
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Fail-safe Mobility Management and Collision

Prevention Platform for Cooperative Mobile Robots

with Asynchronous Communications

Author(s) YARED, Rami

Citation

Issue Date 2006-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/993

Rights

Description
Supervisor:Assoc. Prof. Xavier DEFAGO, 情報科学研

究科, 博士

Fail-safe Mobility Management and Collision Prevention
Platform for Cooperative Mobile Robots with Asynchronous

Communications

by

Rami YARED

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor. Xavier Défago

School of Information Science

Japan Advanced Institute of Science and Technology

September 2006

1

Abstract

Distributed computing extends its scope to address problems relevant to mobile computing
where hosts are physically mobile. Since a robot can be seen as a mobile computer, it is natural
to consider a group of autonomous mobile robots as a kind of mobile distributed system. How-
ever, there are two fundamental differences with conventional distributed systems. The first
is that robots usually require knowledge about their physical positions, and the second is that
robots must control their own motion.

Many interesting applications of mobile robotics envision groups or swarms of robots co-
operating toward a common goal. Consider a distributed system composed of cooperative au-
tonomous mobile robots cultivating a garden. This application requires that robots move in all
directions sharing the same geographical space. We consider a category of robotic applications
where mobile robots have limited energy resources and wide geographical distribution. There
is no centralized control nor global synchronization.

It is very important to focus on the problem of preventing collisions between mobile robots.
Collision prevention leads to a dependable system and prevents the occurrence of serious dam-
ages to the robots which causes failures in the system.

In order to achieve a fail-safe motion, robots need to coordinate their movement. Coopera-
tion is however difficult to obtain under the weak communication guarantees offered by wireless
networks, because retransmission of messages is needed to ensure messages delivery in wire-
less environments. The communication delays to deliver messages are difficult to anticipate.
Therefore, a time-free collision prevention protocol is very important in wireless environments.

The main contribution of this dissertation is providing a motion coordination platform that
makes a system of mobile robots fail-safe independently of timeliness properties of the sys-
tem. Mobile robots rely on this platform for their motion planning. The mobility coordination
platform consists of time-free collision prevention protocols for an asynchronous system of co-
operative mobile robots. The platform guarantees that no collision between robots can occur. In
this dissertation, we analyze the performance of the protocols. A performance analysis provides
insights for a proper dimensioning of system’s parameters in order to maximize the average ef-
fective speed of robots. We consider also the collision prevention in presence of robots failures
by crash, and provide fault-tolerant collision prevention protocols that tolerate the crash of a
certain number of robots. We consider two system models, closed group and dynamic group
models.

The first contribution is to provide collision prevention protocols for asynchronous cooper-
ative mobile robots in a dynamic group model. In this model, the composition of the system
of which robots have only a partial knowledge, can change dynamically. Robots have limited
communication range, hence they naturally form an ad hoc network on which they rely for their
communication. The collision prevention protocol relies on a Neighborhood Discovery primi-
tive which is readily available through most of wireless communication devices. The collision
prevention protocol is based on a locality-preserving distributed path reservation system that
takes advantage of the inherent locality of the problem, in order to reduce communication.

i

The second contribution of this dissertation is to provide collision prevention protocols for
asynchronous cooperative mobile robots in a closed group model, in which a robot knows the
composition of the group and can always communicate with all robots of the group.

The third contribution is providing group membership and view synchrony protocols among
robot teams, in a distributed system model composed of a group of teams of worker robots that
rely on physical robot messengers for the communication between the teams. The protocols
tolerate the crash of a certain number of messengers robots and teams. Unlike traditional dis-
tributed systems, there is a finite amount of messengers in the system, and thus a team can send
messages to other teams only when some messenger robot is available locally.

ii

Acknowledgments

I wish to express my sincere gratitude to my supervisor Prof. Xavier Défago of Japan
Advanced Institute of Science and Techology for his constant encouragement and guidance
during the three years of my Ph.D. in his Laboratory. His confidence in me and his help in
clarifying the results of my work have been important factors to the success of this research.

I wish to express my thanks to Prof. Takuya Katayama of Japan Advanced Institute of
Science and Techology for his constant encouragement and helpful discussions.

I am also grateful to Matthias Wiesmann for his helpful collaboration and support through-
out my Ph.D. research, as well as his friendship.

I would like to thank Julien Cartigny, Nikolaos Galatos, and Péter Urb́an for always being
available to discuss different research issues, as well as their friendship.

I am grateful to the members of the jury, Prof. Nak Young Chong, Prof. Yoshiaki Kakuda,
Prof. Takuya Katayama, Prof. Yasuo Tan and Prof. Tatsuhiro Tsuchiya for their interesting
ideas and reviewing my PhD thesis.

I would also to thank the Japan Ministry of Education, Culture, Sports, Science and Tech-
nology, for the financial support of my Ph.D. research for the program “Fostering Talent in
Emergent Research Fields” in Special Coordination Funds for Promoting Science and Technol-
ogy.

My special thanks go to Samia Souissi for her constant encouragement, support, and nice
friendship.

I am also grateful to Yasser Kotb, Ahlem Ben Hassine, Shafik and Zoubaida Ansari, Ous-
sama Alhalabi, Adel Kafri, Bachar Mohamad, Amjad Alhalwani and Houssein Jad for their
encouragement and friendship.

I would also like to express my gratitude to all the people in Dependable Distributed Systems
Group and Katayama Laboratory for their support and friendship, in particular Misato Morita
and Miyuki Sakurai for their help with all administrative issues.

I am grateful to Tanizaki Hiroaki for his help to translate the abstract of my dissertation
in Japanese. I would also like to thank Maria Gradinariu, Daiki Higashihara, Tomokazu Mat-
sushita, Naohiro Hayashibara, Guenho Lee, Kim Myungsik, Meinin Kou and Miyashita Kanae
for their support and help.

I would like to thank: Walid Basha, Mary Ewald, Sally Fischer, Steve Gates, as well as the
priests of Hirosaka Catholic Church in Kanazawa for their friendship and support.

I wish to express my gratitude to my teachers in particular the professors of Japan Advanced
Institute of Science and Technology (JAIST) in Japan, as well as the professors of Laboratoire
d’Analyse et d’Architecture des Systemes (LAAS-CNRS) and Ecole Nationale Supérieure des
Télécommunications (ENST-PARIS) in France, and the professors of Institut Superieur des
Sciences Appliqúees et de Technologie (ISSAT) in Syria.

Last but not least, I devote my sincere thanks to my parents, uncles, brother and sister for
their loving support throughout my life.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Related work . 3

2 Background 6
2.1 Motion planning. 6
2.2 Total Order Broadcast. 6

2.2.1 Specification of Total Order Broadcast. 7
2.2.2 Fault-tolerance issues. 8

2.3 Failure detection . 9
2.4 Consensus Problem. 10
2.5 Reliable Broadcast. 11
2.6 Group membership and view synchrony. 12

3 System models and definitions 15
3.1 System models. 15
3.2 Definitions. 15

3.2.1 Deadlock situations. 18

4 Collision prevention problem: definition and specification 24
4.1 Collision Prevention: problem. 24
4.2 Problem definition and specification. 24

5 Collision prevention protocol for a closed group model 26
5.1 Closed group model. 26
5.2 Collision Prevention: protocol. 26

5.2.1 Variables . 27
5.2.2 Protocol description. 27
5.2.3 Deadlock Handler . 29
5.2.4 Example. 32
5.2.5 Proof of correctness. 35

5.3 Fault-tolerant collision prevention protocols. 42
5.3.1 Failure model. 42
5.3.2 A preemptive fault-tolerant collision prevention protocol. 42
5.3.3 A non-preemptive fault-tolerant collision prevention protocol. 51

iv

5.4 Performance analysis. 54
5.4.1 Time needed to reserve and move along a chunk. 54
5.4.2 Average effective speed. 55
5.4.3 Average effective speed vs Chunk length. 55
5.4.4 Average effective speed vs number of robots. 56

5.5 Conclusion . 58

6 Locality-preserving collision prevention protocol for a dynamic group model 60
6.1 Dynamic group model . 60
6.2 Collision Prevention: locality-preserving protocol. 61

6.2.1 Variables . 62
6.2.2 Protocol description. 63
6.2.3 Imposed wait-for relations. 65
6.2.4 Conflict Resolver. 68
6.2.5 Deadlock Handler . 68

6.3 Example. 69
6.4 Proof of correctness. 71
6.5 Performance analysis. 76

6.5.1 Intersection probability. 76
6.5.2 Time needed to reserve and move along a chunk. 77
6.5.3 Optimal reservation range. 79
6.5.4 Speed vs density of robots. 80

6.6 Conclusion . 81

7 Fault-tolerant group membership protocols using physical robot messengers 83
7.1 System model & definitions. 85

7.1.1 System model. 85
7.1.2 Energy complexity. 86
7.1.3 Group membership & view synchrony. 86

7.2 Failure Models . 87
7.2.1 Model A: Messengers failures. 87
7.2.2 Model B: Teams/messengers failures. 87

7.3 Group Membership and View Synchrony algorithms. 88
7.3.1 Group membership & messengers failures (Model A). 88
7.3.2 Group membership & teams and messengers failures (Model B). . . . 90

7.4 Conclusion . 92

8 Conclusion 97

Publications 104

v

List of Figures

2.1 Motion planning. 6
2.2 Total Order Broadcast primitive.. 7
2.3 Reliable Broadcast primitives.. 11
2.4 Reliable Broadcast agreement property.. 11
2.5 Reliable Broadcast (All or Nothing) property.. 12
2.6 Group membership.. 13
2.7 Group membership service in presence of failures.. 13

3.1 Reservation Zone.. 16
3.2 A robotRi releases the pervious zone and keeps only the place that may occupy

pre(Zonei) . 17
3.3 Zonei is the current requested zone by a robotRi. Previous(RelZonei) is the

previously released zone byRi. 18
3.4 Zonei intersects withpre(Zonej) and the post-motion zones do not intersect.. . 19
3.5 Deadlock situation 1:Zonei intersects withpre(Zonej) andZonej intersects with

pre(Zonei) and the post-motion zones do not intersect.. 20
3.6 Zonei intersects withpost(Zonej) and the post-motion zones do not intersect.. . 20
3.7 Deadlock situation 2:Zonei intersects withpost(Zonej) and Zonej intersects

with post(Zonei) and the post-motion zones do not intersect.. 21
3.8 Deadlock situation 3:Zonei intersects with both (pre(Zonej) andpost(Zonej)). . 22
3.9 Deadlock situation 4:post(Zonei) intersects withpost(Zonej). 22

5.1 A group composed of six robots.. 33
5.2 The directed acyclic graph generated by the Arbiter algorithm in the first batch.33
5.3 The resulting wait-for graph in the second batch.. 34
5.4 Average effective speed vs chunk length.. 56
5.5 Average effective speed vs number of robots.. 57

6.1 The reservation range is within half of the transmission range. RobotRi cannot
communicate with robotRj, andZonei does not intersect withZonej. 61

6.2 Example.Ri requestsZonei andNeighbori = {Ra, Rb, Rj, Rk}. 70
6.3 The graphsDagwm andDagdr related to the imposed wait-for relations.. 70
6.4 The wait-for graphDagwait. 71
6.5 Adding a directed edge to the wait-for graphDagwait. 72
6.6 Segments intersection.. 77
6.7 Average effective speed vs reservation range.. 80
6.8 Average effective speed vs density of robots.. 81

7.1 System model.. 85

vi

Chapter 1

Introduction

Context Distributed computing extends its scope to address problems relevant to mobile com-

puting where hosts are physically mobile. Since a robot can be seen as a mobile computer, it

is natural to consider a group of autonomous mobile robots as a kind of mobile distributed sys-

tem. However, there are two fundamental differences with conventional distributed systems.

