Consensus algorithms are used to guarantee that a collection of
processors carry out identical computations, agreeing on the results of some critical steps.
It allows the processors to tolerate the failure of some processors.
In the consensus problem, each process starts with an initial value from a fixed set V ,
and must eventually reach a common and irrevocable decision from V . More formally,
the consensus problem is specified as follows [11]:

Validity If a process decides v, then v was proposed by some process.

Agreement No two correct processes decide differently.

Integrity Every process decides at most once.

Termination All correct processes eventually decide.

The agreement condition of consensus may sound odd because it allows two processes
to disagree even if one of them fails a very long time after deciding. Clearly, such dis-
agreements are undesirable in many applications since they may lead the system to in-
consistent states. This is why one introduces a strengthening of the agreement condition,
called the uniform agreement condition, which precludes any disagreement even due to
faulty processes:

Uniform agreement No two processes decide differently.

Besides consensus, a lot of group communication problems have a uniform and a non-
uniform variant (e.g., reliable broadcast and atomic broadcast). The non-uniform variant
allows incorrect processes to take actions (just before they crash) which might never be
taken by correct processes. The application developer must consider the consequences of
such actions when deciding which variant to use. The developer should keep in mind that
ensuring uniformity often has a cost in terms of performance.

14

2.3.2 Reliable broadcast

Reliable broadcast(defined in [11]) is used to ensure that all processes will deliver a mes-
sage broadcast previously, even though the message losses occur. More formally, reliable
broadcast is defined by two primitives R-broadcast(m) and R-deliver(m) where m is some
message. Reliable broadcast is specified as follows [11]:

Validity If a correct process R-broadcasts m then it eventually R-delivers m.

Integrity For any message m, every process R-delivers m at most once, and only if
m was R-broadcast by some process.

Agreement If a correct process R-delivers m then all correct processes eventually R-
deliver m.

Uniform Agreement If a process R-delivers m then all correct processes eventually
R-deliver m.

2.3.3 Atomic broadcast

Atomic broadcast(defined in [11]) is an extension to reliable broadcast: beside ensuring
that all processes receive the messages, it also ensures that processes receive the messages
in the same order. Atomic broadcast is defined by two primitives A-broadcast(m) and
A-deliver(m) where m is some message. Atomic broadcast is specified with the properties
of reliable broadcast and the following property [11]:

Total Order For any two correct processes p and q, if p A-delivers a message m′ af-
ter message m then q A-delivers m′ only after A-delivered m.

Uniform atomic broadcast is specified with the properties of uniform reliable broadcast
reliable broadcast and the following property:

Uniform Total Order For any two processes p and q, if p A-delivers a message m′

after message m then q A-delivers m′ only after A-delivered m.

2.4 Composition framework

The idea of composition framework is to encourage developers to partition complex pro-
tocols into simple protocols, each of which is implemented by a protocol layer.

In distributed systems, there exist a tremendous number of message passing, protocols
and communications. Effort to bring structure to all development in distributed systems
have been only partially successful. The lack of structure impedes the engineering of large,

15

complex distributed systems. We have a protocol stack [3] as middleware infrastructure
that provides a service to simplify the development of distributed applications. However,
the development of protocol stacks is not easy, customizing the protocol stack is also
complex. The purpose of a protocol composition framework is to ease the development of
custom protocol stacks.

2.4.1 Model

In this section, we classify protocol composition frameworks mechanisms into three mod-
els.

Composition model In composition model, we have to specify how protocol modules
are arranged when they are composed. It can be hierarchical or cooperative. In hierar-
chical model, protocol modules are arranged in protocol stack. Each protocol module can
only communicate with next layer. In cooperative model, we have no hierarchy, every
protocol communicate with others like graph. Moreover, some complex models (e.g., a
hybrid approach) are also possible.

Interaction model In interaction model, we have to define the way protocol modules
may interact and exchange information. It may be event-driven or it may be message-
passing.

Concurrency model In concurrency model, we have to define whether and how con-
currency is allowed in the framework. If some concurrency is allowed, the model should
also specify how to synchronise concurrent threads. If no concurrency is allowed, appli-
cation programmers need to consider how to solve problems from outside composition.

2.4.2 Neko protocol composition framework

Neko framework [7] is one of protocol composition framework. Neko is a simple communi-
cation platform that allows developer to both simulate a distributed algorithm an execute
it on a real network, using the same implementation for the algorithm. Neko is written
in Java and is thus highly portable because it could be run on any machines that have
virtual machine. It has been deliberately kept simple, extensible and easy to use.

Architecture

The architecture of Neko consists of two main parts: application framework and networks.
At the level of application, every processes in system (numbered from 0 to n − 1, n is
amount of processes in the system) communicate using a simple message passing interface:
a sender process pushes its message onto network with the primitive send, and the net-
work then pushes that message onto the receiving process with deliver. In each process,
application layer is programmed as multi-layered programs.

16

Figure 2.1: Original Architecture of Neko framework [7]

Application layers In Figure 2.1, we show the original architecture of Neko Frame-
work. Neko applications are constructed as a hierarchy of layers. Messages are passed
down from above protocol using send, and delivered messages are passed up from network
using deliver method. Layers are either active or passive. In passive layers, there are
no own thread, the below layer will call deliver method. In active layers, there are own
thread, they actively pull messages from the below layer by using receive. The call to
receive blocks until a message is available. Messages are delivered to message queue and
then they get messages by receive orderly. However, in the present architecture as shown
in Figure 2.2, Neko applications are constructed as a graph of protocols. Messages are
passed down from the sender thread [6] using send until they reach destinations. Mes-
sages are passed up by dispatcher using deliver method. We can implement both of active
protocol (protocols that have their own thread) and passive protocol (protocol that have
no their own thread).

NekoProcess Each process of the distributed application has an associated object of
type NekoProcess, placed between the layers of the application and the network. The
NekoProcess takes several important roles:

1. It holds some information, e.g., the address of the process. All layers can access to
process to get these information.

2. It implements some generally useful services, such as sent and received logging
messages by the process.

NekoMessage All communication primitives (send, deliver and receive) transmit in-
stances of NekoMessages. Every message is composed of a content part that consists of
any Java object, and a header with the following information:

17

Figure 2.2: Present Architecture of Neko framework [7]

1. Addressing (source, destinations) The addressing information consists of sender
address process and destination address processes. The numbering of processes
starts from 0 to n− 1 which n is number of processes in system.

2. Network When Neko manages several networks in parallel, each message carries
the identification of the network that should be used for transmission.

3. Message type Each message has a user-defined type field (integer). It can be used
to distinguish messages belonging to different protocols.

Startup and Configuration

Configuration In Neko composition framework, all aspects (e.g. number of processes,
network type) are configured by a single file. The name of this file is passed as a parameter
to Neko on startup. Neko ensures that each process of the application has the information
in the configuration file when the application starts. An example of a Neko configuration
file is shown in Listing 2.1

18

1 s imu la t i on = true
2 proce s s .num = 2500
3 proce s s . i n i t i a l i z e r = t e s t . nProcessesOverhead . P i n gPong In i t i a l i z e r
4 network = l s e . neko . networks . sim . RandomNetwork
5 RandomNetwork . lambda = 0 .0
6 hand le r s = java . u t i l . l o gg ing . Fi leHandler , java . u t i l . l o gg ing .

ConsoleHandler
7 java . u t i l . l o gg ing . F i l eHandler . pattern = t e s t / nProcessesOverhead/ log . l og
8 messages . l e v e l = FINE

Listing 2.1: Example of a Neko configuration file (for a simulation)

Bootstrapping In Neko composition framework, we have two types of bootstrapping, a
simulation and a distributed execution. In this research, we concentrate only on a simu-
lation. Only one Java Virtual Machine (JVM) is needed with the name of configuration
file, and Neko will create and initialize all processes. the number of processes is specified
by the entry process.num.

Initialization After we finished specifying a number of processes, we also need to spec-
ify the process initializer and the networks in the simulations. The process initializer is
defined in configuration file by the entry process.initializer. The entry process.initializer
defines a class of initializer that is used to initialize each process. The network is specified
by the entry network.

Execution Once all the initialization is finished, all NekoThreads are started and the
application begins executing. The application can access to the entries of the configura-
tion file.

Shutdown Neko provides a shutdown function that any process can call and which results
in shutting down all processes. Processes may implement more complex termination algo-
rithms that end with calling the shutdown function. The termination algorithm executed
by the shutdown function exchanges messages on the control network.

2.5 Related work

2.5.1 Appia

Appia [17], a protocol composition framework that offers a clean and elegant way for ap-
plication to express interchannel constraints. This feature is obtained as an extension to
functionality provided by current systems. Thus, Appia retains the flexible and modular
design that has previously proven to be advantageous, allowing communication stacks to
be composed and reconfigured in run-time.

Composition model [5], In Appia, a protocol module is defined as a pair layer-session.
The layer defines three sets of events, namely, events accepted by the protocol module,

19

events provided, and events required for proper operation. The session contains a private
state and the protocol code (structured as a set of event handlers).

Interaction model [5], The interaction model among protocol sessions is event-driven.
Events are triggered by instantiating the event class, and providing three parameters: the
channel, the source session (i.e., the session that is triggering the event), and a direction
(either upwards or downwards). These three parameters define the route of the event
(i.e., the sequence of sessions). If a protocol layer did not declare a given event class as
”accepted”, its companion session will not be put into the event’s route. Thus, all occur-
rences of that event will bypass this session. A session forwards an event occurrence to the
next session in the event’s route by calling the event’s method go(). Event occurrences
convey data inside. Data sharing among sessions in not possible.

Concurrency model [5], All event occurrences in all channels in the stack are pro-
cessed by only one single thread: the event scheduler thread. The main advantage of this
single-threaded model is the absence of racing conditions inside sessions’ code, i.e., proto-
col developers never have to worry about thread synchronization. All event occurrences
are put into event scheduler’s queue. In each step, the event scheduler pops the first event
event occurrence e from the event queue, looks up the next session that handles e, and
executes the corresponding event handler. If the session creates a new event occurrence é
in the same direction as e, é is inserted in the event queue immediately after e.

2.5.2 Cactus

Cactus [18] is a system for constructing configurable network protocol and services where
each service property or functional component is implemented as a separate software
module called a micro-protocol [19]. A customized instance of a service is then created by
choosing a collection of micro-protocols based on the properties to be enforced, and con-
figuring then together with the Cactus runtime system to form a composite protocol that
implements the service. A micro-protocol is structured as a collection of event handlers
that are executed when a specified event occurs.

Composition model [5] Cactus defines a two-level composition model: coarse grain
and fine grain. The coarse grain protocols, called composite protocols, are composed by
defining a hierarchical graph. In the graph, several composite protocols may be placed
at the same level. The fine grain protocols, called micro-protocols, are arranged in coop-
erative way (no hierarchy) and interacting via event triggering and data sharing. Micro-
protocols cannot exist on their own in the hierarchy graph: they need to be within a
composite protocol.

Interaction model [5]

1. Composite Protocols Composite protocols are linked by edges that define an
acyclic oriented graph. Only composite protocols that are linked by an edge in

20

this graph can directly interact. Composite protocols are instantiated at run-time
yielding sessions. Each composite protocol session maintains its own state and its
own micro-protocols. A session can open a new session of a composite protocol to
which it is linked. The communication between two sessions is by message passing.
In Cactus, a message is a data structure consisting of a set of attributes. Attributes
are tuples of the form (tag, scope, value). Tags are used to retrieve the attribute’s
values, which are the actual data. The scope restrains the attribute’s visibility. A
session may send a message up or down to the next session in the graph. When
sending a message up, if there are several sessions that may receive the message, a
demux function must be provided in order to decide which is the receiving session.

2. Micro-Protocols Micro-protocol execution is event-driven: micro-protocols are
structured as a set of event handlers and contain private state. Event handlers’
code, may modify this state and trigger other events.

Concurrency model [5] A composite protocol, i.e., all the micro-protocols it contains,
are idle as long as no message arrives from above/below. Message arrivals start out the
activity in a composite protocol. At that point, the framework triggers an occurrence of
the predefined event called “message has arrived”: all handlers of micro-protocols bound
to this event will be executed one after the other. The handler code may read/modify the
private state in the micro-protocol as well as the shared state in the composite protocol,
and may trigger other events. There are two ways to trigger an event: raising and
invoking. Raising is asynchronous (a thread is spawn or reused from a thread pool), while
invoking is synchronous (function call semantics). In the raising scheme, the private
state of a micro-protocol may be exposed to racing conditions. So, it is necessary to
synchronise the access to this private state (as well as to the micro-protocols’ shared state).
Such a synchronisation is not enforced by Cactus; it is the responsibility of the protocol
programmer to enforce synchronisation using standard mechanisms (mutex, monitors,
semaphores).

21

Chapter 3

Benchmark and criteria

In this chapter, we describe about algorithms that are used as benchmark to evaluate our
framework. We also define our criteria in terms of boilerplate code.

3.1 Reliable broadcast

Reliable broadcast is a communication primitive in distributed systems. A reliable broad-
cast is defined by the following properties:

1. Validity if a correct process sends a message, then correct process will eventually
deliver that message.

2. Agreement if a correct process delivers a message, then all correct process even-
tually deliver that message.

3. Integrity every correct process delivers the same message at most once and only if
that message has been sent by a process.

3.1.1 Algorithm

The message that is sent by reliable broadcast will receive at most once time. If process
receive the message at first time, process will send that message to other destinations.
The pseudocode is shown in appendix A.

3.2 Consensus algorithm

Consensus is agreement problem in distributed systems that encapsulates the task of
group agreement. There are many algorithms for solving consensus problem.

22

3.2.1 Chandra-Toueg consensus algorithm

Chandra-Toueg [9] algorithm is based on a rotating coordinator. Each process executes
rounds numbered 1, 2, etc. Throughout the rounds each process maintains an estimate
of the decision value. Each round is split into four phases :

• Phase 1 Every process sends its estimate with the updated round number to the
current leader.