The first is that robots usually require knowledge about their physical positions, and the second

is that robots must control their own motion. [9]

There has been increased research interest in systems composed of multiple autonomous

mobile robots exhibiting cooperative behavior. Such systems are of interest for several rea-

sons. Tasks may be inherently too complex (or impossible) for a single robot to accomplish, or

performance benefits can be gained from using multiple robots. [5].

Many interesting applications of mobile robotics envision groups or swarms of robots co-

operating toward a common goal. Consider a distributed system composed of cooperative au-

tonomous mobile robots exploring an unknown environment [4]. Exploring an unknown envi-

ronment by cooperative mobile robots requires that mobile robots move in all directions in the

same geographical space.

A robot computes a collision-free path, between the current robot location and the goal. This

path avoids collisions with fixed obstacles due to motion planning. A robot that operates in an

unknown environment, sense directly within the motion. In many classes of applications of

autonomous cooperative mobile robots (e.g., exploring unknown environments), where speeds

of robots are unknown to other robots, the motion planning approaches cannot guarantee asafe

motion as mobile robots may collide with each other, because of the unknown speeds of robots

and the uncertainty of the sensory information.

We consider a category of robotic applications (e.g., exploration of unknown environments)

where mobile robots have limited energy resources and wide geographical distribution. The

robots use sensors to explore the environment, they are not provided with a vision capability. In

the considered system, there is no centralized control nor global synchronization.

1

Motivation The robots are moving in different directions to explore the environment. Robots

share the physical space, thus collisions between mobile robots can possibly occur. It is very

important to focus on the problem ofpreventingcollisions between the mobile robots. Collision

prevention leads to a dependable system and prevents the occurrence of serious damages to the

robots which causes failures in the system.

Existing techniques that avoid collisions between mobile robots or vehicles are based on

real-time approaches, or assuming the existence of a known constant upper bound on the com-

munication delays, processing speed and on robots speed movement.

A robot knows neither the positions of other robots nor their destinations precisely at a given

instant. Additionally, the speed of a robot is unknown by robots and there is no known upper

bound on robot’s speed since in the considered applications a robot is autonomous and possi-

bly it does not know the composition of the group of robots. So a robot cannot estimate the

position of another robot in the system. Therefore, robots need to cooperate in order to coordi-

nate their movement and hence to achieve a fail-safe motion. Cooperation is however difficult

to obtain under the weak communication guarantees offered by wireless networks, because re-

transmission of messages is needed to ensure messages delivery in wireless environments. The

communication delays to deliver messages of arbitrary size are difficult to anticipate. Hence, a

time-based protocol possibly fails because of violating some timing property in such environ-

ments, so, a time-free collision prevention protocol is very important.

Contribution The main contribution of this dissertation is providing a motion coordination

platform that makes a system of mobile robots fail-safe. Cooperative mobile robots rely on this

platform the for their motion planning. The mobility coordination platform consists of time-

free collision prevention protocols for an asynchronous system of cooperative mobile robots.

The platform guarantees that no collision between robots can occur. In this dissertation, we

analyze the performance of the protocols. A performance analysis provides insights for a proper

dimensioning of system’s parameters in order to maximize the average effective speed of robots.

We consider the collision prevention problem in face of robots failures by crash, and provide

fault-tolerant collision prevention protocols that tolerate the crash of some robots and allows the

system of robots to progress.

This dissertation provides time-free collision prevention protocols, for asynchronous coop-

erative mobile robots in two system models, closed group and dynamic group models.

The first contribution is to provide collision prevention protocols for asynchronous cooper-

ative mobile robots in a dynamic group model. In this model, the composition of the system

of which robots have only a partial knowledge, can change dynamically. Robots have limited

communication range, hence they naturally form an ad hoc network on which they rely for their

2

communication. The collision prevention protocol relies on a Neighborhood Discovery primi-

tive which is readily available through most of wireless communication devices. The collision

prevention protocol is based on a locality-preserving distributed path reservation system that

takes advantage of the inherent locality of the problem, in order to reduce communication.

The second contribution of this dissertation is to provide collision prevention protocols for

asynchronous cooperative mobile robots in the closed group model, in which a robot knows the

entire composition of the group and can always communicate with all robots of the group.

A third contribution is providing group membership and view synchrony protocols among

robot teams, in a distributed system model composed of a group of teams of worker robots that

rely on physical robot messengers for the communication between the teams. The protocols

tolerate the crash of a certain number of messengers robots. Unlike traditional distributed sys-

tems, there is a finite amount of messengers in the system, and thus a team can send messages

to other teams only when some messenger robot is available locally.

1.1 Related work

Martins et al. ([20, 21]) demonstrated a scenario of three cooperating cars, elaborated in the

CORTEX project, and relies on the existence of Timely Computing Base (TCB) wormholes.

The TCB concept was introduced in ([31, 32]). In [21], authors presented how to use an

application’s fail-safety and time-elasticity characteristics to overcome the uncertainty of the

environment in TCB based systems.

Our approach in Chapter6 for a dynamic group model and that in [21] use limited local

communication and their designs rely on the concept of awormhole. The wormhole of the

system in [21] is encapsulated in the TCB components which are interconnected by acontrol

network. The control network is isolated from thepayloadnetwork (of the application) using

a dual network architecture. The wormhole of our platform is encapsulated in the primitive

Neighborhood Discovery which is available through most wireless communication devices. The

fundamentaldifference between our fail-safe platform and [21], is that the approach in [21] is

time-elastic, while our approach is time-free.

The approach in [21] requires that the composition of the group is known by all the partici-

pants, so if we compare the approach in [21] with our approach for the closed group model then,

a fundamental difference is that the approach in [21] is based on a wormhole but our approach

for the closed group model is purely asynchronous.

Both, our approach for the dynamic group model and the approach in [21] rely on a worm-

hole, but our dynamic group model does not require that a robot knows the composition of the

group, while the approach in [21] requires that the composition of the group is known to each

3

robot and a robot can communicate with all robots of the group.

Nett et al. ([26, 25]) presented a layered system architecture for cooperative mobile systems

in real-time applications. They considered a traffic control application as a testbed of their

system architecture. In this testbed a group of mobile robots are driving along two overlapping

closed loops sharing a specified predetermined space. The architecture in ([26, 25]) aimed at

real-time cooperative mobile systems. Our approach fundamentally differs in several aspects.

The system in ([26, 25]) is synchronous assuming the existence of a known constant upper

bound on the communication delays, while our approach is asynchronous. The communication

infrastructure in ([26, 25]) is based on wireless LAN and the designed communication protocols

use the access point (base station) as a central router since each station must be within the reach

of the access point, which implies a full connectivity. The mobile robots in our system form

naturally a mobile ad hoc network on which they rely for their communication. MANETs

have no centralized control nor global synchronization, also the real-time constraints to deliver

messages of arbitrary size are not guaranteed.

The problem of robots collision avoidance has been handled using different strategies which

are sensor-based motion planning methods. The detailed information about motion planning

strategies is inspired from [22].

Minguez et al. [22] compute collision-free motion for a robot operating in dynamic and

unknown scenarios, also they survey the existing collision avoidance navigation approaches.

Motion planning algorithms consider a model of the environment (either previously known or

dynamically built), to compute a collision free path between the current robot location and

the goal. In dynamic or unknown environments the trajectories generated by motion planning

algorithms become inaccurate thus they can not be applied to such environments. Solving this

problem involves sensing directly within the motion planning by applying aperception-action

process that is repeated periodically at a high rate. These approaches use a local fraction of

the information available (sensory information), so they can fall into trap situations. Some of

these approaches apply mathematical equations to the sensory information and the solutions

are transformed into motion commands. (e.g., [23]). Another group of methods compute a set

of suitable motion commands to select one command based on navigation strategy (e.g., [29]),

while other methods (e.g., [22]), compute a high level information description (entities near

obstacles, areas of free space), from the sensory information then apply different techniques

simplifying the difficulty of the navigation to obtain a motion command in complex scenarios.

Roadmap for this dissertation This dissertation is organized as follows.

Chapter2 introduces formal definitions of some agreement problems in distributed systems

that this thesis is concerned with, such as the Total order broadcast, failure detectors and their

4

classes, consensus.

Chapter3 explains the two system models. the dynamic group and the closed group models.

Also, it presents our definitions and terminology which are related to the collision prevention

protocols.

Chapter4 defines the collision prevention problem and presents the properties of the colli-

sion prevention protocols.

Chapter5 presents the collision prevention protocols for the closed group model. It presents

the failure-free protocol and proves that it satisfies the properties of the collision prevention

problem. A performance analysis is provided and showed that a proper dimensioning of sys-

tem’s parameters in order to maximize the average effective speed of robots.

Also, Chapter5 introduces Fault-tolerant collision prevention protocols that consider the

crash of some robots.