• Phase 2 The coordinator waits for a majority of estimates, selects the most recent
estimate and sends it to all processes.

• Phase 3 Every process waits for the estimate from the coordinator. If process
receives the estimate from the coordinator, it updates its own estimate and sends
back an ack to the coordinator. If the failure detector of the process suspects the
coordinator, the process sends back a nack to the coordinator.

• Phase 4 The coordinator waits for a majority of acks or one nack to arrive. If
the majority is reached, the coordinator reliably broadcasts the decision to others.
When they received decision, they decide and deliver the decision to listener. If the
coordinator receives a nack, it starts over with the next round, and the coordinator
is changed to be another process.

Example run of the Chandra-Toueg consensus algorithm is shown in Figure 3.1. The
pseudocode of Chandra-Toueg consensus algorithm is shown in appendix B.1

Figure 3.1: Example run of the Chandra-Toueg consensus algorithm

3.2.2 Mostéfaoui and Raynal consensus algorithm

Mostéfaoui and Raynal consensus algorithm [11] [12] is based on rotating coordinator same
as Chandra-Toueg consensus algorithm. First, each process has its own estimate. Only
the coordinator has estimateFromCoordinator same as its own estimate, estimateFromCo-
ordinator in other process is null. The coordinator sends proposal to other process. If
the coordinator is not suspected, the process that receives proposal from the coordinator
replaces estimateFromCoordinator with the coordinator’s estimate and then sends estimate

23

to others. When the number of received estimate from other process is reached, it sends
the decision to others and decide. If the coordinator is suspected, the process will not
update a new estimate from the coordinator. Each process will be reset and started next
round.

Example run of the Mostéfaoui and Raynal consensus algorithm is shown in Figure 3.2.
The pseudocode of Mostéfaoui and Raynal consensus algorithm is shown in appendix B.2

Figure 3.2: Example run of the Mostéfaoui and Raynal consensus algorithm

3.2.3 Paxos consensus algorithm

We implemented the most basic of the Paxos family on Neko and Yaya. Paxos consen-
sus [8] algorithm is based on coordinator rotating. The protocol proceeds over several
rounds, each round has two phases.

• Read phase The coordinator sends a read message with its own round number to
all processes. Each process responds with an ack if it never accepted a read or a
write with a round number higher that the round number in read message. If the
process has already accepted a read or a write with a round number higher than
the read message, it responds with a nack message. The coordinator waits for the
majority of ack or one of nack. If the number of ack is reached, it moves on to the
write phase. If it has received one nack, it increments its round number and starts
over with the read phase.

• Write phase The coordinator sends a write message with its estimate and round
number to all processes. Similarly to the read phase, the other processes check if
they accepted a previous message with a higher round number. If not, they replace
their own estimate with coordinator’s estimate, save the round number and respond
with ack message. If yes, they respond with a nack message. The coordinator waits
for a majority of ack in which case it can broadcast the decision message. If the
coordinator receives nack, it increments its round number and starts over with the
read phase.

24

Example run of the Paxos consensus algorithm is shown in Figure 3.3. The pseudocode
of Paxos consensus algorithm is shown in appendix B.3

Figure 3.3: Example run of the Paxos consensus algorithm

3.3 Atomic broadcast

In distributed systems, atomic broadcast is a broadcast messaging protocol that ensures
that messages are received reliably and in the same order by all participants. There are
several algorithms in atomic broadcast.

3.3.1 Simple fixed sequencer algorithm

In a fixed sequencer algorithm [10], one process is elected as the sequencer and is respon-
sible for ordering messages. One specific process takes the role of a sequencer and builds
the total order. To broadcast a message, sender sends message to the sequencer. Upon
receiving message, the sequencer assigns it a sequence number and relays message with
its sequence number to destinations. Destinations receive message according to sequence
numbers. The pseudocode of Simple fixed sequencer algorithm is shown in appendix C.1

3.3.2 Simple moving sequencer algorithm

Moving sequencer algorithms [10] are based on the same principle as fixed sequencer
algorithms, but allow the role of sequencer to be transferred between several processes.
To broadcast a message, sender sends a message to the sequencers. Sequencers circulate
a token message that carries a sequence number and a list of all messages to which a
sequence number has already been attributed. Upon receipt of the token, that sequencer
assigns a sequence number to all received, but yet unsequenced, messages. It sends the
newly sequenced messages to the destinations, updates the token, and then passes the
token to the next sequencer. The pseudocode of Simple moving sequencer algorithm is
shown in appendix C.2

25

3.3.3 Simple privilege-based algorithm

Privilege-based algorithms [10] rely on the idea that senders can broadcast messages only
when they are granted the privilege. The privilege to broadcast messages is granted to
only one process at a time, but this privilege circulates from process to process, among
the senders. Senders circulate a token message that carries a sequence number to be used
when broadcasting the next message. When a process wants to broadcast a message, it
must first wait until it receives the token. It then assigns a sequence number to each of
its messages and sends them to all destinations. Destination processes deliver messages
in increasing sequence numbers. The pseudocode of Simple privilege-based algorithm is
shown in appendix C.3

3.3.4 Simple communication history algorithm

In communication history algorithms [10], as in privilege-based algorithms, the delivery
order is determined by the senders. However, in contrast to privilege-based algorithms,
processes can broadcast messages at any time, and total order is ensured by delaying
the delivery of messages. The messages carry a (physical or logical) timestamp. The
destinations observe the messages generated by the other processes and their timestamps.
The pseudocode of Simple communication history algorithm is shown in appendix C.4

3.3.5 Using consensus to solve Atomic broadcast

Atomic broadcast [9] is fundamental problem in fault tolerant distributed computing.
Informally, Atomic broadcast requires that all correct processes deliver the same messages
in the same order. Formally, Atomic broadcast is a Reliable broadcast that satisfies:

• Total order If two correct processes p and q deliver two messages m and ḿ, then p
delivers m before ḿ if and only if q delivers m before ḿ.

The total order and agreement properties of Atomic broadcast ensure that all correct
processes deliver the same sequence of messages.

In appendix C.5, we show how to transform any Consensus algorithm into an Atomic
broadcast algorithm in terms of pseudocode. Atomic broadcast algorithm uses repeated
executions of Consensus. Intuitively, the kth execution of Consensus is used to decide on
the kth batch of messages to be atomically delivered.

3.4 Criteria

In this section, we give a definition of effective code and boilerplate code as our criteria to
evaluate our protocol composition framework.

26

3.4.1 Effective code

Effective code is the term used to describe sections of code that are the main parts of
algorithm. In our evaluation, effective code is logically equivalent compared with pseu-
docode of algorithm and we assume that the pseudocode of algorithm is the minimum
section of effective code in that algorithm.

3.4.2 Boilerplate code

Boilerplate code is the term used to describe sections of code that have to be included in
many places with little or no alteration. In our evaluation, boilerplate code is logically
not equivalent compared with pseudocode. We illustrate boilerplate code as the following:

• Special contents declaration and content casting

• Interface than ordinary protocol that is provided by framework

• Condition checking in each state of protocol

• Getter and setter method, parameters, aspects.

• Redundant part in algorithm logic

• Synchronization handling

We show the examples of the boilerplate code in 3.1

1 \\ Spe c i a l content d e c l a r a t i on
2 public abstract stat ic class ContentWithRound extends ExecutionID
3 implements S e r i a l i z a b l e {
4 public ContentWithRound (int number , int round) {
5 super (number) ;
6 this . round = round ;
7 }
8 public f ina l int round ;
9 }
10 \\ Consensus Inte r face and Fa i lu r eDetec to r are i n t e r f a c e s
11 public class ConsensusCTExecution extends Protoco l Impl implements

Rece i v e r In t e r f a c e , Consensus Inter face , Fa i l u r eDe t e c t o rL i s t en e r {
12 public void propose (Object obj) { . . . }
13 . . . }
14 \\ Content c a s t i ng
15 proces sEst imate ((EstimateContent) content) ;
16 \\ Synchron izat ion handl ing
17 public void propose (Object o) {
18 . . .
19 synchronized (l o ck) {
20 // crea t e new message
21 }
22 }

Listing 3.1: Example of boilerplate code

27

Chapter 4

Problem statement

In this chapter, we address the problems in Neko composition framework in terms of
expressiveness. We use Chandra-Toueg consensus algorithm as a benchmark. We compare
some parts of Chandra-Toueg consensus protocol on Neko with pseudocode and state the
complicate parts.

4.1 Problems

We show each case of the complicate parts in Chandra-Toueg consensus algorithm as
following:

1 public class ConsensusCTExecution extends Protoco l Impl
2 implements Rece i v e r In t e r f a c e , Consensus Inter face , Fa i l u r eDe t e c t o rL i s t en e r

{
3 private void processMessageWithRound (NekoMessage m) {
4 Object content = m. getContent () ;
5 switch (m. getType ()) {
6 case MessageTypeConst .CONS ESTIMATE:
7 proces sEst imate ((EstimateContent) content) ;
8 break ;
9 case MessageTypeConst .CONS PROPOSE:
10 processPropose ((ProposeContent) content) ;
11 break ;
12 case MessageTypeConst .CONS ACK:
13 processAck ((AckContent) content) ;
14 break ;
15 case MessageTypeConst .CONSABORT:
16 processAbort ((AbortContent) content) ;
17 break ;
18 default :
19 throw new UnexpectedMessageException (m) ;
20 }

Listing 4.1: Each round messages are processed according to the message type

28

In Listing 4.1, we have to declare message type constant. In line 7,10,13 and 16, we have
to cast content type according to message content type. In this case, we need to concern
message type with content type. This should be correctly matching, if not it will occur
an exception. This complicated can easily make an error in an implementation if we have
a lot number of protocol. We show pseudocode that is the same part of Listing 4.1 as
following:

1 Phase 1 : a l l p r o c e s s e s p send es t imate p to the cur rent coo rd ina to r
2 Phase 2 : coo rd ina to r gather s (n+1)/2 e s t imate s and proposes new est imate
3 Phase 3 : a l l p r o c e s s e s wait f o r new est imate proposed by cur rent

coo rd ina to r
4 Phase 4 : the cur rent coo rd ina to r wait s f o r r e p l i e s : (n+1)/2 acks or 1 nack .

I f they i nd i c a t e

1 private void proces sEst imate (EstimateContent content) {
2 i f (p roce s s . getID () != coord) // Coordinator check ing
3 throw new RuntimeException (”Unexpected message”) ;
4 i f (phase != 2) { // ignore // Phase check ing
5 return ;
6 }
7 i f (content . getLastUpdated () > lastUpdated) {
8 lastUpdated = content . getLastUpdated () ;
9 e s t imate = content . getEst imate () ;
10 }
11 numEstimate++;
12 i f (numEstimate >= l im i t) {
13 phase = 4 ;
14 NekoMessage m = new NekoMessage (others , ge t Id () ,
15 new ProposeContent (k , round , e s t imate) ,
16 MessageTypeConst .CONS PROPOSE) ;
17 sender . send (m) ;
18 processAck (null) ;
19 }
20 }

Listing 4.2: Estimate phase processing code

In Listing 4.2, it shows estimate phase in Chandra-Toueg. In this phase, only coordinator
can executed this method, so we have to check if this process is coordinator (in line 2,
3). Moreover, even though the process is coordinator but if this process has already been
changed to other phases, the content will be ignored. We check current phase in line 4-6.

29

1 private void incRound () {
2 . . .
3 i f (p roce s s . getID () != coord) {
4 i f (i sCoordSuspected ()) { // Susp ic ion hand l ing
5 int [] coordDest = { coord } ;
6 NekoMessage m = new NekoMessage (coordDest , ge t Id () ,
7 new AckContent (k , round , fa l se) ,
8 MessageTypeConst .CONS ACK) ;
9 sender . send (m) ;
10 }
11 . . .

Listing 4.3: Failure detector handler code (A)

1 private void proc e s sSu sp i c i on (int content) {
2 i f (coord != proce s s . getID () && content == coord) {
3 i f (! isUsingAbortMessage | | ! i sWait ingForSuspic ionOrAbort) {
4 // Susp ic ion hand l ing
5 int [] coordDest = { coord } ;
6 NekoMessage m = new NekoMessage (coordDest , ge t Id () ,
7 new AckContent (k , round , fa l se) ,
8 MessageTypeConst .CONS ACK) ;
9 sender . send (m) ;
10 }
11 incRound () ;
12 }
13 }

Listing 4.4: Failure detector handler code (B)

In Listing 4.3 and Listing 4.4, we show failure detector part in Chandra-Toueg consen-
sus algorithm. In Listing 4.3, this part is inside incRound method which is run in each
round. The process detects failure by its own failure detector. In Listing 4.4, this part is
handled for other processes’s messages. However, the code in listing 4.3 at line 5-9 and
in listing 4.4 at line 4-8 is redundant part in source code.

In Listing 4.5, we show consensus interface that provide propose method for starting
execution. Consensus execution core (ConsensusCTExecution) is encapsulated in Consen-
susCT that provide propose method to other protocols or applications. It is hindrance for
composing protocols, we face difficulties to recognize which protocols should have interac-
tion, which aspects need to be configured. Moreover, because of concurrency, we have to
consider some part of code that must be a critical section. In Listing 4.5 line 13, we have
a group to make an agreement. There is possibility that one thread is executing this part
but another changes a group variable. This situation leads execution to inconsistency
state. Programmers need careful consideration in this complexity.

30

1 public class ConsensusCT extends Mult ip l eExecut ions
2 implements Consensus Inte r face { // Spec i a l I n t e r f a c e and s p e c i a l

composi t ion ins tance t ha t wrap p ro t o co l l o g i c i n s i d e .
3 . . .
4 public Rec e i v e r I n t e r f a c e c r ea t eRece i v e r (int execID) {
5 ConsensusCTExecution c = createExecut ion (execID) ; // Protoco l l o g i c i s

encapsu la t ed here
6 c . se tSender (sender) ;
7 c . s e tDe c i s i o nL i s t e n e r (myDec i s ionListener) ;
8 f a i l u r eDe t e c t o rMu l t i c a s t . addLis tener (c) ;
9 return c ;
10 }
11 public void propose (Object o) {
12 NekoMessage m;
13 synchronized (l o ck) { // Synchroni za t ion par t
14 k++;
15 m = NekoMessage (new int [] { proce s s . getID () } ,
16 get Id () , new ConsensusValueWithGroup (k , o ,
17 (int []) group . c l one ()) ,
18 EventTypeConst .CONS START) ;
19 }
20 d e l i v e r (m) ;
21 }
22 }

Listing 4.5: Chandra-Toueg consensus interface

4.2 Analysis

According to Chandra-Toueg [9] consensus algorithm that is implemented on Neko, we
emphasized that there are some hindrances for implementing algorithm on Neko. We
conclude them and classify into a number of problems as following:

1. The code is too long and complex, we have to declare special messages, message
type and concern about casting content.

2. Interaction among protocols, some situations we need special interface that wrap
the core executing inside.

3. There are many boilerplate code, for examples, method for declaring data content
structure, synchronization and method for iteration of algorithm flow.

4. It is capable of making an error. Concerning of concurrency model [6] is very
important in implementing on Neko.

31

Chapter 5

Actor-based model

5.1 Introduction

Fundamental concept is adopted from the philosophy that everything is an actor. This is
similar to the idea of object-oriented programming languages but differs in that object-
oriented software is executed sequentially, while the Actor model is inherently concurrent.
In response to a message that it receives, an actor can make local decisions according to
message type, create more actors, send more messages, and determine how to respond
to the next message received. Actors provide a programming model that gives stronger
guarantees about concurrent code when compared with the traditional shared-memory-
based abstraction. Actors are essentially well encapsulated active objects, which can only
communicate by sending one another immutable messages asynchronously.

5.2 Model

The actor model [13] [14] emphasizes the communication occurring during computation.
For examples, parameter passing between subroutines of a program, message transferred
between computers in a geographically distributed network, and process synchronization
in a multiprocessing computer. All these communications may be considered as message
passing
The actor model [13] [14] is one of message passing models. In message passing models, the
models differ in their conception of message passing. For some models, the mechanism
of message passing is similar to a telephone network, so that message transmission is
essentially instantaneous, but sometimes the line or the receiver is busy and messages
cannot be sent. However, for the actor model, message passing mechanism is similar to
mail service, so that messages may always be sent but there are some variable delays to
their destinations.

32

5.2.1 Actor model in Scala language

In concurrency programming, Java language includes support for concurrency and al-
though this support is sufficient, it turns out to be quite difficult to implement or get larger
and more complex. Scala augments Java’s native concurrency by adding actors [15] [16].
Actors provide a concurrency model that is easier to work with, therefore, help developer
to avoid many of the difficulties of using Java’s native.
An actor is a thread-like entity that has a mailbox for receiving messages. We use subclass
scala.actors.Actor and implement the act method. The idea of actor in Scala language is
shared nothing. We can communicate without using shared memory and locks by sending
each other messages. Scala actor model provides the ! method for sending message asyn-
chronously, like this: ActorInstance ! message. ActorInstance is actor instance and message
is a sending message that can be any type.
An actor will receive messages by partial function receive or react. In case of react, a
return type is nothing, when we call start on an actor, the start method will in some
way arrange things such that some thread will eventually call act on that actor. If that
act invokes react, the react method will look in mailbox for a message the passed partial
function can handle. If it finds a message that can be handled, react will schedule the
handling of that message and throw an exception. If it doesn’t find one, it will place the
actor in ”cold storage”and will be waked up when it gets more messages in its mailbox,
and throw an exception. In either case, react will complete abruptly with this exception,
and so will act. The thread that invoked act will catch exception, forget about the actor,
and move on to other duties. Because the react method does not need to return, the
implementation does not need to preserve the call stack of the current thread. Instead,
the library can reuse the current thread for the next actor that wakes up.

5.2.2 Why is actor model in Scala?

We choose actor model in Scala language cause of following reasons:
1. Scala language can be run on Java Virtual Machine (JVM), we can implement with
other library that can be run on JVM.
2. Scala language supports functional and object-oriented programming.
3. Type inference in Scala makes syntax shorter and more expressive.
4. Message-based concurrency with pattern matching in Scala makes programming in
concurrency more safe than shared-memory concurrency with locks.

5.3 Comparing with Java thread

In this section, we consider about actor model in Scala comparing with Java concurrency
thread. We consider ease of implementing in both Java thread and Scala actor by using
producer consumer application as a benchmark.

33

5.3.1 Design and Implementation view

Java concurrency model In Java concurrency model, objects and resources can be
accessed by many separate threads; each thread has its own path of execution but can
potentially access any object in the program. Programmer needs to ensure reading and
writing access to objects by using synchronized between thread. Thread synchronization
ensures that objects are executed by only one thread at a time and that threads are
prevented from accessing partially updated objects during executing by another thread.
We show producer-consumer application that is implemented by Java thread using shared
memory and synchronized in the following:

1 public class Producer extends Thread {
2 private List<Integer> queue ;
3 private int delay ;
4 private int next = 0 ;
5 public Producer (Li s t<Integer> queue , int delay) {
6 this . queue = queue ;
7 this . de lay = delay ;
8 }
9 public void run () {
10 while (true) {
11 synchronized (queue) {
12 queue . add (next) ;
13 queue . n o t i f yA l l () ;
14 }
15 next++;
16 try {
17 s l e e p (de lay) ;
18 } catch (Inter ruptedExcept ion e) {}
19 }
20 }
21 }

Listing 5.1: Producer.java

In Listing 5.1, all producers have queue as a shared-memory. When one producer needs
to produce element, it observes the queue if it is not locked by another threads, the pro-
ducer can move into critical section. In the critical section, producer adds new element
into the queue and notifies all threads that are waiting for the queue.

In Listing 5.2, all consumers have queue as a shared-memory. When one consumer
needs to consume element, it observes the queue if it is available, the consumer can move
into critical section. In the critical section, consumer will check the queue if it is not
empty, consumer will get a element from queue. If it is empty, consumer will wait for
next element. Consumers will be notified by producer that finished adding element into
the queue.

34

1 public class Consumer extends Thread {
2 private List<Integer> queue ;
3 private int delay ;
4 public Consumer (Lis t<Integer> queue , int delay) {
5 this . queue = queue ;
6 this . de lay = delay ;
7 }
8 public void run () {
9 while (true) {
10 synchronized (queue) {
11 i f (queue . s i z e ()>0){
12 In t eg e r number = queue . remove (queue . s i z e () − 1) ;
13 System . out . p r i n t l n (number) ;
14 } else {
15 try {
16 queue . wait () ;
17 } catch (Inter ruptedExcept ion e) {}
18 }
19 }
20 try {
21 s l e e p (de lay) ;
22 } catch (Inter ruptedExcept ion e) {}
23 }
24 }
25 }

Listing 5.2: Consumer.java

Figure 5.1: Producer Consumer Application in Java Concurrency model

In Figure 5.1, when either producer or consumer wants to do something with queue, it
needs to lock the queue first. In implementation, we need to consider when one thread
needs to lock a shared-memory and when the thread will release locking.

35

Scala actor model In Scala actor model, everything is an actor, when one actor needs
to communicate with each others, it uses message passing. In each actor view, it receives
messages from mailbox, filters the type of message and reacts the message. The relation
between each actor is almost independent from each other. We can concentrate only in the
mechanism of each other. We show producer-consumer application that is implemented
by Scala actor model in the following:

1 class Producer (bu f f e r : UnboundedBuffer , de lay : Long , producerId : Int)
extends Actor{

2 def act () {
3 var i = 0
4 loop {
5 bu f f e r ! Put (i)
6 i += 1
7 Thread . s l e e p (de lay)
8 }
9 }
10 }

Listing 5.3: Producer.scala

In Listing 5.3, producers send a message to buffer and wait for a while to send a new
message again. Producers no need to consider synchronization, they only consider their
own mechanism.

1 class Consumer (bu f f e r : UnboundedBuffer , de lay : Long , consumerId : Int)
extends Actor{

2 private var i = 0
3 def act () {
4 loop {
5 Thread . s l e e p (de lay)
6 bu f f e r ! Get (this)
7 r ea c t {
8 case respond => {
9 p r i n t l n (consumerId+” : ”+respond) ;
10 }
11 }
12 }
13 }
14 }

Listing 5.4: Consumer.scala

In Listing 5.4, consumer send consuming request to buffer and wait for coming back
element. Consumers consider only their own mechanism that sends the request and waits
a respond back. They no need to synchronize the buffer before sending a message.

36

1 class UnboundedBuffer extends Actor{
2 private var queue : L i s t [Int] = Ni l
3 private val MAX SIZE = 100
4 def act {
5 loop {
6 r ea c t {
7 case Get (consumer) i f (queue . s i z e != 0) => {
8 consumer ! queue . head
9 queue = queue . t a i l
10 }
11 case Put (va lue) i f (queue . s i z e < MAX SIZE)=> {
12 queue = queue :+ value
13 }
14 }
15 }
16 }
17 }

Listing 5.5: UnboundedBuffer.scala

In Listing 5.5, buffer is doing as an actor when message comes to the buffer it will be
saved into mailbox. Buffer will take a message from mailbox and then check a message
type. In the buffer, there are 2 types of message Get(from) and Put(value). The buffer
will receive Get(from) message from consumer if there are element in queue, it will send
an element to consumer. If there are no element in queue, the consumer request will not
be taken from mailbox until there is new element from producer. For Put(value) message,
buffer will receive it from producers and put a new element into the queue. We need only
consider in interesting messages, no need to handle Get(from) when there is no element
in queue and Put(value) when the queue is full.

Figure 5.2: Producer Consumer Application in Scala actor model

37

In Figure 5.2, it shows that producers and consumers send messages to mailbox regard-
less of the buffer’s status. The buffer only consider in each message type cases and then
make a reaction according to message type.

Figure 5.3: Mailbox in buffer actor

In Figure 5.3, we show that the buffer takes a one message at a time and find a corre-
sponding case. After finished execution one message, the buffer will take a new message
from mailbox again until mailbox is empty.

38

Chapter 6

Yaya protocol composition
framework: Design

In this chapter, we present the overview of Yaya protocol composition framework. We
first present the architecture of the framework. We then describe the idea of composition
framework that is based on actor model. Finally, we give an example that is implemented
on Yaya.

6.1 Introduction

We implement Yaya protocol composition framework based on the idea of Neko compo-
sition framework. In Neko composition framework, we have above protocol and below
protocol. Above protocol sees below protocol as sender interface, send a message to be-
low by using send method. On the received side, below protocol sees above protocol as
receiver interface, a message is delivered to above protocol by using deliver method. In
yaya protocol composition framework, using actor model, we have only one channel to
receive the messages from other protocols. In more details, we explain in architecture
section.

6.2 Architecture

As shown in Figure 6.1, the architecture of Yaya consists of two main parts: application
and network
At the level application, a collection of processes (numbered from process 0 to process
n − 1) communicate using a message passing interface (YPublisher interface) that wraps
actor’s message passing method (! method(send msg to the actor asynchronously)) inside.
A sender process pushes its message onto the network that is implemented YReceiver, and
the network then pushes that message onto the receiving process with ! method.

Application layers Yaya protocols are constructed as a direction graph. One proto-
col only concern about its own interaction, where is the next direction of the message.

39

Figure 6.1: Architecture of Yaya

Messages to be sent are passed to next protocol defined by composer until they are sent
onto network or there are no passing anymore depending on the protocol execution. Mes-
sages are passed by using send method (there are two parameters, message and next
protocol id). Delivered messages from network are passed up to dispatcher and it then
passes message to protocol depending on message type. Messages may be delivered in
reverse direction of sender process.

YayaProtocol In each protocol in Yaya framework, we need to implement YProtocol
interface for expressing meaning and carrying some variables(e.g. protocol id, number of
process and the process that holds this protocol instance). We implement YReceiver in-
terface in order to listen messages that come from other protocols or other processes. We
implement YPublisher interface for sending messages to other protocols or other processes.
Inside the protocol, protocol has to declare its own content type that interests in. If there
is no interested messages have been sent or delivered to this protocol, it will ignore that
messages. Therefore, protocol programmers divide message handling into a number of
cases based on content type, protocol state, some conditions.

YayaProcess Each process of distributed application has an associated object of type

40

YayaProcess class, hold all protocols that are running on. It holds some process informa-
tion, useful services(e.g. logging message). Moreover, process make an interaction that is
defined by protocol composer before starting execution.

YayaMessage All communication in Yaya transmit instances of YayaMessage. A message
is created by createMessage method inside instance of YProtocol. Messages are composed
by two main parts: message header and content stack. Message header holds some in-
formation, such as sender process id and message destinations. Content stack contains
contents from previous protocols illustrated in Figure 6.2. Instance object in content stack
is instance of YayaContent.

Figure 6.2: Yaya message sending mechanism

YayaContent In each YayaMessage instance, there is a stack of YayaContent which con-
tains a protocol id and content part. Protocol id is from the protocol that put the
YayaContent into stack. Content part consists of any Scala object. We can declare any
content type that extends from Any in Scala language.

6.3 Sample protocol: Pingpong protocol

In this section, we illustrate how to implement protocol on Yaya by using an example.
The given example protocol is Pingpong protocol, that is defined as following:

There are two types of message in the protocol. When process received message, pro-
cess will execute that message according to message type. Message processing cases are
explained as following:

41

1. PING Message: When process received PING message, the process will send
PONG message back to sender process.

2. PONG Message: When process received PONG message back until a number of
PONG message be same as number of received PING message processes, the process
will send new PING message to other processes again.