Chapter6 presents the collision prevention protocol for a dynamic group of asynchronous

cooperative mobile robots. Chapter6 also proves that the collision prevention protocol for a

dynamic group satisfies the properties mentioned in Chapter4 shows that a proper dimensioning

of system’s parameters in order to maximize the average effective speed of robots.

Chapter7 provides group membership and view synchrony protocols among robot teams, in

a distributed system model composed of a group of teams of worker robots that rely on physical

robot messengers for the communication between the teams.

Chapter8 recalls the main contributions.

5

Chapter 2

Background

2.1 Motion planning

Motion planning is defined by finding a route to a robot from an initial position to a final

position, in presence of obstacles. The motion planning is illustrated in Figure.2.1

Motion planning algorithms consider a model of the environment (either previously known

or dynamically built), to compute a collision free path between the current robot location and

the goal. In dynamic or unknown environments the trajectories generated by motion planning

algorithms become inaccurate thus they can not be applied to such environments. Solving this

problem involves sensing directly within the motion planning by applying aperception-action

process that is repeated periodically at a high rate. These approaches use a local fraction of

the information available (sensory information), so they can fall into trap situations. Some of

these approaches apply mathematical equations to the sensory information and the solutions are

transformed into motion commands. (e.g., [23]).

2.2 Total Order Broadcast

Obstacle

Obstacle

goal position

initial
position

pat
h

Figure 2.1: Motion planning.

6

p1

p2

p3

Broadcast(m1)

Deliver(m1)

m1

m2 p1

p2

p3

TO-Broadcast(m1)

TO-Deliver(m1)

m1

m2

Total Order Broadcast Ordinary Broadcast

Figure 2.2: Total Order Broadcast primitive.

TOTAL ORDER BROADCAST also called ATOMIC BROADCAST, is a fundamental problem in

distributed systems, especially with respect to fault-tolerance. The TOTAL ORDER BROAD-

CAST primitive ensures that messages sent to a set of processes are, in turn, delivered by all

those processes in the same total order. Informally, the problem is defined as a broadcast prim-

itive whereby all processes deliver the same sequence of messages. Figure.2.2 illustrates the

total order broadcast primitive.

There exists a vast amount of literature about Total Order Broadcast presented (see Défago

et al. [10] for a survey). The text in this section is largely inspired from [10]

2.2.1 Specification of Total Order Broadcast

The problem is defined in terms of two primitives, which are calledTO-broadcast(m)andTO-

deliver(m), wherem is some message. When a processp executesTO-broadcast(m)(respec-

tively TO-deliver(m)), we say thatp TO-broadcastsm (respectively TO-deliverm). We as-

sume that every messagem can be uniquely identified, and carries the identity of its sender,

denoted bysender(m). In addition, we assume that, for any given messagem, and any run,

TO-broadcast(m)is executed at most once. In this context, total order broadcast is defined by

the following properties (Hadzilacos and Toueg 1994; Chandra and Toueg 1996). [16, 7]:

• (VALIDITY). If a correct process TO-broadcasts a messagem, then it eventually TO-

deliversm.

• (UNIFORM AGREEMENT). If a process TO-delivers a messagem, then all correct pro-

cesses eventually TO-deliversm.

• (UNIFORM INTEGRITY). For any messagem, every process TO-deliversmat most once,

and only ifm was previously TO-broadcast bysender(m).

• (UNIFORM TOTAL ORDER). If a processesp andq both TO-deliver messagesmandm′,

thenp TO-deliversm beforem′ if and only if q TO-deliversm beforem′.

7

Validity and Uniform Agreement are liveness properties, while Uniform Integrity and Uni-

form Total Order are safety properties for the Total Order Broadcast.

2.2.2 Fault-tolerance issues

Process Failures. The specification of total order broadcast requires the definition of the no-

tion of acorrectprocess. The following set of process failure classes are commonly considered.

• Crash failures. When a process crashes, it ceases functioning forever. This means that it

stops performing any activity including sending, transmitting, or receiving any message.

• Omission failures. When a process fails by omission, it omits performing some actions,

such as sending or receiving a message.

• Timing failures. A timing failure occurs when a process violates some of the timing

assumptions of the system model. Obviously, this type of failures does not exist in an

asynchronous system models, because of the absence of timing assumptions in such sys-

tems.

• Byzantine failures. Byzantine failures are the most general type of failures. A Byzan-

tine component is allowed any arbitrary behavior. For instance, a faulty process may

change the content of messages, duplicate messages, send unsolicited messages, or even

maliciously try to break down the whole system.

Synchrony and timeliness The synchrony of a system defines the timing assumptions that are

made on the behavior of processes and communication channels. More specifically, one usually

considers two major parameters. The first parameter is theprocess speed interval, which is

given by the difference between the speed of the slowest and the fastest process in the system.

The second parameter is thecommunication delay, which is given the time elapsed between the

sending and the receipt of messages. The synchrony of the system is defined by considering

various bounds on these two parameters.

A system where both parameters have a known upper bound is called asynchronous sys-

tem. At the other extreme, a system in which process speed and communication delays are

unbounded is called anasynchronous system.

There is an important theoretical result related to the consensus problem. It has been proven

that there is no deterministic solution to the consensus problem in asynchronous distributed

systems if just a single process can crash. [14].

8

Dolev et al. [11] showed that total order broadcast can be transformed into consensus, thus

proving that the impossibility of consensus also holds for total order broadcast. These impossi-

bility results were the motivation to extend the asynchronous system by introducingoraclesto

make consensus and total order broadcast deterministically solvable.

Chandra et al.[7] showed that consensus can be transformed to total order broadcast. The

result holds also for arbitrary failures. Thus, consensus and total order broadcast are equivalent

problems, that is, if there exists an algorithm that solves one problem, then it can be transformed

into an algorithm that solves the other problem.

2.3 Failure detection

A recurrent pattern in all distributed algorithms is for a processp to wait for a message from

some other processq. If q crashes, processp is blocked. Failure detection is one basic mecha-

nism to preventp from being blocked.

Unreliable failure detection has been formalized by (Chandra and Toueg 1996). [7] in terms

of two properties:accuracyandcompleteness. Completeness prevents the blocking problem

just mentioned. Accuracy prevents algorithms from running forever without solving the prob-

lem.

A failure detection is an oracle that provides information about the current status of pro-

cesses, whether a given process has crashed or not. The notion of failure detection has been

formalized by (Chandra and Toueg 1996). [7]. Briefly, a failure detector is modeled as a set of

distributed modules, one moduleFDi is attached to each processpi. Any processpi can query

its failure detector moduleFDi about the status of other processes.

Failure detectors may beunreliablein the sense that they provide information that may not

always correspond to the real state of the system. For instance a failure detector moduleFDi

may provide the erroneous information that some processpj has crashed while, in reality,pj is

correct and running. Conversely,FDi may provide the information that a processpk is correct

while, pk has actually crashed.

To reflect the unreliability of the information provided by failure detectors, we say that a

processpi suspectssome processPj wheneverFDi the failure detector module attached topi,

returns theunreliable information thatpj has crashed. In other words, a suspicion is a belief

(e.g., “pi believes thatpj has crashed”) as opposed to a known fact (e.g., “pj has crashed andpi

knows that”).

There exists several classes of failure detectors, depending on how unreliable the infor-

mation provided by the failure detector can be. Classes are defined by two properties, called

completenessandaccuracy, that constrain the range of possible mistakes.

9

We distinguish four classes of failure detectors,P (perfect),^P (eventually perfect),S
(strong), and̂ S (eventually strong). The four classes share the same property of completeness,

and only differs by their accuracy property. [7].

• STRONG COMPLETENESSEventually every faulty process is permanently suspected by

all correct processes.

• STRONG ACCURACY No process is suspected before it crashes. [classP]

• EVENTUAL STRONG ACCURACY There is a time after which correct processes are not

suspected by any correct process. [class^P]

• WEAK ACCURACY Some process is never suspected. [classS]

• EVENTUAL WEAK ACCURACY There is a time after which some correct process is never

suspected by any correct process. [class^S]

A failure detector of clasŝS with a majority of correct processes allows to solve thecon-

sensusproblem.[7]. Moreover, Chandra et al. [7] showed that a failure detector of class^S is

the weakest failure detector that allows to solve the consensus. The weakest failure detector to

solve the consensus problem is said to be^W, which differs from^S by satisfying a weak

completeness property instead of Strong Completeness. However, Chandra et al. [7] proved the

equivalence of̂ S and^W.

2.4 Consensus Problem

Consensus is defined by the primitivespropose(v), anddecide(v), which satisfy the following

properties.

• TERMINATION. Every correct process eventually decides some value.

• UNIFORM INTEGRITY. Every process decides at most once.

• AGREEMENT. No two correct processes decide differently.

• UNIFORM VALIDITY . If a process decidesv, thenv was proposed by some process.

Consensus can be solved in asynchronous systems prone to process crashes, augmented with

failure detectors. In [7] Chandra and Toueg present two algorithms that solve consensus. One

uses a failure detector of classS and tolerates (n−1) faulty processes (in asynchronous systems

with n processes), and the other uses a failure detector of class^S and tolerates (f < n/2)

failures.

10

Application

Reliable Broadcast

R-broadcast(m) R-deliver(m)

Unreliable Broadcast

deliver(m)broadcast(m)

Figure 2.3: Reliable Broadcast primitives.

p1

p2

p3

R-deliver(m)

Reliable Broadcast

R-broadcast(m)

R-deliver(m)

R-deliver(m)

Figure 2.4: Reliable Broadcast agreement property.

Consensus and Total Order Broadcast have been shown in the literature to be equivalent

in systems prone to process crashes. The equivalence result basically states that Total Order

Broadcast can be reduced to Consensus, and Consensus can be reduced to Total Order Broad-

cast. The Consensus to Total Order Broadcast reduction consists in havingpropose(v)execute

TO-Broadcast, anddecide(v)occurring after the firstTO-Deliver(v).

2.5 Reliable Broadcast

Reliable Broadcast requires that all correct processes deliver the same set of messages (Agree-

ment), and that this set includes all messages broadcast by correct processes (Validity), and no

spurious messages (Integrity).

Formally, Reliable Broadcast is defined in terms of two primitives: R-broadcast(m) and

R-deliver(m), which satisfy the following properties: [15]

Figure2.3illustrates the two primitives R-broadcast and R-deliver. Figure2.4and Figure2.5

11

p1

p2

p3

Reliable Broadcast

R-broadcast(m)

R-deliver(m)

R-deliver(m)

All

p1

p2

p3

R-broadcast(m) Nothing

Figure 2.5: Reliable Broadcast (All or Nothing) property.

illustrates the properties of Reliable Broadcast.

• VALIDITY . If a correct process R-broadcasts a messagem then, it eventually R-delivers

m.

• AGREEMENT. If a correct process R-delivers a messagem then, all correct processes

eventually R-deliverm.

• UNIFORM INTEGRITY. For every messagem, every process R-deliversm at most once,

and only ifm was previously R-broadcast by sender(m).

If a processp fails during the broadcast of a message, Reliable Broadcast allows two possi-

ble outcomes: either the message is delivered byall correct processes or by none.

Reliable Broadcast can be implemented by the following algorithm [7]. Whenever a process

p R-broadcasts a messagem, p sendsm to all processes. Once a processq receivesm, if q , p

then,q sendsm to all processes, and in any case,q R-deliversm.

2.6 Group membership and view synchrony

The group membership is to maintain a list of currently active processes. The list can change

with new members joining and old members leaving or crashing. Figure2.6

Each process has aviewof the list of currently active processes, and when this list changes,

thegroup membershipservice reports the change to the processes by installing a new view. The

group membership installs the same view at all correct processes.

A view v consists of a unique identifier and a list of processes (members of the viewv).

The group membership service maintains a list of currently active processes, in failure-prone

distributed systems, and delivers this information to the application whenever its composition

changes. (Figure2.7illustrates a group membership service for a distributed system in presence

of failures).

12

P1
P3

P2

Group G

G = { p1, p2, p3 }

P1
P3

P2

Group G

join: G = G + p4

P
4

join
P1

P3
P2

Group G
P
4

leave: G = G - p2

P1

P3
P2

Group G

G = { p1, p2, p3, p4 }

P
4

P1

P3

Group G
P
4

G = { p1, p3, p4 }P2

Figure 2.6: Group membership.

P1

P2

P3

{p1, p2, p3} {p2, p3}

Figure 2.7: Group membership service in presence of failures.

13

The reliable multicast services deliver messages to the current view members. For more

information on the subject, we refer to the survey of Chockler et al. [8]. A group membership

can also be combined with failure detection [34], and then it can be seen as a high-level failure

detection mechanism that provides consistent information about suspicions and failures [30,

17]. In short, a group membership keeps a track of what processes belong to the distributed

computation and what processes does not.

A group membership service provides a list of non-crashed processes that currently belong

to the system, and satisfies three properties [8]: validity, agreement and termination.

• Validity. The validity property is explained as follows: letvi andvi+1 be two consec-

utive views, if a processp ∈ vi \ vi+1 then some process has executedleave(p)and if a

processp ∈ vi+1 \ vi then some process has executedjoin(p).

• Agreement. The agreement property ensures that the same view would be installed

by all the processes of the group (agreement on the view) since agreement on uniquely

identified views is necessary for synchronizing communications. So, if a processp in

view vi installs viewvi+1, and processq in view vi installs viewv′i+1, thenvi+1 = v′i+1

• Termination. The termination property means that if a processp ∈ v executesjoin(q),

then unlessp crashes, eventually a viewv′ is installed such that eitherq ∈ v′ or p < v′.

14

Chapter 3

System models and definitions

3.1 System models

We consider a system of mobile robotsS = {Ri}, in which each robot has a unique identifier.

Robots have access to a global positioning device that, when queried by a robotRi, returns

Ri ’s position with a bounded errorεgps. The robots communicate using wireless communication.

Communications assume retransmissions mechanisms such that communication channels are

reliable.

The system is asynchronous in the sense that there is no bound on communication delays,

processing speed and on robots speed movement.

We consider two system models, theclosed groupand thedynamic groupmodels.

Closed group model The closed group model consists of a static group of cooperative mobile

robots, composed ofn mobile robotsS = {R1, . . . ,Rn}, such that the total composition of the

group is known to each robot. A robot can always communicate with all robots of the group.

Dynamic group model The dynamic group model consists of a dynamic group of coopera-

tive mobile robots. The entire composition of the system, of which robots have only a partial

knowledge, can change dynamically.

Robots have limited communication rangeDtr , hence they naturally form an ad hoc network

on which they rely for their communication. If the distance between two robotsRi andRj is less

thanDtr , then the two robots can communicate with each other. Each robot has an access to a

neighborhood discovery primitive namedNDiscover, which is readily available through most

of wireless communication devices.

3.2 Definitions

15

pre-zone

post-zone

⤵ !
"

⤴ !
"

!gps

!
gps

d + !gps + !tr

d + !gps

motion-zone

d
!

tr

A B

Figure 3.1: Reservation Zone.

A robotic application determines a destination that a robot has to reach. Then, the motion

planning layer computes a path along which a robot moves to reach the goal. For convenience,

a robot needs to move along a path by steps. Hence, a path determined by the motion planning

layer, is divided into smaller parts, each of which is called achunk.

Paths. We denote bychunka line segment along which a robot moves. A path of a robot is

a continuous route composed of a series of contiguous chunks. A path can take an arbitrary

geometric shape, but we consider only line segment based paths for simplicity.

Errors. There are three sources of geometrical incertitude concerning the position and the

motion of a robot. Error related to the position information provided by the positioning system

denotedεgps. In addition, the motion of a robot creates two additional sources of errors, the first

error is related to the translational movement, denoted:εtr . The second error is related to the

rotational movement, denoted:εθ.

Zones. A zoneis defined as the area needed by a robot to move safely along a chunk. This

includes provisions for the shape of the robot, positioning error and imprecisions in the moving

of the robot. The zone must be a convex shape and contains the chunk the robot is following.

Figure3.1 shows the zoneZonei for a robotRi moving along a chunkAB, whered represents

the radius of the geometrical shape ofRi. The zoneZonei is composed of the following three

parts, illustrated in Figure3.1: the first part namedpre-motionzone and denotedpre(Zonei),

is the zone that robotRi possibly occupies while waiting (before moving). The second part

16

Robot R
i

Robot R
i

Released zone

Pre(Zone
i)

Figure 3.2: A robotRi releases the pervious zone and keeps only the place that may occupy
pre(Zonei)

namedmotion zone and denotedmotion(Zonei), is the zone that robotRi possibly occupies

while moving. The third part namedpost-motionzone and denotedpost(Zonei), is the zone that

robotRi possibly reaches after the motion.

We say that a robotRi is theownerof a zoneZonei (Zonei is grantedto Ri), if Ri reserves

Zonei and did not release it yet. A robotRi releasesthe zoneZonei that it has owned and keeps

only a part ofpost(Zonei) under its reservation. The part of the zone that has been released byRi

is denoted:RelZonei. Figure3.2shows that thepre-motionzonepre(Zonei) is entirely included

within the previouspost-motionzone, and presents also the current and the previous positions

of Ri.

Figure 3.3 presents the previously released zone Previous(RelZonei) and the current re-

quested zoneZonei.

Releasing a zone. RelZonei is the zone that a robotRi releases whenRi reaches the post-

motion zonepost(Zonei).

RelZonei = pre(Zonei) ∪ motion(Zonei) ∪ SubPost(Zonei), where: SubPost(Zonei) ⊂
post(Zonei)

pre(Zonei) ⊂ PREVIOUS(post(Zonei))

17

Previous(RelZone
i)

Z
o
n
e
i

Robot R
i

Robot R
i

Released zone

Figure 3.3:Zonei is the current requested zone by a robotRi. Previous(RelZonei) is the previ-
ously released zone byRi.

Relation between robots. We say thatRi conflict with Rj if the requested zoneZonei inter-

sects withZonej of robotRj. If Ri conflicts withRj then, one of them owns its requested zone

and eventually releases it before the other robot owns its requested zone.

However, there are specified intersection situations betweenZonei and Zonej, such that

neitherRi norRj can move. In this dissertation, we use the term “deadlock” to express specified

intersection situations between a zoneZonei and a zoneZonej. These intersection situations

imply that neitherRi can ownZonei norRj can ownZonej.

We say that a robotRi is in a deadlock situation with a robotRj. For example, a deadlock

situation between two robots, occurs when a robot requests a zone that intersects with both the

pre-motionand thepost-motionzones of the other, so none of the robots can move. The condi-

tions and expressions of the deadlock situations are discussed in details in Subsection3.2.1.

3.2.1 Deadlock situations

There are pathological intersection situations betweenZonei andZonej, such that neitherRi nor

Rj can move, or if one of them has granted its zone before the other then, the other robot may

not be able to own its requested zone (starvation situation). We say thatRi andRj are in a

deadlock situation because none of the robots can own its requested zone, or if one of the robot

owns its requested zone then, the other robot starves.

18

Z
o
n
e
i

Zone
j

Ri

Rj

(a) Deadlock riskpre(Ri , Rj). Zonei intersects with
pre(Zonej) and thepost- motionzones do not intersect.

Z
o
n
e
i

Zone
j

Ri

Rj

(b) The robotRi waits forRj , soRj releasespre(Zonej)
beforeRi ownsZonei .

Figure 3.4:Zonei intersects withpre(Zonej) and the post-motion zones do not intersect.

A robot Ri is in a deadlock risksituation with robotRj, when the requested zoneZonei

intersects either with thepre-motionor with thepost-motionzone of the robotRj.

This situation is calleddeadlock riskbecause a deadlock situation occurs ifZonei intersects

with both pre(Zonej) andpost(Zonej). A deadlock situation occurs also ifpost(Zonei) intersects

with post(Zonej). The other possible deadlock situations between two robots occur when each

robot requests a zone that intersects with thepre-motionzone of the other, and when themotion

zone of each robot intersects with thepost-motionzone of the other.

A robotRi is in adeadlock riskpre situation with robotRj if Zonei intersects withpre(Zonej)

and thepost-motionzones do not intersect. A deadlock riskpre(Ri, Rj) situation is presented in

Figure3.4(a).

A robot Ri is in adeadlock riskpost with Rj if motion(Zonei) intersects withpost(Zonej) and

the post-motionzones do not intersect . A deadlock riskpost(Ri, Rj) situation is presented in

Figure3.6(a).