From this description, we have two types of message and execution of each case. We
implement this algorithm that is shown in Listing 6.1

1 case class PING;
2 case class PONG;
3 class PingPong (id : Str ing , p roce s s : YProcess) extends YActiveProtocol (id ,

p roc e s s) {
4 . . .
5 private val sender = ” sender ” ; // sender in s tance w i l l be de f ined by

composer
6 private var rece ivedPong : Int = 0 ;
7 def contentMatch (msg : YMessage) : Par t i a lFunct i on [Any , Unit] = {
8 case PING() => { // r e c e i v ed PING message
9 val dest = Array [Int]{msg . processID } ;
10 val newMsg = createMessage (des t) . withContent (new PONG()) ;
11 send (newMsg , sender) ;
12 }
13 case PONG() => { // r e c e i v ed PONG message
14 i f (rece ivedPong == nProcesses − 1) {
15 rece ivedPong = 0 ;
16 val newMsg = createMessage (allButMe) . withContent (new PING()) ;
17 send (newMsg , sender) ;
18 } else {
19 rece ivedPong = rece ivedPong + 1 ;
20 }
21 }
22 }
23 }

Listing 6.1: Pingpong code example implemented on Yaya

In Listing 6.1, we need to define interested content type for the protocol (in line 1-2). In
constructor of the protocol, we need to declare two parameters, protocol id and process
for composer. Pingpong protocol needs one interaction (sender in line 5), so composer
specifies interactions which one is sender in composition level. The most important part
in protocol is contentMatch method. This method is used for processing a message that
received from other protocols or other processes. In Listing 6.1, message handler are
separated into two cases (line 9-22), PING content and PONG content.

1. In PING case, protocol creates a new message back which contains PONG content
and send back by using send method (in line 10-11).

2. In PONG case, protocol checks a number of received PONG content. If a number
of received PONG content is same as a number of received PING content process,

42

protocol will create message back that contains PING content and it then send to
other processes by using send method.

43

Chapter 7

Yaya protocol composition
framework: User manual

In this chapter, we explain about user manual of Yaya protocol composition framework.
First, we describe about overview architecture and component models in Yaya framework.
We then give an example of implementation for getting started. Finally, we explain in
more general implementation.

7.1 Overview

Yaya is a software framework written in Scala language for constructing complex dis-
tributed algorithm from simple protocol. In Yaya framework, we have a model as shown
in Figure 7.1.

Figure 7.1: Simulated model in Yaya protocol composition framework

In Figure 7.1, we have a number of processes that are simulated in systems. Every
processes are instance of YProcess class. Each process connect to network and exchange
informations with other processes. Network in Yaya framework needs to implement YNet-
workInterface interface. Every process has id to identify the process and we use this id to
send information via the network.

In each process, we have a number of protocols that are running on systems and a one
dispatcher. Every protocols have their own algorithm logic, event handling mechanism

44

and protocol states. We show the components module in process as Figure 7.2

Figure 7.2: Component module in a process

In Figure 7.2, we have several protocols and one dispatcher in a process. Every protocol
extends from YProtocol interface. Each protocol has its own id for communicating with
related protocols or same protocol in other processes. Protocol uses id when send message
to others in order to deliver message in receiving process. In receiving process, we use
a dispatcher to dispatch a message to target protocol. Dispatcher uses protocol id to
dispatch each message.

In communication within process, each protocol send a message to other protocol.
Yaya framework provide two interfaces for communicating, YSender interface for sending
message and YReceiver interface for receiving a message from other protocols or other
processes. We show a communication within a process in Figure 7.3

Figure 7.3: Communication within a process

In Figure 7.3, we have several protocol and one dispatcher that have interconnection
between them. Each protocol implements two interfaces, YSender interface and YReceiver

45

interface. Protocol implements YSender interface for sending a message to other protocols.
Protocol implements YReceiver interface for receiving a message from dispatcher or other
protocols. Protocol has only one way for receiving a message, so programmers have to
define content into cases. We show communication within a process using message in
Figure 7.4 and structure of message in Yaya framework in Figure 7.5.

Figure 7.4: Communication using message within a process

Figure 7.5: Structure of message in Yaya framework

In Figure 7.5, we show structure of message that is used to communicate between pro-
tocols and processes. Message in Yaya framework is instance of YMessage class. We
separate message into two parts, header and content stack. Message’s header contains
process id that identifies the sender process and destinations that specify receiver pro-
cesses. Content stack contains contents from protocols. In sender process, contents from
protocols will be pushed into stack orderly. In receiver process, contents will be pulled
from stack reversely.

In Yaya protocol composition framework, we have component models that are defined
as following

46

1. Process In Yaya framework, process is instance of YProcess class. Each process
holds process id, protocols, interactions between protocol. Process connects to net-
works and exchanges information with other processes by process id. We show
YProcess class in Figure 7.6

Figure 7.6: YProcess class diagram

2. Protocol Our protocols are implemented by using YProtocol interface. Most of
our protocols extends YActiveProtocol that already implemented YSender interface
and YReceiver interface. Every protocol has ID for interacting with the same pro-
tocol in other processes. Protocol receives message from other protocols or other
processes by using YReceiver interface. When protocol receives message, it checks
the message content. If content is matching with its interesting condition, protocol
will execute that message but if not, the message will be kept in mailbox until it
matches conditions. We show class diagram of protocol in Figure 7.7

Figure 7.7: Class diagram of protocol in Yaya framework

47

3. Message Every message in Yaya framework is instance of YMessage class. We
cannot create YMessage instance directly but we have to create a new message by
using createMessage method in YProtocol class. Every message contains destina-
tions, sender process id and stack of contents. We show class diagram of message
in Figure 7.8

Figure 7.8: Class diagram of message in Yaya framework

4. Protocol interaction In the same process, one protocol connects with other pro-
tocols by using sendTo method in YSender interface. We have two parameters, msg
for messsage and label for next protocol. We define the list of other protocols that
are interested. When composing protocol, we will match that list of other protocols
with protocol instances.

5. Initialization The initialization of our system consists of the following actios, in
the order of occurrence:

(a) The system is created and start to build processes according to a number of
processes in configuration file.

(b) The system creates network instances and makes connection between processes
and networks.

(c) The system initiates each process.

(d) Each process creates protocols and registers the interactions between protocol.

(e) Protocols in every processes will be launched

6. Communication between processes Protocols communicate with a protocol in
another process by calling sendTo(msg, label) to send the message to next protocol
in the sender process until the message is sent to network. The sender has to specify
the following fields of YMessage:

• the address that identifies the destination process or processes. The address is
thus an array of integer process IDs.

• the ID of destination protocol

48

• a content Object in the protocol.

In the receiving process, a dispatcher object forwards YMessage to the destination
protocol. It does a lookup from protocol ID to protocol. Protocol checks content
object if it is matching, protocol calls the corresponding execution.

7.2 Implementation view

In Yaya framework, we separate implementation into two views, Composers and Protocol
programmers. Composers configure some aspects in the systems (number of processes,
logging file) and make a composition between protocols. Composers make an implemen-
tation by creating configuration file. Each protocol in process is implemented by Protocol
programmers. Protocol programmers consider their own algorithm logic, handling mes-
sage from others. The difference between two roles is shown in Figure 7.9.

Figure 7.9: Difference between composers and protocol programmers

Composers In Yaya protocol composition framework, composers customize protocols
inside the process by writing in configuration file. Composers need to define how protocols
are composed, the communications between each protocol, one protocol connects to which
protocol. In Yaya framework, the composition model is cooperative model that every
protocols are arranged in graph, one protocol has connections with any protocols.

Protocol programmers In Yaya protocol composition framework, programmers con-
sider only their own algorithm logic, messages between protocols and protocols that have
interactions with their protocol. The interaction model in Yaya framework is on event-
based. When protocol receives message, protocol will be reactive and consider the content
in message matching with their own interesting content.

49

7.3 Getting started

In this section, we explain how to first create simulation on Yaya framework. As a
first example, we use the standard Hello world program to demonstrate the use of Yaya
framework.

7.3.1 Hello world!

In Hello world program, process 0 will send Hello message to all processes. When process
receives Hello message, the process will print HelloWorld message.

7.3.2 Creating a configuration file

In configuration file, we need to define a number of processes in the system, protocols and
networks. We show the configuration file for Hello world program in Listing 7.1, Listing 7.2
and Listing 7.3 and illustrate this configuration file in Figure 7.10.

Figure 7.10: Systems model from helloWorld configuration file

For a syntax of configuration, we show the syntax of configuration file in Figure 7.11.

1 proce s s .num = 10 ;
2 networks = [simNetwork] ;
3 p r o t o c o l s = [hel loWorld] ;

Listing 7.1: helloWorld.config configuration file for Hello world program (1)

In Listing 7.1, the configuration file indicates that there are 10 processes connected
with simNetwork network and each process has helloWorld protocol. We give definition of
helloWorld protocol in Listing 7.2 and definition of simNetwork network in Listing 7.3.

1 hel loWorld = {
2 c l a s spa th = yaya . sample . HelloWorld ;
3 i n t e r a c t i o n = {
4 sender = simNetwork ;
5 }
6 }

Listing 7.2: helloWorld.config configuration file for Hello world program (2)

50

Figure 7.11: Configuration file syntax

In Listing 7.2, we define helloWorld protocol that is instance of yaya.sample.HelloWorld
class. In yaya.sample.HelloWorld class, we have to declare sender interaction (sender at-
tribute is defined in HelloWorld class). For this example, HelloWorld protocol send a
message to other processes via simNetwork network.

1 simNetwork = {
2 c l a s spa th = yaya . network . BasicNetwork ;
3 BasicNetwork . lambda = 1 ;
4 }

Listing 7.3: helloWorld.config configuration file for Hello world program (3)

In Listing 7.3, we define simNetwork network that is instance of yaya.network.BasicNetwork
class. In yaya.network.BasicNetwork class, we need to define BasicNetwork.lambda attribute.

7.3.3 Implementing protocols

Then, we have to create yaya.sample.HelloWorld class, declare content type and implement
some method in class. Most of protocols on Yaya framework extend YActiveProtocol
class. We show protocol class syntax in Figure 7.12 and this example implementation in
Listing 7.4.

1 case class Hel lo ()
2 class HelloWorld (id : Str ing , p roce s s : YProcess)
3 extends YActiveProtocol (id , p roc e s s) {
4 def contentMatch (message : YMessage) : Par t i a lFunct ion [Any , Unit] = {
5 case Hel lo () => Console . p r i n t l n (p roce s s . id+” HelloWorld”)
6 }
7 }

Listing 7.4: Example of protocol class declaration

51

Figure 7.12: Protocol class syntax

In Listing 7.4, HelloWorld class extends YActiveProtocol class and specifies constructor that
has id and process as parameters. Moreover, we need to implement contentMatch method
for handling interested message. For content matching in contentMatch method, we have
to define our interested messages for this protocol. For this example, when HelloWorld
protocol receives Hello content, protocol will print “HelloWorld” message.

For process 0, it starts to send a “HelloWorld” message to all processes. When the
simulation is started, we can start to send the message by overriding launch method. We
show overriding launch method in Listing 7.5

1 case class Hel lo ()
2 class HelloWorld (id : Str ing , p roce s s : YProcess)
3 extends YActiveProtocol (id , p roc e s s) {
4 val next = ” sender ” // next p r o t o co l i s dec l a r ed in con f i g u r a t i on f i l e
5 ove r r i d e def launch () {
6 i f (p roce s s . id == 0) {
7 val msg = createMessage (a l l) . withContent (new Hel lo ())
8 sendTo (msg , next) ;
9 }
10 }
11 }

Listing 7.5: Example of overriding launch method

52

In Listing 7.5, we override launch method for start sending message when simulation begin.
Only process 0 sends message with Hello content to all process by using createMessage
method. For createMessage method, we input an array of destinations as parameter and
the first content in the message. We show how to create a message in Figure 7.13.

Figure 7.13: Using of createMessage method

Protocol can send created message to next protocol by using sendTo method. We show
how to send a message in Figure 7.14.

Figure 7.14: Using of sendTo method

7.3.4 Starting execution

In this example, we have helloWorld.config as configuration file for Hello World program.
A simulation with configuration file helloWorld.config is launched the following way:

scala yaya.Main helloWorld.config

The result of this program is shown in Figure 7.15.

Figure 7.15: Hello World program result

53

7.4 More general implementation

In this section, we explain how to implement more complicated composition. We illustrate
explanation by separating into two roles (Composers and Protocol programmers).

In more complicated composition, we have several protocols that are composed inside
the systems. However, the interaction between protocols and the composing protocols
have some restrictions. For these reasons, we explain the implementation by using steps
in Figure 7.16 for Composers and Figure 7.18 for Protocol programmers.

Figure 7.16: Composing steps for composers

In Figure 7.16, we have four steps for creating a configuration file. In defining each

Figure 7.17: Restriction for composers

protocol (classpath, interaction and some aspects), for each protocol, composers have
to know which links should connect to which protocols. We show this restriction in
Figure 7.17.

54

Figure 7.18: Protocol implementing steps for protocol programmers

For protocol programmers, we show the implementation steps in Figure 7.18. We have
four steps for implementing protocol. In implementing cases in contentMatch method,
some protocols are used by other protocols, so it has to provide the case for that protocols.
On the other hand, when the protocol wants to notify some messages to other protocols,
other protocols need to provide the case for notification. We show this restriction in
Figure 7.19

Figure 7.19: Restriction for protocol programmers

In Figure 7.19, we show the restriction between protocols. For ProtocolB class, proto-
col programmers have to declare two content types (StartB class and NotifyB) for other
protocols. Other protocols that use ProtocolB have to know these content types.

55

Chapter 8

Yaya protocol composition
framework: Usage

In this chapter, we illustrate the application on Yaya using an example. The example is
explained in detail in order to describe how easily programmer can develop distributed
applications with Yaya, how to compose protocols to be complex applications. First, we
give an application using atomic broadcast as a sample application. We then show how
to configure some aspects in application (e.g. number of processes, protocols). Last, we
show how to start simulation execution.