• Deadlock riskpre(Ri, Rj): [Zonei ∩ pre(Zonej) , ∅] and [post(Zonei) ∩ post(Zonej) = ∅]

• Deadlock riskpost(Ri, Rj): [Zonei ∩ post(Zonej) , ∅] and [post(Zonei) ∩ post(Zonej) = ∅]

19

Z
o
n
e
i

Zone
j

Ri

Rj

Figure 3.5: Deadlock situation 1:Zonei intersects withpre(Zonej) andZonej intersects with
pre(Zonei) and the post-motion zones do not intersect.

Ri

Rj

Z
o
n
e i

Zone
j

(a) Deadlock riskpost(Ri , Rj). Zonei intersects with
post(Zonej) and thepost- motionzones do not inter-
sect.

Ri

Rj

Z
o
n
e i

Zone
j

(b) The robot Rj waits for Ri , so Ri releases
motion(Zonei) beforeRj ownsZonej .

Figure 3.6:Zonei intersects withpost(Zonej) and the post-motion zones do not intersect.

20

RjRi

Zone
j Zon

e i

Figure 3.7: Deadlock situation 2:Zonei intersects withpost(Zonej) andZonej intersects with
post(Zonei) and the post-motion zones do not intersect.

Conditions and expressions of deadlock situations The deadlock situations are as follows.

1. Deadlock situation 1: Deadlock riskpre(Ri, Rj) and Deadlock riskpre(Rj, Ri). The Deadlock

situation 1 is illustrated in Figure3.5.

2. Deadlock situation 2: Deadlock riskpost(Ri, Rj) and Deadlock riskpost(Rj, Ri). The Dead-

lock situation 2 is illustrated in Figure3.7.

3. Deadlock situation 3: Deadlock riskpre(Ri, Rj) and Deadlock riskpost(Ri, Rj). The Dead-

lock situation 3 is illustrated in Figure3.8.

4. Deadlock situation 4:post(Zonei) ∩ post(Zonej) , ∅. The Deadlock situation 4 is illus-

trated in Figure3.9.

The deadlock situations are expressed as follows.

1. Deadlock situation 1:

[Zonei∩pre(Zonej) , ∅] and [Zonej∩pre(Zonei) , ∅] and [post(Zonei)∩post(Zonej) = ∅]

2. Deadlock situation 2:

[Zonei ∩post(Zonej) , ∅] and [Zonej ∩post(Zonei) , ∅] and [post(Zonei)∩post(Zonej) =

∅]

21

Rj

Ri

Zo
n
e j

Zon
e
i

Figure 3.8: Deadlock situation 3:Zonei intersects with both (pre(Zonej) andpost(Zonej)).

Rj

Ri
Zone

j

Zonei

Figure 3.9: Deadlock situation 4:post(Zonei) intersects withpost(Zonej).

22

3. Deadlock situation 3:

[Zonei∩pre(Zonej) , ∅] and [Zonei∩post(Zonej) , ∅] and [post(Zonei)∩post(Zonej) = ∅]

4. Deadlock situation 4:

post(Zonei) ∩ post(Zonej) , ∅

Definition 1 DS is the set of the four deadlock situations.

DS ={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock situation 4}.

Imposed wait-for relations between robots Thedeadlock risksituations between a robotRi

and a robotRj: deadlock riskpre(Ri, Rj) and deadlock riskpost(Ri, Rj) imposes wait-for relations

betweenRi andRj.

• If Ri is in deadlock riskpre situation withRj, thenRi must wait forRj. So that,Rj releases

pre(Zonej) beforeRi ownsZonei. Figure3.4(b)illustrates thatRi must wait forRj.

• If Ri is in deadlock riskpost situation withRj, thenRj must wait forRi. So that,Ri releases

motion(Zonei) beforeRj ownsZonej. Figure3.6(b)illustrates thatRj must wait forRi.

23

Chapter 4

Collision prevention problem: definition
and specification

4.1 Collision Prevention: problem

The collision prevention consists of a distributed path reservation system, such that a robot must

reserve a zone before it moves. When a robot reserves a zone, it can movesafelyinside the zone.

The path reservation is performed in a consistent manner. All robots run the same protocol.

When a robot wants to move along a given chunk, it must reserve the zone that surrounds this

chunk. When this zone is reserved, the robot moves along the chunk. Once the robot reaches

the end of the chunk, it releases the zone except for the area that the robot occupies. When

moving along a path, the robot repeats this procedure for each chunk along the path.

4.2 Problem definition and specification

A robot can move only in a zone that it owns. When a robotRi requests a zoneZonei, it invokes

the primitivereq. We say thatZonei is grantedto Ri (Ri owns Zonei) upon return fromreq and

invocation of the primitivereserve. WhenRi reserves Zonei, it moves along the chunk. Once the

robot reaches the end of the chunk, itreleases Zonei upon return fromreserveand invocation

of the primitiverelease. If a robot requests a zone, then either the robot is granted the zone or

it receives an exception. The relationship between robots and zone changes in time. A zone

is said to be free if it is not owned by any robot. In order to resolve the collision prevention

problem, and to keep the system of mobile robots always in progress towards its final goal,

certain properties ofsafetyandlivenessmust hold. If a robot requests a zone, then eventually it

owns this zone or receives an exception. We say that the robot owns the zone and all the points

contained in this zone. A given point can be owned by only one robot. If a robot owns a zone,

it eventually releases that zone.

24

Property 1 (Mutual exclusion) If the requested zone Zonei of Ri intersects with the requested

zone Zonej of Rj then exclusively either Ri or Rj becomes the owner of its requested zone.

Consequently, a point in the plane can be owned by only one robot.

(Zonei ∩ Zonej , ∅)⇒ (Ri ownsZonei) XOR (Rj ownsZonej)

Property 2 (Liveness) If a robot Ri requests Zonei then eventually (Ri owns Zonei or an excep-

tion is raised).

Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception)

Property 3 (Non triviality) Exception is raised only if a deadlock situation occurs.

The following property must hold to ensure theintegrity of the system. If a robot owns a zone,

then eventually it leaves that zone. If a robot leaves a zone, then it releases that zone.

25

Chapter 5

Collision prevention protocol for a closed
group model

5.1 Closed group model

We consider a system ofn mobile robotsS = {R1, . . . ,Rn}, in which each robot has a unique

identifier. The total composition of the system is known to each robot.

Robots have access to a global positioning device that, when queried by a robotRi, returns

Ri ’s position with a bounded errorεgps.

The robots communicate using wireless communication such that a robotRi can communi-

cate with all robots of the system. Communications assume retransmissions mechanisms such

that communication channels are reliable.

The system is asynchronous in the sense that there is no bound on communication delays,

processing speed and on robots speed movement.

5.2 Collision Prevention: protocol

Idea of the protocol. All robots run the same distributed algorithm which is based on the fol-

lowing idea. When a robotRi requests a zoneZonei, Ri broadcasts a message indicating a request

of a zone REQUEST(Zonei)and a release of the previous owned zone. RELEASE(PREVIOUS(RelZonei)).

A wait-for graph is generated according to the delivered requests and releases. The wait-for

graph represents the wait-for relations between robots. If a requested zoneZonei of a robotRi

intersects with a requested zoneZonej of robotRj, then a wait-for relation betweenRi andRj is

established. When a robotRi reaches thepost-motionzonepost(Zonei), Ri releases the previous

zone, and requests a new zone.

All the robots in the system deliver requests and releases in the same order, thus consistent

reservations and releases of zones take place.

26

5.2.1 Variables

We present the variables used in the protocol.

• Zonei is the zone currently requested or owned by robotRi.

• DELIVERED is an ordered set:{(Ri, REQUEST, Zonei, RELEASE, PREVIOUS(RelZonei))}.

The list DELIVERED represents the TO-delivery of the Total Order Broadcast algorithm.

A robot Ri TO-broadcasts a request of a zoneZonei and a release of the previous zone

PREVIOUS(RelZonei). The Total Order Broadcast ensures that all robots in the system

deliver the same list DELIVERED.

• Dagarbiter is a directed acyclic graph generated by the Arbiter algorithm.Dagarbiter is a

wait-for graph such that the vertices represent the robots whose requests belong to the list

DELIVERED, and a directed edge from vertex(Ri) to vertex(Rj) indicates thatRi waits for

Rj.

• Dagwait is a directed acyclic graph that is generated by appending the Arbiter graphs

Dagarbiter generated by successive batches of the protocol.

5.2.2 Protocol description

We explain the phases of the protocol with respect to a robotRi. The robotRi is located in the

pre-motionzonepre(Zonei). When robotRi requests a new zoneZonei, it proceeds as follows.

1. TO-broadcast:

Ri performs a total order broadcast of a message carrying a REQUESTwith the parameters

of the requested zoneZonei, and also a RELEASEwith the parameters of the released zone

PREVIOUS(RelZonei). The robotRi releases the previous zone and requests a new zone

Zonei.

2. TO-deliver:

The TO-deliver of the total order broadcast algorithm returns an ordered set denoted by

DELIVERED which is composed of requested and released zones. DELIVERED corre-

sponds to a batch of the protocol. The total order broadcast guarantees that the list

DELIVERED of Ri is identical (with respect to the composition and to the order of the

elements) to the list DELIVERED of a robotRj of the group.

3. Arbiter:

27

All robots deliver the same set of requested and released zones in the same order. How-

ever, the collision prevention problem imposes a wait-for relation between two requested

zones which might be different from the order delivered by the total order broadcast.

In addition, the sequential order of requests delivered by the total order broadcast imposes

that a robotRi must wait for all the robots that their request’s index in DELIVERED is

smaller than that ofRi ’s request, even if the requested zones do not intersect.

The Arbiter algorithm generates a directed acyclic graph based on the list DELIVERED

such that the requested zones that do not intersect with other zones are granted to the

corresponding robots simultaneously, and a robotRi directly waits only for robotsRj if

Zonej intersects withZonei.

The Arbiter module starts by checking the deadlock situations between the requested

zones of the list DELIVERED. (The deadlock situations are illustrated in Chapter3). If a

deadlock situation is detected, then the Deadlock Handler is called to resolve the deadlock

situation.

The algorithm Arbiter generates an acyclic directed graphDagarbiter as follows. The ver-

tices of the graphDagarbiter represent robots and a directed edge between two vertices

represents a wait-for relation between the corresponding robots. The Arbiter algorithm

scans the list DELIVERED according to the order delivered by the total order broadcast.