8.1 Sample application

In a sample application, we show application using atomic broadcast. The architecture
of atomic broadcast application is shown in Figure 8.1

Application In Figure 8.1, each process has an application component in top of ap-
plication layer. Application in each process sends string messages to application in other
processes by using atomic broadcast. All application in all processes will receive messages
in same order.

Atomic Broadcast In Figure 8.1, each process has an atomic broadcast component
that has next interactions (application, consensus and reliable broadcast). This atomic
broadcast uses consensus and reliable broadcast in algorithm (composer specify which
consensus algorithm and reliable broadcast algorithm will be used). When atomic broad-
cast received response, it will send the respond to listener (application).

Consensus In Figure 8.1, according to atomic broadcast specification, we have to de-
fine consensus algorithm. Consensus component has next interactions (reliable broadcast
and usual network).

Reliable broadcast In Figure 8.1, reliable broadcast is used by consensus and atomic

56

Figure 8.1: Architecture of a sample Yaya application: Atomic broadcast application

broadcast. Consensus algorithm and atomic broadcast no need to concern about inside
of reliable broadcast algorithm. Reliable broadcast ensures only that every messages will
be delivered to destinations.

For algorithm programmer view, every protocols only consider in its own algorithm, in-
terested content type and next interactions. For composer view, composers consider only
interactions of each protocol, no need to know detail of algorithm. We explain how to
configure aspects in distributed application and compose protocols, in section 8.2.

8.2 Startup and configuration

In this section, we explain what support Yaya provide for initialization and configuring a
distributed application by using a sample application in Figure 8.1.

Configuration In configuration file, we have to configure many aspects (number of pro-
cesses) and protocols in a single file. The name of this file is passed to Yaya on startup.
Each process has the information in the configuration file when the application starts.
Basic configuration file contains:

1. number of processes We define number of processes that will be simulated in
systems by defining process.num parameter.

57

2. declaration of protocols We declare each of protocol component name by defining
protocols parameter.

3. declaration of networks We declare each of network component name by defining
networks parameter.

4. each protocol detail We have to specify each protocol detail that is declared in
protocols parameter. In basic detail, we have to specify classpath and interaction.

5. each network detail We have to specify each network detail that is declared in
networks parameter. In basic detail, we have to specify classpath.

6. logging description We have to specify logHandler for taking log messages from
a logger and exports them.

In Listing 8.1, we show a configuration file in a sample application in section 8.1

1 proce s s .num = 5 ;
2 networks = [simNetwork] ;
3 p r o t o c o l s = [t e s t , atomic , consensus , rbca s t] ;
4 t e s t = {
5 c l a s spa th = yaya . atomic broadcast . t e s t . TestAtomicBroadcast ;
6 i n t e r a c t i o n = {
7 sender = simNetwork ;
8 atomic = atomic ;
9 } }
10 atomic = {
11 c l a s spa th = yaya . atomic broadcast . AtomicBroadcast ;
12 i n t e r a c t i o n = {
13 rbcas t = rbcas t ;
14 l i s t e n e r = t e s t ;
15 consensus = consensus ;
16 } }
17 consensus = {
18 c l a s spa th = yaya . consensus . ConsensusCT ;
19 i n t e r a c t i o n = {
20 l i s t e n e r = atomic ;
21 d i f f u s i o n = rbcas t ;
22 sender = simNetwork ;
23 } }
24 rbcas t = {
25 c l a s spa th = yaya . rbca s t . RBroadcast ;
26 i n t e r a c t i o n = {
27 sender = simNetwork ;
28 } }
29 simNetwork = {
30 c l a s spa th = yaya . network . BasicNetwork ;
31 BasicNetwork . lambda = 1 ;
32 }
33 log = { logHandler = s r c /yaya/ atomic broadcast / t e s t / logAtomic ; a l l : : a l l ;

}

Listing 8.1: Configure file example

58

In configuration file example, we have 5 processes simulated in systems. This simulation
is run on simNetwork network. Each process 4 protocols are named as test, atomic, consen-
sus and rbcast. Every protocol and network component is defined in Listing 8.1 (line 4-32).

Initialization The names of the classes implementing protocols and networks are given
by classpath inside component. Each process gets configuration file and it then creates
instances of protocol and network following a configuration file. When simulation is
initialized, the system creates processes according to number of processes. Each process
then constructs the hierarchy of protocols and interactions between protocols by accessing
configuration file.

59

Chapter 9

Comparative Analysis:
Expressiveness

In this chapter, we analyze algorithms that are implemented on Yaya comparing with
implemented on Neko. We compare algorithm in two ways implementation by using line
of code as an evaluation. We show how implementation of algorithms on Yaya can reduce
complexity and boilerplate code in Neko. Our algorithm benchmarks that are used to
evaluated our framework is shown in following:

• Reliable broadcast We show the implement of reliable broadcast that is provided
for the other algorithm to use this protocol such as consensus algorithm.

• Consensus algorithm We show the fundamental problem in distributed system.
In consensus problem, there are several algorithms as following:

– Chandra-Toueg consensus algorithm

– Mostéfaoui and Raynal consensus algorithm

– Paxos consensus algorithm

• Atomic broadcast We show more composition view of our protocol by using atomic
broadcast that is solved by consensus. We also show the simple algorithm in atomic
broadcast.

9.1 Reliable broadcast

9.1.1 Evaluation

On Neko
In reliable broadcast implemented on Neko, we separate message handling into two meth-
ods (send and deliver method).

60

1 public void send (NekoMessage m) {
2 GUID id = new GUID(proce s s) ;
3 int source = proce s s . getID () ;
4 int [] d e s t s = m. ge tDe s t i na t i on s () ;
5 Arrays . s o r t (de s t s) ;
6 boolean send ingToSe l f = 0 <= Arrays . b inarySearch (dests , source) ;
7 i f (send ingToSe l f) {
8 synchronized (a l r eady) {
9 IntHolder numReceiveLeft = new IntHolder (de s t s . l ength) ;
10 a l r eady . put (id , numReceiveLeft) ;
11 }
12 r e c e i v e r . d e l i v e r (m) ;
13 }
14 ContentRB content = new ContentRB(id , source , m. ge tPro toco l Id () ,
15 m. getContent () , m. getType ()) ;
16 NekoMessage newM = new NekoMessage (source , dests , ge t Id () ,
17 content , MessageTypeConst .RBCASTMESSAGE) ;
18 sender . send (newM) ;
19 }

Listing 9.1: Send method in reliable broadcast on Neko

1 proc send (m)
2 newId = nextId (id , p roc e s s) // get next id o f message
3 a l r eady = al ready + {m, newId ,0} // add number o f r e c e i v e s
4 send (m, newId) to d e s t i n a t i o n s

Listing 9.2: Pseudocode of send method in Reliable broadcast

In Listing 9.1, we show the implementation of send method in reliable broadcast on Neko.
In send method, reliable broadcast provides method for listening message from other pro-
tocols. When there is message from others, protocol creates id for that message and sends
to next sender. This part is same as the part of pseudocode in Listing 9.2.

In Listing 9.3, we show the implementation of deliver method in reliable broadcast on
Neko. In deliver method, reliable broadcast provides it for receiving delivered message.
It checks the message if it has already received that message, it will do nothing. If it is
the first time that received the message, it will resend that message again to other desti-
nations. This part is same as the part of pseudocode in Listing 9.4. The full pseudocode
of reliable broadcast on Neko is shown in appendix A.

61

1 public void d e l i v e r (NekoMessage m) {
2 i f (m. getType () == MessageTypeConst .RBCASTMESSAGE) {
3 ContentRB content = (ContentRB) m. getContent () ;
4 GUID id = content . ge t Id () ;
5 boolean reSend ;
6 synchronized (a l r eady) {
7 IntHolder numReceiveLeft = (IntHolder) a l r eady . get (id) ;
8 i f (numReceiveLeft == null) {
9 reSend = true ;
10 numReceiveLeft = new IntHolder (m. g e tDe s t i na t i on s () . l ength) ;
11 a l r eady . put (id , numReceiveLeft) ; // mark (1)
12 } else {
13 reSend = fa l se ;
14 numReceiveLeft . value−−; // mark (2)
15 i f (numReceiveLeft . va lue <= 0) {
16 a l ready . remove (id) ;
17 } } }
18 i f (reSend) {
19 NekoMessage newM = new NekoMessage (content . getSource () , m.

g e tDe s t i na t i on s () , content . g e tPro toco l Id () , content . getContent () ,
content . getType ()) ; // mark (3)

20 r e c e i v e r . d e l i v e r (newM) ; //mark (3)
21 NekoMessage newM2 = new NekoMessage (m. g e tDe s t i na t i on s () , ge t Id () ,

content , m. getType ()) ; // mark (4)
22 sender . send (newM2) ; // mark (4)
23 } } }

Listing 9.3: deliver method in reliable broadcast on Neko

1 when r e c e i v e (m, id)
2 i f ! (id i s i n a l r eady)
3 a l r eady = al ready + {m, newId , 1} // mark (1)
4 d e l i v e r (m) // mark (3)
5 send (m, id) to d e s t i n a t i o n s // mark (4)
6 else
7 a l ready = al ready update (m, id , receivedNumber + 1) // mark (2)

Listing 9.4: Pseudocode of deliver method in Reliable broadcast

62

On Yaya
We have to implement contentMatch method to handle message that come to this protocol.
Depend on content type, message is processed and sent to next sender.

1 def contentMatch (msg : YMessage) : Par t i a lFunct i on [Any , Unit] = {
2 case bContent : BroadcastMsg i f (! a l r eady . conta in s (bContent . id)) => {
3 a l ready += (bContent . id −> msg . de s t s . l ength) ;
4 val broadcastMsg = msg . copyMsg (processID) ;
5 broadcastMsg . pushContent (id , bContent) ;
6 sendTo (broadcastMsg ,SENDER) ;
7 d i spatch (msg) ;
8 }
9 case bContent : BroadcastMsg => {
10 val numReceiveLeft = a l ready . apply (bContent . id) ;
11 i f (numReceiveLeft <= 0) a l r eady −= bContent . id ;
12 else a l ready += (bContent . id −> (numReceiveLeft − 1)) ;
13 }
14 case content : Any => {
15 msg . pushContent (msg . getContent . protoco l Id , content) ;
16 val guid = GuID . newID(processID) ;
17 val de s t s = msg . de s t s ;
18 val send ingToSe l f = de s t s . conta in s (p roce s s . ge t Id) ;
19 val broadcastMsg = msg . cloneMsg ;
20 broadcastMsg . pushContent (id ,new BroadcastMsg (guid)) ;
21 sendTo (broadcastMsg ,SENDER) ;
22 i f (send ingToSe l f) {
23 val numberReceiveLeft = de s t s . l ength ;
24 a l r eady += (guid −> numberReceiveLeft) ;
25 d i spatch (msg) ;
26 }}}}

Listing 9.5: contentMatch method in reliable broadcast on Yaya

In Listing 9.5, there are three cases of content type. In first case, the content is Broad-
castMsg(inform others that the message is used for reliable broadcast) and the protocol
have not already received the message yet. The protocol creates a copy one and sends to
other destinations. Then, it delivers the message to receiver according to content type in
message. In second case, the content is BroadcastMsg but the protocol already received
the message. The protocol reduces left number of received message. In third case, the
content is Any. The protocol creates new id for the message, puts BroadcastMsg content
in the message and then sends to other destinations. The part of first case and second
case is the send method in pseudocode shown in Listing 9.2. The part of third case is the
deliver method in pseudocode shown in Listing 9.4.

From both of reliable broadcast on Neko and Yaya, we show the complexity in terms
of line of code in Table 9.1

63

Reliable broadcast Boilerplate code Effective code Total
On Neko 28 (42.42%) 38 (57.58%) 66

Compared with pseudocode (14 lines) 2.71 times 4.71 times

On Yaya 16 (40%) 24 (60%) 40
Compared with pseudocode (14 lines) 1.71 times 2.86 times

code reduced 42.86% 36.84% 39.39%

Table 9.1: Comparative between implementation of Reliable broadcast on Neko and Yaya
in terms of line of code

9.2 Consensus

Consensus is agreement problem in distributed systems that encapsulates the task of
group agreement. There are many algorithms for solving consensus problem. In this sec-
tion, we illustrates implementation on Neko and Yaya by using Chandra-Toueg consensus
algorithm, Mostéfaoui and Raynal consensus algorithm and Paxos consensus algorithm.
We then analyze the differences between Neko and Yaya in terms of line of code and
implementation.

9.2.1 Chandra-Toueg consensus algorithm

On Neko
In chapter 4, we show examples of complexity in implementation of Chandra-Toueg con-
sensus algorithm.

On Yaya
In implementation of Chandra-Toueg algorithm on Yaya, we separate necessary con-
tents into several classes(EstimateContent, ProposeContent, AckContent, DecideContent
and AbortContent). Each phase in Chandra-Toueg algorithm interests in different con-
tents. Content handler is separated into several cases as following:

1 case StartWithGroup (EXN, value , group) i f i s I n S t a t e (Phase .READY) &&
isCoord inato r (group) && ! (RND > 0) => {

2 setGroup (group) ;
3 phase = Phase .DECIDING;
4 this . e s t imate = new EstimateValue (value , lastUpdated) ;
5 val msg = createMessage (o the r s) . withContent (new ProposeContent (EXN, round

, this . e s t imate)) ;
6 sendTo (msg ,SENDER) ;
7 }
8 case StartWithGroup (EXN, value , group) i f i s I n S t a t e (Phase .READY) => {
9 setGroup (group) ;
10 this . e s t imate = new EstimateValue (value , lastUpdated) ;
11 }

Listing 9.6: Start executing Chandra-Toueg consensus algorithm on Yaya

64

In Listing 9.6, other protocols send StartWithGroup content to this protocol, we split into
2 cases (coordinator and not coordinator). In Neko, this part need to be encapsulated by
ConsensusInterface(special interface that is not provided by framework). In Yaya, we can
implement this inside without special interface.