The algorithm compares each requested zone of a robotRx with all the requested zones

of robotsRy of larger request’s index in the list DELIVERED. If Zonex intersects with

Zoney thenRy waits for Rx because the index ofRy is larger than the index ofRx in the

list DELIVERED. A directed edge from the vertex ofRy to the vertex ofRx is added to the

graphDagarbiter.

Imposed wait-for relations

• If [Zonei ∩ pre(Zonej) , ∅] and [post(Zonei) ∩ post(Zonej) = ∅ then,Ri must wait

for Rj.

• If [Zonei ∩ post(Zonej) , ∅] and [post(Zonei) ∩ post(Zonej) = ∅] then,Rj must wait

for Ri.

The Arbiter algorithm performs deterministic computations based on the list DELIVERED

such that all the requesting robots generates thesamedirected acyclic graphDagarbiter.

4. Append-Graphs:

The algorithm Append-Graphs appends the generated graphDagarbiter to the wait-for

graphDagwait using the list DELIVERED. At first, the algorithm updates the graphDagwait

28

by removing the vertices that correspond to the released zones of the list DELIVERED.

After that, the algorithmappends Dagarbiter the wait-for graphDagwait such that a robotRi

that belongs toDagarbiter must wait-for a robotRj that belongs toDagwait if Zonei inter-

sects withZonej.

A deadlock situation If the requested zoneZonei of Ri in Dagarbiter intersects with the

post-motionzone ofRj in Dagwait, then a deadlock occurs becauseRi must causally wait

for Rj, howeverZonei intersects withpost(Zonej). The Deadlock handler is responsible

for resolving this problem, which can be done by preempting the request ofRi and then

Ri requests an alternative zone.

5. Reservation: When all the robots thatRi is waiting for, release their zones, the request

procedure ofRi returns andRi reservesZonei, henceRi becomes the owner ofZonei.

6. Release: WhenRi reaches thepost-motionzonepost(Zonei), it computes its new position

and thus it computes the zone to be released which isZonei except the place thatRi may

possibly occupy (footprint and the positioning system errorεgps). Ri performs a total

order broadcast of a message carrying the parameters of the next requested zone and the

parameters of the current released zone. Initially, the released zone is set to⊥. If a robot

does not acquire a next zone, thenZonei is set to⊥.

The total order broadcast of a message carrying both the next requested zone and the

current released zone guarantees that all the robots deliver the same list DELIVERED and

hence generates the same graphDagarbiter which enables to update the wait-for graph

consistently, by removing the vertices corresponding to the robots that has released their

zones, and by appending the graphDagarbiter which represents the wait-for relations be-

tween the robots that have requested the next zones.

5.2.3 Deadlock Handler

When a deadlock situation is detected, then the Deadlock Handler is called to resolve the dead-

lock situation. The policy used by the Deadlock Handler to resolve deadlock situations is based

on aRequest Preemptionstrategy, which is summarized by preempting the request of the robot

that has the larger index in the list DELIVERED. Then, the robot that has the larger index,

restarts a request of an alternative zone.

The design of the collision prevention protocol yields a flexibility to handle the exceptions

caused by deadlock situations, due to the module Deadlock Handler. The Deadlock Handler can

apply a policy that is an application-dependent policy, in order to resolve deadlock situations.

29

Algorithm 1 Collision prevention protocol (Code for robotRi)
1: Initialisation:
2: PREVIOUS(RelZonei) := ⊥; Dagwait := ⊥; DELIVERED := ∅;

3: procedureRequest(Zonei)
4: TO-broadcast[REQUEST, Zonei , RELEASE, PREVIOUS(RelZonei)] {Ri TO-broadcasts a request of a new

zone Zonei and a release ofPREVIOUS(RelZonei)}
{Zonei is set to⊥ if Ri does not acquire to move any more}

5: whenTO-Deliver[REQUEST, Zonej , RELEASE, PREVIOUS(RelZonej)]
6: DELIVERED := DELIVERED ∪ (REQUEST, Zonej , RELEASE, PREVIOUS(RelZonej))
7: Dagarbiter := Arbiter(DELIVERED) {Apply the deterministic function Arbiter(DELIVERED) to decide the

wait-for relations}
8: Dagwait := Append-Graphs(Dagwait, Dagarbiter, DELIVERED) {Append algorithm}

{update Dagwait by removing the released requests and appending the new requests}

9: when the vertex ofRi in Dagwait becomes asinkvertex (has no outgoing edges)
10: return {all robots Rj that Ri waits for, has released their zones}
11: end when
12: end when
13: endRequest(Zonei)

Algorithm 2 Arbiter
1: function Arbiter(list)
2: Deadlock-detector(list) {If a deadlock situation then, the Deadlock detector calls the Deadlock Handler}

3: for each indexx from MIN INDEX(list) to MAX INDEX(list) such thatRx ∈ list do
4: for each indexy > x to MAX INDEX(list) such thatRy ∈ list do
5: if Deadlock riskpre(Rx, Ry) or Deadlock riskpost(Ry, Rx) then
6: Dagarbiter := Dagarbiter ∪ DirEdge(Rx, Ry) {Rx must wait-for Ry}
7: end if
8: if Deadlock riskpost(Rx, Ry) or Deadlock riskpre(Ry, Rx) then
9: Dagarbiter := Dagarbiter ∪ DirEdge(Ry, Rx) {Ry must wait-for Rx}

10: end if
11: if Conflict(Rx, Ry) and no edge (Rx, Ry) then
12: Dagarbiter := Dagarbiter ∪ DirEdge(Ry, Rx) {x, y represent the indexes of robots Rx , Ry in list and y

> x}
{a directed edge from a vertex of higher index in list to a vertex of lower index}

{The wait-for relation between two robots is set according to their indexes in list}
13: end if
14: end for
15: end for
16: return Dagarbiter
17: end

30

Algorithm 3 Append-Graphs
1: function Append-Graphs(Dagwait, Dagarbiter, list)
2: for all (RELEASE, PREVIOUS(RelZonej) ,⊥) ∈ list do
3: remove the vertex representingRj and its incoming edges fromDagwait {Update the current wait-for

graph Dagwait, since Rj releases the zonePREVIOUS(RelZonej)}
4: end for

5: for all Ry ∈ Dagarbiter do
6: for all Rx ∈ Dagwait do
7: if Zoney intersects withZonex then
8: if Zoney intersects withpost(Zonex) then
9: Deadlock-Handler(Rx, Zonex, Ry, Zoney) {Ry must wait-for Rx, but if Zoney intersects with

post(Zonex) then Ry calls the Deadlock-Handler}
10: else
11: Dagwait := Dagwait ∪ DirEdge(Ry, Rx) {Ry must wait-for Rx}
12: end if
13: end if
14: end for
15: end for
16: return Dagwait
17: end

Algorithm 4 Deadlock detector algorithm
1: function Deadlock-detector (list)
2: if Zonei ∈ list intersects withpre(Zonej) of Rj that does not have a request inlist then
3: Deadlock Handler(Rx, Zonex, Ry, Zoney)
4: end if

5: for all (Rx, Ry) ∈ list do
6: Deadlock situation 1:=

[Zonex ∩ pre(Zoney) , ∅] and [Zoney ∩ pre(Zonex) , ∅] and [post(Zonex) ∩ post(Zoney) = ∅]
7: Deadlock situation 2:=

[Zonex ∩ post(Zoney) , ∅] and [Zoney ∩ post(Zonex) , ∅] and [post(Zonex) ∩ post(Zoney) = ∅]
8: Deadlock situation 3:=

[Zonex ∩ pre(Zoney) , ∅] and [Zonex ∩ post(Zoney) , ∅] and [post(Zonex) ∩ post(Zoney) = ∅]
9: Deadlock situation 4:=

post(Zonex) ∩ post(Zoney) , ∅

10: if Deadlock situation 1 or Deadlock situation 2 or Deadlock situation 3 or Deadlock situation 4then
11: Deadlock Handler(Rx, Zonex, Ry, Zoney)
12: end if
13: end for
14: end

31

Algorithm 5 Deadlock Handler algorithm
1: function Deadlock-Handler (Rx, Zonex, Ry, Zoney)

2: Event 1 :=Zonex intersects withpre(Zoney) andRy does not request a zone
3: Event 2 :=Zonex intersects withpost(Zoney) andRx must wait forRy

4: if Event 1 or Event 2 or Deadlock situation 3then
5: Request Preemption (Rx, Zonex)
6: else
7: Request Preemption (the request with the higher index in DELIVERED) {Deadlock situation 1 or

Deadlock situation 2 or Deadlock situation 4}
8: end if

9: if no possible alternative chunkthen
10: throw Exception {There is no solution}
11: return Exception
12: end if
13: Zone:= Zonealternative

14: Request (Zone) {Deadlock Handler proposes an alternative chunk}
15: end

If the Deadlock Handler does not find a solution, because there is no available alternative

chunk then, the Deadlock Handler raises an exception.

5.2.4 Example.

Consider an application composed of the following six robots (Ri, Rj, Rk, Rp, Rq, Rs).

First batch The different intersections between the requested zones are represented in Fig-

ure.5.1.

Zonei intersects with (Zonek, Zones), Zonej intersects withZones, Zonek intersects with

(Zonei, Zones), andZonep does not intersect with any other requested zone.

• Each robot performs a total order broadcast of a message carrying the parameters of the

requested zones. Each robot TO-deliver the same list DELIVERED.

DELIVERED = [(Rk, Zonek), (Rq, Zoneq), (Rs, Zones), (Ri, Zonei), (Rp, Zonep), (Rj,

Zonej)].

• Generating the graph Arbiter. We assume in this example that there is no deadlock situ-

ations between the requested zones. Figure.5.2represents the generated directed acyclic

graphDagarbiter.

The graph ArbiterDagarbiter is generated as follows. The algorithm checks the intersection

of Zonek with the other requested zones in DELIVERED. Zonek intersects with bothZonei

32

Zones

Z
o
n
e k

Z
o
n
e
i

Z
o
n
e
j

Z
o
n
e
q

Zo
n
e p

Rs

Rk

Rj

Rp

Ri

Rq

Figure 5.1: A group composed of six robots.

Ri Rj

Rs

Rk Rq Rp

Pending

granted

w
ai
t-
fo
r

Figure 5.2: The directed acyclic graph generated by the Arbiter algorithm in the first batch.