1 case EstimateContent (EXN, RND, es t imate) i f i sCoord inato r && i s I nS t a t e (
Phase .ESTIMATING) => {

2 i f (e s t imate . lastUpdated > this . lastUpdated) {
3 this . lastUpdated = est imate . lastUpdated ;
4 this . e s t imate = est imate ;
5 }
6 numbEstimate = numbEstimate + 1 ;
7 i f (numbEstimate > l im i t) {
8 phase = Phase .DECIDING;
9 val msg = createMessage (o the r s) . withContent (new ProposeContent (EXN,

round , this . e s t imate)) ;
10 sendTo (msg ,SENDER) ;
11 }}

Listing 9.7: phase 2 of Chandra-Toueg algorithm on Yaya

In Listing 9.7, this case is provided for listening estimate from other processes. Only
coordinator collects estimate until the number of estimate is reached. There is condition
statement for filtering that makes code be shorter and more expressiveness.

1 case ProposeContent (EXN, RND, es t imate) i f ! i sCoord inato r && i s I nS t a t e (
Phase .READY) => {

2 val coordDest = Array [Int]{ getCoord inator (RND) } ;
3 this . lastUpdated = RND;
4 i f (! coordI sSuspec t) {
5 this . e s t imate = est imate ;
6 val msg = createMessage (coordDest) . withContent (new AckContent (EXN,RND,

true)) ;
7 sendTo (msg ,SENDER) ;
8 } else {
9 val msg = createMessage (coordDest) . withContent (new AckContent (EXN,RND,

fa l se)) ;
10 sendTo (msg ,SENDER) ;
11 }
12 }
13 case Suspect (processNumber : Int) => {
14 su sp e c tL i s t += (processNumber −> true) ;
15 }

Listing 9.8: suspect content handling on Yaya

In Listing 9.8, there are 2 cases, ProposeContent and Suspect. In ProposeContent case, the
process receives this content and if the coordinator is not suspected by the process, the
process will send ack back to the coordinator. If the coordinator is suspected, the process
will send nack back to the coordinator. In Suspect case, the process receives this content
from failure detector in same process or other processes. Only one case, we can handle
suspect from inside failure detector and other processes’s failure detector. We have no

65

redundant part in source code. This part of code is same as Phase 3 of pseudocode in
Listing 9.9

1 Phase 3 : { a l l p r o c e s s e s wait f o r new est imate proposed by cur rent
coo rd ina to r }

2 wait until [r e c e i v ed (c , r , e s t imate) from c or c i s i n query f a i l u r e
de t e c t o r]

3 i f [r e c e i v ed (c , r , e s t imate) from c] then
4 es t imate p = es t imat e c // s e t process ’ s e s t imate as coord inator ’ s

e s t imate
5 t s = r
6 send (p , r , ack) to coo rd ina to r
7 else // p suspec t that coo rd ina to r crashed
8 send (p , r , nack) to coo rd ina to r

Listing 9.9: Pseudocode of Phase 3 in Chandra-Toueg consensus

9.2.2 Mostéfaoui and Raynal consensus algorithm

On Neko
In this example, implementation of Mostéfaoui and Raynal consensus algorithm uses
active layer on Neko. In active layer, protocol has its own thread to run execution. We
implement run method and use receive method to get a received message. We illustrate
the example in more details as following:

1 public void run () {
2 NekoMessage m = null ;
3 while (true) {
4 m = r e c e i v e () ;
5 i f (m. getType () == EventTypeConst .CONS START) break ;
6 i f (m. getType () == EventTypeConst .CONS SUSPICION) continue ;
7 postpone (m) ;
8 }
9 . . .
10 }

Listing 9.10: Example code of Mostéfaoui and Raynal consensus algorithm on Neko (1)

In Listing 9.10 line 5-6, we need to check message type before start execution. It is
hindrance for understanding the procedure of algorithm. When it receives messages that
are not interesting, they will be pushed into queue list. This situation can occur any
place during algorithm execution. In this situation, implementation in Neko creates a lot
of redundant part on protocol.

66

1 i f (! f a i l u r eDe t e c t o r . i sSuspec t ed (c)) {
2 while (true) {
3 m = receiveInRound (r) ;
4 i f (dec ided) return ;
5 i f (m. getType () == EventTypeConst .CONS SUSPICION | | f a i l u r eDe t e c t o r .

i sSuspec t ed (c)) {
6 i f (m. getType () != EventTypeConst .CONS SUSPICION)
7 postpone (m) ;
8 break ;
9 }

Listing 9.11: Example code of Mostéfaoui and Raynal consensus algorithm on Neko (2)

In Listing 9.11, this example shows the handling failure situation in protocol. The failure
situation can occur anytime, so programmers have to consider when it needs to check
failure situation. This programming style It is cause of ambiguous code in protocol.

On Yaya
We split message handling into several cases. Implementation of Mostéfaoui and Raynal
consensus algorithm on Yaya reduces redundant part and makes code be more expres-
sive. The example of Mostéfaoui and Raynal consensus algorithm on Yaya is shown in
following:

1 def contentMatch (msg : YMessage) : Par t i a lFunct i on [Any , Unit] = {
2 val EXN = execNumb ; // t h i s execu t ion number
3 val RND = round ; // t h i s round number
4 {
5 case StartWithGroup (EXN, value , group) => . . .
6 case ConsensusEstimate (EXN,RND, value , source) i f phase==Phase .READY && !

coordI sSuspec t && source == getCoord inator (round) => . . .
7 case ConsensusEstimate (EXN,RND, value , source) i f phase==Phase .READY && !

coordI sSuspec t => . . .
8 case ConsensusEstimate (EXN,RND, value , source) i f phase==Phase .READY &&

coordI sSuspec t => . . .
9 case Dec i s i on (exn , va lue) i f phase == Phase .READY && ! coordI sSuspec t =>

. . .
10 case Suspect (processNumber : Int) i f phase==Phase .READY => . . .
11 case content : ConsensusEstimate => . . .
12 } }

Listing 9.12: Example code of Mostéfaoui and Raynal consensus algorithm on Yaya

In Listing 9.12, we split into several cases depending on conditions and content type. This
implementation style reduces redundant part and ambiguous part. It eases to control each
case and situation.

67

9.2.3 Paxos consensus algorithm

On Neko
Implementation of Paxos consensus algorithm on Neko is implemented by passive layer.
We have to implement deliver method to handle received message. We illustrate the
example in more details as following:

1 public void d e l i v e r (NekoMessage m) {
2 ConsensusValue loca lDec i s i onMessage = null ;
3 synchronized (this) {
4 switch (m. getType ()) {
5 case EventTypeConst .CONS START:
6 ConsensusValueWithGroup content1 = (ConsensusValueWithGroup) m.

getContent () ;
7 p r o c e s sS t a r t (content1) ;
8 break ;
9 case CONS READ:
10 case CONSWRITE:
11 case CONSACKREAD:
12 case CONSNACKREAD:
13 case CONSACKWRITE:
14 case CONSNACKWRITE:
15 ContentWithRound content2 = (ContentWithRound) m. getContent () ;
16 processMessageWithRound (m) ;
17 break ;
18 case MessageTypeConst .CONS DECISION:
19 Decis ionContent content5 = (Decis ionContent) m. getContent () ;
20 p ro c e s sDec i s i on (content5) ;
21 break ;
22 default :

Listing 9.13: Example code of Paxos consensus algorithm on Neko

In Listing 9.13, we declare message type and content. We need to create special message
type and content to be consistency. Inside each case, we have to check conditions such as
a number of read, write and round.

On Yaya
Similarly to implementation of Chandra-Toueg consensus algorithm and Mostéfaoui and
Raynal consensus algorithm, we split message handling into several cases. This imple-
mentation style makes code be more expressive and easy to trace the flowing of algorithm.
The example is shown in Listing 9.14

68

1 def contentMatch (msg : YMessage) : Par t i a lFunct i on [Any , Unit] = {
2 val EXN = execNumb ;
3 val RND = roundNumb ;
4 {
5 case StartWithGroup (EXN, value , group) i f i s I n S t a t e (Status . IDLE) => . . .
6 case PrepareContent (EXN, round) i f (read > round) | | (wr i t e > round) =>

. . .
7 case PrepareContent (EXN, round) i f ! ((read > round) | | (wr i t e > round))

=> . . .
8 case AckReadContent (EXN, RND, est imate , l a s tWr i t e) i f nbNack == 0 =>

. . .
9 case WriteContent (EXN, round , e s t imate) i f (read > round | | wr i t e >

round) => . . .
10 case WriteContent (EXN, round , e s t imate) i f ! (read > round | | wr i t e >

round) => . . .
11 case AckWriteContent (EXN,RND) => . . .
12 case Decis ionContent (EXN, es t imate) => . . .
13 case NackContent (EXN, RND) =>
14 }

Listing 9.14: Example code of Paxos consensus algorithm on Yaya

In Listing 9.14, the algorithm is written in each case. One phase in algorithm can be
separated into several cases according to conditions inside each phase. This point helps
programmers to trace the algorithm flowing without looking inside the case. We show
this situation comparing with pseudocode in Listing 9.15

1 when r e c e i v e (m) from p j { In p roce s s i }
2 i f m = (r j , read) then //{ In Yaya : PrepareContent}
3 i f wr i t e i > r j or r e a d i > r j then
4 send (r j , nackread) to p j
5 // In Yaya : PrepareContent i f (read > round) | | (wr i t e > round)
6 else {no r e c e i v ed a wr i t e / read with a h igher round}
7 r e ad i = r j
8 send (r j , e s t ima t e i , ackread) to p j
9 // In Yaya : PrepareContent i f ! ((read > round) | | (wr i t e > round))
10 i f m = (r j , e s t imat e j , wr i t e) //{ In Yaya : WriteContent}
11 i f wr i t e i > r j or r e a d i > r j then
12 send (r j , nackwrite) to p j
13 // In Yaya : WriteContent i f (read > round) | | (wr i t e > round)
14 else {no r e c e i v ed a wr i t e / read with a h igher round}
15 w r i t e i = r j
16 e s t ima t e i = e s t ima t e j
17 send (r j , ackwr i te) to p j
18 // In Yaya : WriteContent i f ! ((read > round) | | (wr i t e > round))

Listing 9.15: Pseudocode of Read and Write content in Paxos consensus algorithm

69

9.2.4 Evaluation

From both of consensus on Neko and Yaya, we show the complexity in terms of line of
code in Table 9.2

Chandra-Toueg algorithm Boilerplate code Effective code Total

On Neko 160 (42.44%) 217 (57.56%) 377
compared with pseudocode (39 lines) 5.56 times 9.67 times

On Yaya 69 (40.59%) 101 (59.01%) 170
compared with pseudocode (39 lines) 2.59 times 4.36 times

code reduced 56.88% 53.46% 54.91%

Mostéfaoui and Raynal algorithm Boilerplate code Effective code Total

On Neko 74 (41.34%) 105 (58.66%) 179
compared with pseudocode (30 lines) 3.5 times 5.97 times

On Yaya 63 (43.15%) 83 (56.85%) 146
compared with pseudocode (30 lines) 2.77 times 4.87 times

code reduced 14.86% 20.95% 18.44%

Paxos algorithm Boilerplate code Effective code Total

On Neko 148 (43.40%) 193 (56.60%) 341
compared with pseudocode (45 lines) 4.29 times 7.58 times

On Yaya 67 (44.67%) 83 (55.33%) 150
compared with pseudocode (45 lines) 1.84 times 3.33 times

code reduced 54.73% 56.99% 56.01%

Table 9.2: Comparative between implementation of consensus algorithm on Neko and
Yaya

9.3 Atomic broadcast

In distributed systems, atomic broadcast is a broadcast messaging protocol that ensures
that messages are received reliably and in the same order by all participants. There
are several algorithms in atomic broadcast. In this section, we show implementation of
algorithms on Neko and Yaya and we then analyze the differences between both of imple-
mentations.

70

On Neko In the example of using consensus to solve Atomic broadcast, we use Chandra-
Toueg consensus algorithm to solve. In more details of implementing on Neko is shown
as following:

1 public class ChandraTouegClient
2 extends Protoco l Impl
3 implements Sende r In t e r f a c e {
4 public void send (NekoMessage m) {
5 GUID guid = new GUID(proce s s) ;
6 NekoMessage m1 = new NekoMessage (. . .) ;
7 rbca s t . send (m1) ;
8 }
9 }
10
11 public class ChandraToueg
12 extends ChandraTouegClient
13 implements Dec i s i onL i s t ene r , Re c e i v e r I n t e r f a c e {
14 public void d e l i v e r (NekoMessage m) {
15 . . .
16 }
17 public synchronized void no t i f yDe c i s i o n (int k , Object d e c i s i o n) {
18 . . .
19 } }

Listing 9.16: Example code of Atomic broadcast using consensus on Neko (1)

In Listing 9.16, we show the specifications in implementation of Atomic broadcast on
Neko. In this example, we use Chandra-Toueg algorithm to solve Atomic broadcast.
We have to create special interface for broadcasting message and decision listener. It is
hindrance for compatibility of modifying interactions between protocols.

1 public class ChandraToueg extends ChandraTouegClient implements
Dec i s i onL i s t ene r , Re c e i v e r I n t e r f a c e {

2 . . .
3 private void aDe l ive r () { . . . }
4 public void d e l i v e r (NekoMessage m) {
5 synchronized (this) {
6 switch (m. getType ()) {
7 case MessageTypeConst .AB START:
8 . . .
9 updateQueueSize () ; // mark1
10 aDe l i ve r () ; // mark1
11 break ;
12 } } }
13 public synchronized void no t i f yDe c i s i o n (int k , Object d e c i s i o n) {
14 . . .
15 updateQueueSize () ; // mark2
16 aDe l i ve r () ; // mark2
17 }
18 }

Listing 9.17: Example code of Atomic broadcast using consensus on Neko (2)

71

In Listing 9.17, deliver method and notifyDecision method (in mark1 and mark2) have aDe-
liver function call in their own method for checking undelivered messages and delivering
messages. If there are undelivered messages, it creates proposal and sends to Consensus.
We have to implement the same mechanism in both of two methods.