33

Rp

Rk Rq

Ri
Rj

Rk
Rq

Rp

S
e
c
o
n

d
 b

a
tc

h

Rs granted

F
irs

t b
a
tc

h

p
e
n

d
in

g
Figure 5.3: The resulting wait-for graph in the second batch.

andZones. Since the indexes of requests in the list DELIVERED are ordered as follows:

index(Rk) < index(Rs) < index(Ri) then the directed edges between vertices representing

robots are added toDagarbiter as follows. A directed edge from the vertex(Ri) to the

vertex(Rs), a directed edge from the vertex(Rs) to the vertex(Rk), and a directed edge

from the vertex(Ri) to the vertex(Rk).

Then, the Arbiter algorithm checks the intersection ofZoneq with the other requested

zones, and adds a directed edge from the vertex(Rs) to the vertex(Rq). The graphDagarbiter

is presented in Figure.5.2.

• The wait-for graphDagwait is set to the graphDagarbiter generated by the first batch of the

protocol.

• In the wait-for graphDagwait the vertices (Rk, Rq, Rp) aresink vertices (has no outgoing

edges), so they do not wait for any robot. Therefore, they reserve the corresponding

zones, and become the owners of (Zonek, Zoneq, Zonep) respectively.

Second batch Let us consider that (Rk, Rq, Rp) have reached thepost-motionzones (post(Zonek),

post(Zoneq), post(Zonep)) respectively. Each of the robotsRk, Rq andRp performs a total or-

34

der broadcast of a message carrying a request for a next zoneZonek and a release of the zone

PREVIOUS(RelZonek). The intersections of the requested zones are as follows.Zonep intersects

with both (Zonek, Zoneq) but Zonek does not intersect withZoneq. The second batch proceeds

as follows.

• All robots deliver the list DELIVERED = [(Rp, Zonep), (Rq, Zoneq), (Rk, Zonek)].

• Update the wait-for graph by removing the following vertices: vertex(Rp), vertex(Rq), and

vertex(Rk) in addition to their incoming edges, and append the graphDagarbiter.

We assume that each of the following zones (Zonep, Zoneq, Zonek) do not intersect with

apost-motionzone (post(Zones), post(Zonei), post(Zonej)).

• Append-Graphs. In order to append the graphDagarbiter to the graphDagwait, the append

algorithm (Algorithm.3) checks the intersection between a zone that corresponds to a

vertex ofDagarbiter, and a zone that corresponds to a vertex ofDagwait, for all vertices

of both graphs. In this example, let us consider thatZonep intersects withZonej, then

Rp must wait forRj. The graphDagarbiter is appended to the graphDagwait by adding a

directed edge from the vertex(Rp) to the vertex(Rj). Figure.5.3 represents the resulting

wait-for graphDagwait in the second batch.

If there is no intersection between a zone corresponds to a vertex of the graphDagarbiter

and a zone corresponds to a vertex of the graphDagwait, then the resulting wait-for graph

is composed of two disjoint subgraphs, thus there is no wait-for relation between a robot

from one subgraph, and a robot from the other subgraph.

The following batches of the protocol take place exactly as explained in the second batch.

5.2.5 Proof of correctness

Lemma 1 If Deadlock riskpre(Ri, Rj), then Ri must wait for Rj.

Proof. The ruleRi waits for Rj ⇒ Rj releasesRelZonej beforeRi owns Zonei. Deadlock

riskpre(Ri, Rj)⇒ post(Zonei) does not intersect withpost(Zonej).

The released zone property shows that thepre-motionand themotion zone are included

within the released zone (see Chapter3).

Therefore,Zonei does not intersect withZonej, and the ruleRi must wait forRj does not

cause a collision betweenRi andRj. �

Lemma 2 If Deadlock riskpost(Ri, Rj) then Rj must wait for Ri.

35

Proof. The ruleRj waits for Ri ⇒ Ri releasesRelZonei beforeRj owns Zonej. Deadlock

riskpost(Ri, Rj)⇒ post(Zonei) does not intersect withpost(Zonej).

The released zone property shows thatpre(Zonei) andmotion(Zonei) are included within the

released zoneRelZonei (see Chapter3).

Therefore,Zonei does not intersect withZonej, and the ruleRj must wait forRi does not

cause a collision betweenRi andRj. �

Lemma 3 The possible deadlock situations are as follows. A situation that belongs to the set

DS ={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock situation 4},

a situation where a requested zone intersects with the pre-motion zone of a robot that has not

requested a zone, and a situation where a robot Ri must wait for a robot Rj, and Zonei intersects

with post(Zonej).

Proof. At first, We prove that each of the situations of the setDS is a deadlock situation.

Deadlock situation 1

• Ri ownspre(Zonei). If Ri waits forRj, thenRj ownsZonej andRi has ownedpre(Zonei).

The situation Deadlock riskpre(Rj, Ri) implies thatZonej intersects withpre(Zonei). Thus,

a collision may occur betweenRi andRj.

• Rj ownspre(Zonej). If Rj waits forRi, thenRi ownsZonei andRj has ownedpre(Zonej).

The situation Deadlock riskpre(Ri, Rj) implies thatZonei intersects withpre(Zonej). Thus,

a collision may occur betweenRi andRj.

So, neitherRi nor Rj can own the requested zone,⇒ Deadlock situation 1 is a deadlock

situation.

Deadlock situation 2

• If Ri waits for Rj, thenRj releasesRelZonej beforeRi owns Zonei. So, Rj still owns

post(Zonej) ⊂ S ubPost(Zonej). The situation Deadlock riskpost(Ri, Rj) implies thatZonei

intersects withpost(Zonej). Thus a collision may occur betweenRi andRj.

• If Rj waits for Ri, thenRi releasesRelZonei beforeRj owns Zonej. So, Ri still owns

post(Zonei) ⊂ S ubPost(Zonei). The situation Deadlock riskpost(Rj, Ri) implies thatZonej

intersects withpost(Zonei). Thus, a collision may occur betweenRi andRj.

So, neitherRi nor Rj can own the requested zone,⇒ Deadlock situation 2 is a deadlock

situation.

36

Deadlock situation 3

• If Ri waits for Rj, then the situation Deadlock riskpost(Ri, Rj) may cause a collision be-

tweenRi andRj (previous arguments).

• If Rj waits forRi, then the situation Deadlock riskpre(Ri, Rj) may cause a collision between

Ri andRj.

So, neitherRi nor Rj can own the requested zone,⇒ Deadlock situation 3 is a deadlock

situation.

Deadlock situation 4

• If Ri waits forRj, thenRj releasesRelZonej beforeRi ownsZonei, butRelZonej contains

a part ofpost(Zonej) denoted bySubPost(Zonej) (see chapter3). The part (post(Zonej)

⊂ SubPost(Zonej)) is still owned byRj. WhenRi ownsZonei then it ownspost(Zonei).

Thus, a possible collision may occur betweenRi and Rj, since thepost-motionzones

post(Zonei) andpost(Zonej) intersect.

• If Rj waits forRi then a possible collision may occur between the two robots. (previous

arguments)

So, neitherRi norRj can own the requested zone,⇒Deadlock situation 4 is a deadlock situation.

Consequently, the elements ofDS are deadlock situations.

We prove that a deadlock situation is one of the situations mentioned above in (Lemma3).

A zoneZonei is composed of three zones:pre-motion, motion, andpost-motionzone. So,

Zonei = pre(Zonei) ∪motion(Zonei) ∪ post(Zonei). The possible intersection situations between

two zonesZonei andZonej are analyzed as follows.

• pre(Zonei) ∩ pre(Zonej) = ∅. The intersection betweenpre(Zonei) and pre(Zonej) is

impossible. pre(Zonei) is the zone thatRi may occupy (footprint andεgps). The pre-

motionzones are supposed not intersecting initially. During the run of the protocol, the

pre-motionzonepre(Zonei) is entirely included within the previouspost-motionzone.

pre(Zonei) ⊂ PREVIOUS(post(Zonei)). If post(Zonei) intersects withpost(Zonej), then it

is a deadlock situation (Deadlock situation 4∈ DS).

• If pre(Zonei) intersects withpost(Zonej), then this situation is the Deadlock riskpost(Ri,

Rj) or the Deadlock riskpre(Rj, Ri) situations. So, in both situationsRj must wait forRi

according to Lemmas. [1, 2]. This situation is not a deadlock situation.

• If (Zonei ∩ Zonej) ⊂ (motion(Zonei) ∩ motion(Zonej)), then eitherRi waits forRj or Rj

waits forRi. So, this situation is not a deadlock situation.

37

• If motion(Zonei) intersects withpre(Zonej), then it is the Deadlock riskpre(Ri, Rj) situa-

tion. According to Lemma.1 Deadlock riskpre(Ri, Rj) is not a deadlock situation.

• If motion(Zonei) intersects withpre(Zonej), andmotion(Zonej) intersects withpre(Zonei),

then it is a deadlock situation (Deadlock situation 1∈ DS).

• If motion(Zonei) intersects withpost(Zonej), then it is the Deadlock riskpost(Ri, Rj) situa-

tion. According to Lemma.2 Deadlock riskpost(Ri, Rj) is not a deadlock situation.

• If motion(Zonei) intersects withpost(Zonej), andmotion(Zonej) intersects withpost(Zonei),

then it is a deadlock situation (Deadlock situation 2∈ DS).

• If post(Zonei) intersects withpost(Zonej), then it is a deadlock situation (Deadlock situa-

tion 4∈ DS).

• If motion(Zonei) intersects with bothpre(Zonej) andpost(Zonej), then it is a deadlock

situation (Deadlock situation 3∈ DS).

We prove that, a situation where a requested zone intersects with the pre-motion zone of a

robot that has not requested a zone, is a deadlock situation, and a situation where a robotRi

must wait for a robotRj, andZonei intersects withpost(Zonej), is a deadlock situation.

• If a robotRj has not requested a zone, then no wait-for relation betweenRj and a robotRi

is established. A robotRi initially knows the position (pre(Zonej)) of each robotRj in the

system. So, if a requested zoneZonei intersects with the pre-motion zone of a robotRj

that has not requested a zone, thenRi can not ownZonei, otherwise a collision between

Ri andRj occurs. Therefore, this situation is a deadlock situation, since neitherRi nor Rj

can move.