On Yaya In the example of Atomic broadcast on Yaya, the Atomic protocol interests in
its own contents, starting consensus content and decided consensus content. We show the
sample implementation in following:

1 case class Undel iveredMessage (val msgId : GuID , val content : Any)
2 class AtomicBroadcast (id : Str ing , p roce s s : YProcess) extends

YActiveProtocol (id , p roc e s s) {
3 . . .
4 def contentMatch (msg : YMessage) : Par t i a lFunct i on [Any , Unit] = {
5 case content : Undel iveredMessage => { . . . } // mark (1) // p ro t o co l

c o l l e c t s unde l i v e r ed message
6 case A Broadcast (content) => { . . . } // mark (2) // from above p ro t o co l or

a p p l i c a t i o n t ha t use t h i s atomic broadcas t . Pro toco l send
Undel iveredMessage to d e s t i n a t i o n s .

7 case Decide (exn , va lue) => { . . . } // mark (3) // wai t f o r Decide from
consensus

8 i f (k == nextExecNumber) { // mark (4) // u n t i l k i s increased in Decide
case , i t can not s t a r t consensus .

9 val unde l i ve r ed = ge tD i f f e r e n c e (un de l i ve r ed , a d e l i v e r e d) ;
10 i f (unde l i ve r ed != Ni l) {
11 nextExecNumber += 1 ;
12 val consensusMsg = createMessage (a l l) . withContent (new

StartWithGroup (k , unde l ivered , a l l)) ;
13 sendTo (consensusMsg , consensus) ; // end o f mark (4)
14 } } }
15 }

Listing 9.18: Example code of Atomic broadcast using consensus on Yaya

In Listing 9.18, the protocol considers its own contents (R Message, A Broadcast), starting
consensus content (StartWithGroup) and decided consensus content (Decide). A Broadcast
content is provided for listening broadcast request from other protocols or applications.
The consideration of interactions between protocol is external contents (StartWithGroup
and Decide) that are declared by other protocols. We illustrate each case of this algorithm
comparing with pseudocode in Listing 9.19.

72

1 To execute A−broadcast (m) ; // beg in // mark (2) in Yaya
2 R−broadcast (m) // end // mark (2) in Yaya
3 A−d e l i v e r (−) occurs as f o l l ow s :
4 when R−d e l i v e r (m) // beg in // mark (1) in Yaya
5 R de l i v e r ed = R de l i v e r ed U {m} // end // mark (1) in Yaya
6 when R de l i ve r ed − A de l i ve r ed != Ni l // beg in // mark (4) in Yaya
7 k = k + 1
8 A unde l ivered = R de l i v e r ed − A de l i ve r ed { get unde l i ve r ed messages}
9 propose (k , A unde l ivered) // end // mark (4) in Yaya
10 wait until dec ide (k , msgSet k) // beg in // mark (3) in Yaya
11 A de l i v e r = msgSet k − A de l ive r ed
12 automica l ly d e l i v e r a l l messages in A de l i v e r in some d e t e rm in i s t i c

order
13 A de l i ve r ed = A de l i ve r ed U A de l i v e r // end // mark (3) in Yaya

Listing 9.19: Pseudocode of Atomic broadcast using Consensus

9.3.1 Evaluation

From both of Atomic broadcast on Neko and Yaya, we show the complexity in terms of
line of code in Table 9.4

9.4 Analysis

The evaluation of comparative between implementation algorithms on Neko and Yaya in
Table 9.1 (Reliable broadcast algorithm), Table 9.2 (Consensus algorithm) and Table 9.4
(Atomic broadcast algorithm), we show a number lines of code in both of boilerplate
code and effective code. Implementation on Yaya reduce lines of code in implementation
(contents declaration, synchronization handler, message handler, interactions between
protocol). We also show the summary of comparative between implementation of algo-
rithm on Neko and Yaya in Table 9.3.1.

In part of boilerplate code, there are many parts of code that we need to provide for
other protocols; for examples, declaration of contents type, special message type, methods
for called by others and synchronization. The many boilerplate codes detract programmer
from the core of algorithm flowing. Implementation on Yaya, excepting Mostéfaoui and
Raynal algorithm, we can reduce the part of boilerplate code around 54.67% lines of code
from the implementation on Neko. We observe that most of algorithms need to declare
contents type, special message type and a lot of methods provided for other protocols. In
case of protocol that has a few of contents type, special message type, we reduce around
15% line of code from implementation on Neko.

In part of effective code, we need to implement each case of content types, each step
in algorithm. Implementation of algorithms on Yaya makes code more compact, separates
the message handler into each case depending on conditions. Implementation on Yaya

73

Algorithm pseudocode Neko Yaya

Reliable broadcast 14 66 (4.71 times) 40 (2.86 times)

Chandra-Toueg Consensus 39 377 (9.67 times) 170 (4.36 times)

Mostéfaoui and Raynal Consensus 30 179 (5.97 times) 146 (4.87 times)

Paxos Consensus 45 341 (7.58 times) 150 (3.33 times)

Simple fixed sequencer 21 81 (3.86 times) 51 (2.43 times)

Simple moving sequencer 25 172 (6.88 times) 80 (3.2 times)

Simple privilege-based 23 105 (4.57 times) 53 (2.30 times)

Simple communication history 20 95 (4.75 times) 55 (2.75 times)

Atomic broadcast using consensus 18 133 (7.39 times) 64 (3.56 times)

Table 9.3: Summary of comparative between implementation of algorithm on Neko and
Yaya

reduces the part of effective code around 35.74% lines of code from implementation on
Neko. Moreover, when we want to add some aspects into algorithm such as optimization
parameter, on Neko, we need to implement in many parts of code. If we did not separate
each case clearly, we will face difficulties to add the aspect. On Yaya, we can separate
each case easily and make each case be more expressive.

74

Simple fixed sequencer Boilerplate code Effective code Total

On Neko 43 (53.09%) 38 (46.91%) 81
compared with pseudocode (21 lines) 1.81 times 3.86 times

On Yaya 20 (39.22%) 31 (60.78%) 51
compared with pseudocode (21 lines) 1.48 times 2.43 times

code reduced 53.49% 18.42% 37.04%

Simple moving sequencer Boilerplate code Effective code Total

On Neko 93 (54.07%) 79 (45.93%) 172
compared with pseudocode (25 lines) 3.16 times 6.88 times

On Yaya 39 (48.75%) 41 (51.25%) 80
compared with pseudocode (25 lines) 1.64 times 3.2 times

code reduced 58.06% 48.10% 53.49%

Simple privilege-based Boilerplate code Effective code Total

On Neko 75 (71.43%) 30 (28.57%) 105
compared with pseudocode (23 lines) 1.30 times 4.57 times

On Yaya 30 (56.60%) 23 (43.40%) 53
compared with pseudocode (23 lines) 1 times 2.30 times

code reduced 60% 23.33% 49.52%

Simple communication history Boilerplate code Effective code Total

On Neko 63 (66.32%) 32 (33.68%) 95
compared with pseudocode (20 lines) 1.6 times 4.75 times

On Yaya 29 (52.73%) 26 (47.27%) 55
compared with pseudocode (20 lines) 1.3 times 2.75 times

code reduced 53.97% 18.75% 42.11%

Atomic broadcast using consensus Boilerplate code Effective code Total

On Neko 75 (56.39%) 58 (43.61%) 133
compared with pseudocode (18 lines) 3.22 times 7.39 times

On Yaya 32 (50%) 32 (50%) 64
compared with pseudocode (18 lines) 1.78 times 3.56 times

code reduced 57.33% 44.83% 51.88%

Table 9.4: Comparative between implementation of Atomic broadcast algorithm on Neko
and Yaya

75

Chapter 10

Performance Analysis :Overhead

In this chapter, we evaluate the performance of Yaya in terms of execution time and avail-
ability. We compare the result of performance with Neko. The evaluation environment is
defined as following:

Evaluation environment: We use Intel(R) Core(TM)2 Duo CPU P8600 2.40GHz,
memory 2 GB. Operating system is Ubuntu 11.04(natty). We start Java Virtual machine
that has memory(heap space) 1024 M and thread stack size is 256K.

Figure 10.1: Application model for evaluation performance overhead

76

10.1 Execution overhead & Availability performance

In this section, we show execution overhead and availability performance by giving an
example of application that is run on both Yaya and Neko.

10.1.1 Execution overhead time

In each process, we put 9 Incremental Protocol and 1 Application in the process. Application
in process 0 starts to send a message to next Incremental Protocol and it then forwards
to next Incremental Protocol in the same process. When finished passing message inside
the process, the message is passed to next process. In received process, the message is
delivered in reverse order and finally the message is delivered to Application. Application
starts to send a new message again and pass down to the next process. The message
is passed around all processes until the last process gets the message. The application
model is shown in Figure 10.1

We run the simulation by increasing the number of processes. The result of execution
overhead comparison between simulation in Neko and Yaya is shown in Figure 10.2 In

Figure 10.2: Execution overhead comparison between simulation in Yaya and Neko

Figure 10.2, we show execution time to finish this application depending on number of
processes. When there are processes less than 200 processes approximately, the execution

77

time in Neko is less than Yaya, but when there are processes more than 200 processes,
the execution time in Neko is greater than Yaya. In Neko, we can simulate around 560
processes (5600 active protocols) in the systems. In Yaya, we can create more than that.
We explain the availability in next section.

10.1.2 Availability performance

In this evaluation, we use the same sample in section 10.1.1. The availability performance
comparison between simulation in Neko and Yaya is shown in Figure 10.3 In Figure 10.3,

Figure 10.3: Availability comparison between simulation in Yaya and Neko

we show the number of processes that can be run simulation on Yaya and Neko. In Neko,
we can simulate about 560 processes (each process has 10 active protocols, the total of
active protocols is 5600 approximately). In Yaya, we can simulate about 3200 processes
(each process has 10 active protocols, the total is 32000 active protocols approximately).
However, simulation that has processes more than 2800 processes is getting slow until
3200 processes that we can not simulate anymore.

78

10.2 Discussion

In this chapter, we evaluate the performance overhead in terms of initialization time,
execution time and availability of Yaya framework comparing with Neko framework. The
result of initialization shows that simulation in Yaya has much overhead in initialization
than Neko around 10 times. In initialization, all processes look for their own configuration
protocols, interactions and some aspects in each protocol. Everything is in one configura-
tion file. The result of execution time shows that execution time on Yaya is almost same
as execution time on Neko. If there is much memory (heap memory space) for simulation,
the execution time on Neko is less than Yaya. On the other hand, when we simulate a
lot of protocols in the simulation, execution time on Yaya is less than Neko. Moreover,
the result of availability performance in both Neko and Yaya shows how many maximum
active protocol can be simulated in the simulation. We can simulate around 5600 active
protocols in Neko but we simulate around 32000 active protocols in Yaya.

79

Chapter 11

Conclusion & Open Questions

11.1 Conclusion

In our research, we address the expressiveness in protocol composition framework by using
actor model for rapid prototyping. We contribute the prototype of protocol composition
framework implemented by actor model in Scala language. We evaluate the expressiveness
of protocols (e.g. Chandra-Toueg consensus, Paxos consensus, Atomic broadcast using
consensus) that are implemented on our framework in terms of line of code and analyze
each part comparing with Neko framework. In implementing algorithm on framework,
we separate code into 2 parts boilerplate code and effective code. We illustrate the ratio
between that two parts by protocol examples and we then show the percentage of reduced
code in our framework from Neko framework. Finally, we evaluate performance overhead
in our framework comparing with Neko in terms of initialization time, execution time and
availability. We examine the increasing initialization time, execution time and how many
protocols that can be simulated in our framework.

11.2 Open Questions

As part of our continuing research, in our framework, there are hindrances in interactions
between protocols. The important hindrances is how to standardize the content type
between protocols. Protocol that has interactions with others needs to know which content
type is interested. Protocol programers need to ensure that declaration of their interested
contents are standard and other protocol can use this content to communicate with their
protocols. We emphasize the framework that can ease to compose protocols without
understanding the inside mechanism of each protocol.

80

Appendix A

Reliable broadcast

In this section, we show pseudocode of reliable broadcast algorithm.

Initialization:
already ← φ {delivered messages list (message, id, receivedNumber)}
id← 0

proc send(m)
newId← nextId(id, process) {get next id of message}
already = already + {m,newId, 0}
send (m,newId) to destinations.

when receive (m, id)
if id /∈ already {first time receive message m}
already = already + {m,newId, 1}
deliver (m) {deliver message m to listener}
send (m, id) to destinations fi {send message m to others again}

else {already received message m before}
already = already update (m, id, receivedNumber + 1)

81

Appendix B

Consensus algorithm

B.1 Chandra-Toueg consensus algorithm [11]

In this section, we show pseudocode of Chandra-Toueg consensus algorithm.

proc propose(vp) ≡
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep}
while statep = undecided do {rotate through coordinators until decision reached}

rp ← rp + 1
cp ← (rpmodn) + 1 {cp is the current coordinator}
Phase 1: {all processes p send estimatep to the current coordinator}

if rp > 1 then
send(p, rp, estimatep, tsp) to cp fi

Phase 2: {coordinator gathers dn+1
2
e estimates and proposes new estimate}

if p = cp then
if rp > 1 then

wait until[for dn+1
2
e processes q : received(q, rp, estimateq, tsq) from q]

msgsp[rp]← {(q, rp, estimateq, tsq) ‖ p received(q, rp, estimateq, tsq) from q}
t← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq 6=⊥ such that (q, rp, estimateq, t) ∈ msgsp[rp] fi

send(p, rp, estimatep) to all fi
Phase 3: {all processes wait for new estimate proposed by current coordinator}

wait until[received(cp, rp, estimatecp) from cp or cp ∈ Dp]{query failure detector Dp}
if [received(cp, rp, estimatecp) from cp] then {p received estimatecp from cp}
estimatep ← estimatecp
tsp ← rp
send(p, rp, ack) to cp fi

else {p suspects that cp crashed}
send(p, rp, nack) to cp

82

Phase 4:{the current coordinator waits for replies: dn+1
2
e acks or 1 nack. If they indicate

that dn+1
2
e processes adopted its estimate, the coordinator R-broadcasts a decide message}

if p = cp then
wait until [for dn+1

2
e processes q : received (q, rp, ack) or for 1 process q :

(q, rp, nack)]
if [for dn+1

2
e processes q : received (q, rp, ack)] then

R− broadcast (p, estimatep, decide) fi fi od.
{if p R− delivers a decide message, p decides accordingly}

when R− deliver (q, estimateq, decide)
if statep = undecided then
decide(estimateq)
statep ← decided

83

B.2 Mostéfaoui and Raynal consensus algorithm [11]

In this section, we show pseudocode of Mostéfaoui and Raynal consensus algorithm.

proc propose(vp) ≡
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
while statep = undecided do {rotate through coordinators until decision reached}

rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}
est from cp ←⊥ {est from cp is the coordinator’s estimate or invalid(⊥)}
Phase 1:{coordinator proposes new estimate; other processes wait for this new estimate}

if p = cp then
est from cp ← estimatep fi

else
wait until[received(cp, rp, est from ccp) from cp or cp ∈ Dp]{query failure detector Dp}
if [received(cp, rp, est from ccp) from cp] then{p received est from ccp from cp}
est from cp ← est from ccp fi

send (p, rp, est from cp) to all
Phase 2:{each process waits for dn+1

2
e replies. If they indicate that dn+1

2
e processes

adopted the proposal, the process R− broadcasts a decide message}
wait until [for dn+1

2
e processes q : received (q, rp, est from cq)]

recp ← (q, rp, est from cq) ‖ p received (q, rp, est from cq) from q
if recp = {v} then
estimatep ← v
R− broadcast(p, estimatep, decide) fi{R− broadcast without the initial send to all}

else if recp = {v,⊥} then
estimatep ← v fi od.

{if p R− delivers a decide message, p decides accordingly}
when R− deliver(q, estimateq, decide)

if statep = undecided then
decide(estimateq)
statep ← decided

84

B.3 Paxos consensus algorithm [8]

Initialization {variable initialization}
estimatepi ←⊥
statepi ← undecided
rpi ← i
readpi ← 0
writepi ← 0

proc propose(vpi)
estimatepi ← vp {estimatepi is pi’s estimate of the decision value}
while statep = undecided do

if pi ∈ Dpi then
phaseOneOk = true
Phase 1: {READ phase}
if rpi > 1 then {send READ iff we are not on the first round}
send(rpi , read) to all
wait until [received (rpi , estimatepj) or (rpi , nackread) from dn+1

2
e processes]

if received only ackread then {only ack}
estimatepi ← select estimatepj with highest writepj among all ackread received fi

else
phaseOneOk = false fi

if phaseOneOk then
Phase 2: {WRITE phase}
send(rpi , estimatepi , write) to all
wait until [received (rpi , ackwrite) or (rpi , nackwrite) from dn+1

2
e processes]

if received only ackwrite then {only ack}
R− broadcast(pi, estimatepi , decide) fi fi

rpi ← rpi + n fi od. {increment round}
{process messages sent by the leader}

when receive(m) from p
if m = (rpj , read) then {process a read message}

if writepi > rpj or readpi > rpj then{pi has received a write/read with a higher round than pj}
send(rpj , nackread) to pj fi

else {pi has not received a write/read from a process with a higher round}
readpi ← rpj
send(rpj , estimatepi , ackread) to pj fi

if m = (rpj , estimatepj , write) then {process a write message}
if writepi > rpj or readpi > rpj then{pi has received a write/read with a higher round than pj}
send(rpj , nackwrite) to pj fi

else {pi has not received a write/read from a process with a higher round}
writepi ← rpj ; estimatepi ← estimatepj
send(rpj , ackwrite) to pj fi

85

{if pi R− delivers a decide message, pi decides accordingly}
when R− deliver(pj, estimatepj , decide)

if statepi = undecided then
decide(estimatepj)
statepi ← decided fi

86

Appendix C

Atomic broadcast algorithm

C.1 Simple fixed sequencer algorithm [10]

Code of sequencer :
Initialization:
seqnum← 0 {last seq. number attributed to a message}

proc TO − broadcast(m) ≡ {To TO − broadcast a message m}
increment(seqnum)
send (m, seqnum) to all
deliver (m).

when receive (m)
TO − broadcast(m)

Code of all processes except sequencer :
Initialization:
lastdeliveredp ← 0 {sequence number of the last delivered message}
receivedp ← φ {set of received yet undelivered messages}

proc TO − broadcast(m) ≡ {To TO − broadcast a message m}
send(m) to sequencer.

when receive (m, seq(m))
receivedp ← receivedp ∪ {(m, seq(m))}
while ∃ḿ, seq s.t. (ḿ, seq) ∈ receivedp ∧ seq = lastdeliveredp + 1 do

deliver (ḿ)
increment (lastdeliveredp)
receivedp ← receivedp {(ḿ, seq)} od

87

C.2 Simple moving sequencer algorithm [10]

Initialization:
recvQp ← ε {sequence of received messages (receive queue)}
seqQp ← ε {sequence of messages with a seq. number}
lastdeliveredp ← 0 {sequence number of the last delivered message}
toknextp ← p+ 1(mod n) {identity of the next process along the logical ring}
if p = p1 then

send (⊥, 0, 1) to p1 fi {format: (message, seq.number, next token holder)}
proc TO − broadcast(m) {To TO − broadcast a message m}

send (m) to all
recvQp ← recvQp Bm.

when receive (m)
recvQp ← recvQp Bm

when receive (m, seqnum, tokenholder)
if m 6=⊥ then {Receive new sequence number}
seqQp ← seqQp B (m, seqnum) fi

if p = tokenholder then {Circulate token, if appropriate}
wait until (recvQp seqQp) 6= ε
msg ← select first msg in recvQp s.t. (msg,−) /∈ seqQp

send (msg, seqnum+ 1, toknextp) to all
seqQp ← seqQp B (msg, seqnum+ 1) fi

while ∃ḿ s.t. (ḿ, lastdeliveredp + 1) ∈ seqQp ∧ ḿ ∈ recvQp do {Deliver messages that can be}
seqQp ← seqQp − {(ḿ,−)}
recvQp ← recvQp − {ḿ}
deliver (ḿ)
increment (lastdeliveredp)

88

C.3 Simple privilege-based algorithm [10]

Initialization:
sendQp ← ε {sequence of messages to send(send queue)}
recvQp ← ε {sequence of received messages(receive queue)}
lastdeliveredp ← 0 {sequence number of the last delivered message}
toknextp ← p+ 1(mod n) {identity of the next process along the logical ring}
if p = p1 then {virtual message to initiate the token rotation}

send (⊥, 0, 1) to p1 fi {format: (message,seq.number,next token holder)}
proc TO − broadcast(m) {To TO − broadcast a message m}

if m 6=⊥ then {Receive new messages}
recvQp ← recvQp B (m, seqnum) fi.

when receive (m, seqnum, tokenholder)
if m 6=⊥ then {Receive new messages}
recvQp ← recvQp B (m, seqnum) fi

if p = tokenholder then {Circulate token, if appropriate}
if sendQp 6= ε then {Send pending messages, if any}
msg ← head.sendQp

sendQp ← tail.sendQp

send (msg, seqnum+ 1, toknextp) to all
recvQp ← recvQp B (msg, seqnum+ 1) fi

else
send (⊥, seqnum, toknextp) to toknextp fi

while ∃ḿ s.t. (ḿ, lastdeliveredp + 1) ∈ recvQp do {Deliver messages that can be}
recvQp ← recvQp − {ḿ}
deliver (ḿ)
increment (lastdeliveredp) od

89

C.4 Simple communication history algorithm [10]

Initialization:
receivedp ← φ {Messages received by process p}
deliveredp ← φ {Messages delivered by process p}
deliverablep ← φ {Messages ready to be delivered by process p}
LCp[p1, ..., pn]← {0, ..., 0} {LCp[q]: logical clock of process q as seen by process p}

proc TO − broadcast(m) {To TO − broadcast a message m}
LCp[p]← LCp[p] + 1
send (m,LCp[p]) to all
when no message sent for 4live time units
LCp[p]← LCp[p] + 1
send (⊥, LCp[p]) to all

when receive (m, ts(m))
LCp[p]← max (ts(m), LCp[p]) + 1 {Update logical clock}
LCp[sender(m)]← ts(m)
receivedp ← receivedp ∪ {m}
deliverablep ← φ
for each message ḿ in receivedp \ deliveredp do

if ts(ḿ) < minq∈x(t)LCp[q] then
deliverablep ← deliverablep ∪ {ḿ} fi

deliver all messages in deliverablep, according to the total order
deliveredp ← deliveredp ∪ deliverablep

90

C.5 Using Consensus to solve Atomic broadcast [9]

Every process p executes the following:
Initialization: {variable initialization}
R delivered← φ
A delivered← φ
k ← 0

To execute A− broadcast(m);
R− broadcast(m)

A− deliver(−) occurs as follows:
when R− deliver(m)
R delivered← R delivered ∪ {m}

when R delivered− A delivered 6= φ
k ← k + 1
A undelivered← R delivered− A delivered {get undelivered messages list}
propose(k,A undelivered)
wait until decide(k,msgSetk)
A deliverk ← msgSetk − A delivered
atomically deliver all messages in A deliverk in some deterministic order
A delivered← A delivered ∪ A deliverk

91

Bibliography

[1] Anand Ranganathan and Roy H. Campbell, “What is the Complexity of a Distributed
System?,” Technical Report UIUCDCS-R-2005-2568, University of Illinois at Urbana-
Champaign, Urbana-Champaign, Illinois, USA, April 2003.

[2] N. Bhatti and R. Schlichting, “A System for Constructing Configurable High-Level
Protocols.” Proc. ACM SIG COMM ’95, 138-150, 1995

[3] R. Van Renesse, K.P. Birman, R. Friedman, M. Hayden, and D.A. Karr, “A frame-
work for protocol composition in Horus.” In Proceedings of the 14th Symposium on
the Principles of Distributed Computing ACM (Ottawa, Ont., Aug. 1995), pp. 80-89.

[4] Bünzil, Daniel C., Mena, Sergio, Nestmann, Uwe, “Protocol Composition Frame-
works, A Header Driven Model,” In Proceedings of the 4th International Symposium
on Network Computing and Applications (IEEE NCA05), 2005.

[5] S. Mena, X. Cuvellier, C. Grégoire, A. Schiper, “Appia vs. Cactus: Comparing Pro-
tocol Composition Frameworks,” In Proc. of SRDS, 2003.

[6] P. Urbán, S. Mena, X. Défago and T. Katayama, “Concurrency in Microprotocol
Frameworks,” JAIST, IS-RR-2006-004, 2006.

[7] P. Urbán, X. Défago, and A. Schiper, “Neko: A single environment to simulate and
prototype distributed algorithm,” In Proc. of the 15th Intl Conf. on Information
Networking (ICOIN-15), Beppu City, Japan, Feb. 2001.

[8] N. Hayashibara, P. Urbán, A. Schiper, and T. Katayama, “Performance compar-
ison between the Paxos and Chandra-Toueg consensus algorithms,” In Proc. Int’l
Arab Conf. on Information Technology (ACIT 2002), pages 526-533, Doha, Qatar,
December 2002.

[9] T.D. Chandra, S. Toueg, “Unreliable failure detectors for reliable distributal systems.
J. ACM 43, 2(Mar.), 225-267.

[10] X. Défago, A. Schiper, P. Urbán, “Total order broadcast and multicast algorithms:
Taxonomy and survey.” ACM Comput. Surv. 36, 4, 372-421, 2004

92

[11] P. Urbán, “Evaluating the performance of distributed agreement algorithms: tools,
methodology and case studies.” PhD thesis, Ecole Polytechnique Fédérale de Lau-
sanne, 2003.

[12] A. Mostéfaoui and M. Raynal, “Solving consensus using Chandra-Toueg’s unreliable
failure detectors: a general quorum-based approach.” In Proceedings of the 13th
International Symposium on Distributed Computing (DISC’99), pages 49-63. LNCS,
Springer-Verlag, September 1999.

[13] C. Hewitt, P. Bishop and R. Steiger, “A universal modular actor formalism for arti-
ficial Intelligence,” Int. Joint Conf. Artificial Intelligence 1973, Stanford University,
Stanford (August 1973) 235-245.

[14] G. Agha, “Actors: A model of Concurrent Computation in Distributed Systems,”
The MIT Press, Cambridge, Massachusetts, 1986.

[15] P. Haller and M. Odersky, “Actors That Unify Threads and Events,” In 9th Inter-
national Conference on Coordination Models and Languages, volume 4467 of Lecture
Notes in Computer Science. Springer, 2007.

[16] P. Haller and M. Odersky, “Event-Based Programming without Inversion of Control,”
In Proc. Joint Modular Languages Conference, Springer LNCS, 2006.

[17] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible protocol kernel supporting
multiple coordinated channels.” In Proceedings of The 21st Int’l Conf. on Distributed
Computing Systems (ICDCS-21), pages 707-710, Phoenix, Arizona, USA, Apr.16-19
2001. IEEE Computer Society.

[18] M. A. Hiltunen and R. D. Schlichting, “The Cactus approach to building configurable
middleware services.” In Proc. Work- shop on Dependable System Middleware and
Group Communication (DSMGC 2000), Nurnberg, Germany, Oct. 2000.

[19] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and R. Das. “Real-time dependable
channels: Customizing QoS attributes for distributed systems.” IEEE Transactions
on Parallel and Distributed Systems, 10(6):600?612, Jun 1999.

93