• If a requested zone by a robotRi intersects with thepost-motionzone of a robotRj, then

Rj must wait forRi (Lemma.2), otherwise, a collision may occur betweenRi andRj.

Therefore, if a requested zone by a robotRi intersects with thepost-motionzone of a

robotRj, andRi must wait forRj, then a deadlock situation occurs betweenRi andRj.

Consequently, the possible deadlock situations are as follows. A situation that belongs

to the setDS={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock

situation 4}, a situation where a requested zone intersects with the pre-motion zone of a robot

that has not requested a zone, and a situation where a robotRi must wait for a robotRj, and

Zonei intersects withpost(Zonej). �

Theorem 1 (Non triviality) An exception is raised only when a deadlock situation occurs.

38

Proof. An exception is raised only by the Deadlock Handler algorithm (Algorithm.5, line.10).

The Deadlock Handler returns an exception when it does not find a solution to resolve a dead-

lock situation.

The Deadlock Handler is called by the Deadlock detector algorithm (Algorithm.4, lines. [3,

11]). In Algorithm. 4, line. 3, the situation is that, a requested zone intersects with thepre-

motionzone of a robot that has not requested a zone. According to Lemma.3, this situation is

a deadlock situation.

In Algorithm. 4, line. 11, the situation belongs to the setDS, so it is a deadlock situation

according to Lemma.3.

The Deadlock Handler is also called by the Append-Graphs algorithm (Algorithm.3, line.9),

when a robotRy must wait for a robotRx, and Zoney intersects with thepost-motionzone

post(Zonex). This is a deadlock situation according to Lemma.3.

Consequently, an exception is raised only when a deadlock situation occurs.�

Lemma 4 The wait-for graph Dagarbiter has no cycles.

Proof. The algorithm Arbiter starts from a totally ordered set of elementslist. Let us consider

two different elements oflist (Ri, Zonei) and (Rj, Zonej). These two elements have two different

indexes, assuming that the index of (Rj, Zonej) is larger than the index of (Ri, Zonei). According

to the Arbiter algorithm Algorithm.2, if Zonei intersects withZonej then a directed edge is

added to the graphDagArbiter from the element of the higher index to the element of lower index

in list. Thus a directed edge from (Rj, Zonej) to (Ri, Zonei). Each index inlist corresponds to

one and only one element∈ list. If a directed edge from vertex(Rj) to vertex(Ri) ∈ Dagarbiter

then it is impossible that a directed edge from vertex(Ri) to vertex(Rj) belongs toDagarbiter.

The previous arguments are valid for more than two elements. Let us consider the case of

three elements. (Ri, Zonei), (Rj, Zonej), (Rk, Zonek) ∈ list and assume that each zone intersects

with the two other zones, and index(Ri, Zonei) < index(Rj, Zonej) < index(Rk, Zonek). Accord-

ing to Algorithm.2 the following directed edges belong to the graphDagarbiter. A directed edge

from vertex(Rk) to vertex(Rj), a second directed edge from vertex(Rj) to vertex(Ri), and a third

directed edge from vertex(Rk) to vertex(Ri). Since, a total order relation istransitivethen it is

impossible that a directed edge from vertex(Ri) to vertex(Rk) belongs toDagarbiter. �

Lemma 5 The wait-for graph Dagwait has no cycles.

39

Proof. The wait-for graphDagwait results from appending the graphs generated by the Arbiter

algorithm, in successive batches of the protocol. According to lemma.4 a graphDagarbiter has

no cycles. Appending Arbiter graphsDagarbiter is managed by the Append-Graphs algorithm

(Algorithm. 3) that removes the vertices which represent the robots that have released their

previous zones, and then Algorithm.3 appends the Arbiter graphDagarbiter that corresponds to

the requests of zones.

Consider two graphsDagarb1 generated in a batch numberr andDagarb2 generated in the

next batchr + 1.

The Append algorithm, at first, updatesDagarb1 by removing the vertices of robots that

released their previous zones. When a robotRi requests a zone,Ri must release the previous

zone. All the robots in the system update the wait-for graphDagwait consistently, by removing

the same set of vertices corresponding to the robots that have released their previous zones. The

consistency result is provided by the total order broadcast. (Algorithm.15, line.4).

∀ vertex(Ri), if vertex(Ri) ∈ Dagarb2 ⇒ vertex(Ri) < Dagarb1. Because,Ri must release

PREVIOUS(RelZonei) before requestingZonei, thus vertex(Ri) is removed fromDagarb1.

∀ vertex(Ri), if vertex(Ri) ∈ Dagarb1⇒ vertex(Ri) < Dagarb2. BecauseRi has not yet released

its zone, thusRi can not request a new zone. Consequently, the vertices ofDagarb1 andDagarb2

are distinct vertices.

The appending mechanism relies on adding a directed edge from a vertex ofDagarb2 to a

vertex ofDagarb1, if the requested zones by the corresponding robots are intersecting zones.

The appending mechanism implies the impossibility that an edge is directed from a vertex(Rk)

∈ Dagarb1 to a vertex(Rj) ∈ Dagarb2. Therefore, if the requested zone by a robotRi such that

vertex(Ri) ∈ Dagarb2 intersects withZonej of a robotRj such that vertex(Rj) ∈ Dagarb1, thenRi

must wait forRj. Consequently, no cycles can be created by appendingDagarb2 to the graph

Dagarb1. So, the wait-for graphDagwait has no cycle.�

Theorem 2 (Mutual Exclusion) If a requested zone Zonei of Ri intersects with a requested

zone Zonej of Rj then exclusively either Ri or Rj becomes the owner of its requested zone.

(Zonei ∩ Zonej , ∅)⇒ (Ri ownsZonei) XOR (Rj ownsZonej)

Proof. If a requested zoneZonei of a robotRi intersects with a zoneZonej of a robotRj, then

one of them waits for the other, because a directed edge is added to the graphDagarbiter from the

request of the higher index to the request of lower index in the list DELIVERED. (Algorithm.2,

line. 12).

Let us consider thatRi waits forRj, soRj releasesRelZonej, after thatRi ownsZonei. When

the robotRi is the owner ofZonei, the robotRj is deprived from its ownership to the zoneZonej.

40

The robotRj just keeps a part ofpost(Zonej) under its reservation.Zonei does not intersect with

the part ofpost(Zonej) that still reserved byRj, because:

1. pre(Zonei) ∩ post(Zonej) = ∅ (Proof by contradiction). Ifpre(Zonei) intersects with

post(Zonej), then this situation is the Deadlock riskpre(Rj, Ri) or the Deadlock riskpost(Ri,

Rj) situations. In both situationsRj must wait forRi according to Lemmas. [1, 2]. (Algo-

rithm. 2, line. 9). This leads to a contradiction, since the assumption is thatRi waits for

Rj.

2. motion(Zonei) ∩ post(Zonej) = ∅ (Proof by contradiction). If themotionzone ofRi in-

tersects with thepost-motionzone ofRj, then the situation is: Deadlock riskpost(Ri, Rj).

Thus,Rj must wait forRi which leads to a contradiction.

3. post(Zonei) ∩ post(Zonej) = ∅ (Proof by contradiction). If thepost-motionzones intersect,

then the situation is a deadlock situation (Deadlock situation 4∈ DS), which leads to a

contradiction.

The graphDagarbiter is generated based on the list DELIVERED , hence thesamelist (com-

position and order of requests) is delivered by all the robots.Dagarbiter = Arbiter(DELIVERED).

The Arbiter algorithm (Algorithm.2) performs deterministic computations starting from the list

DELIVERED, by adding a directed edge from the vertex that represents the robot of the higher

request index in DELIVERED to a vertex of lower request index, if the requested zones intersect.

If a deadlock situation is detected, then a request preemption policy is applied by the Deadlock

Handler algorithm, such that the request that has the higher index is preempted. So, the Arbiter

algorithm defines a deterministic function denoted by:Arbiter().

Consequently, all robots generate the same wait-for graphDagwait, and the ownership of

intersecting zones satisfies the mutual exclusion property.�

Theorem 3 (Liveness)If a robot Ri requests Zonei then eventually (Ri owns Zonei or an excep-

tion is returned).

Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception)

Proof. If a robotRi requests a zoneZonei, then:

1. If Zonei does not intersect with a zoneZonej, thenRi ownsZonei.

2. If Zonei intersects with a zoneZonej, then a directed edge is created between vertex(Ri)

and vertex(Rj) in the wait-for graphDagwait. According to Lemma.5 the graphDagwait

has no cycles. Therefore,Ri eventually ownsZonei.

41

3. If a deadlock situation is detected, then the Deadlock Handler is called. If the Dead-

lock Handler algorithm does not find a solution to resolve a deadlock situation, then an

exception is raised by the Deadlock Handler (Algorithm.5, line.10).

Therefore,Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception).�

5.3 Fault-tolerant collision prevention protocols

We consider the crash of robots. If a robotRj has crashed then, there exist some robots that are

blocked waiting forRj to releaseZonej. The set of robots that are blocked waiting forRj gets

larger as the time progresses (Snowballeffect).

Therefore, it is necessary to provide collision prevention protocols that tolerates the crash

of some robots of the system, and allows the system of robots to progress toward their goals.

In this Section, we provide two fault-tolerant collision prevention protocols, the first is pre-

emptive in the sense that a request of a robotRj is preempted ifRj is considered as a crashed

robot. Rj is considered crashed if it is suspected by the majority of robots in the system. The

second protocol is non-preemptive, so a request of a robotRj is not preempted, instead a robotRi

cancels a request (Ri, Zonei) if Ri suspectsRj andRi waits forRj (Zonei intersects withZonej).

5.3.1 Failure model

We consider that a robot can fail by crash and that crash is permanent. Acorrectrobot is defined

as a robot that never crashes. Afaulty robot is defined as a robot that might crashes.

A robotRi is provided with â S failure detectorFDi that triggers a SUSPICIONif it suspects

a robotRj after trusting it,FDi triggers also a TRUST if it trusts Rj after suspecting it.

We assume that themajorityof robots in the system are correct robots. The number of faulty

robots f is less than half of the robots of the system. (f < ⌈n2⌉), wheren is the total number of

robots.

5.3.2 A preemptive fault-tolerant collision prevention protocol

The idea of the preemptive protocol is as follows. A request of a robotRj is preempted if it is

considered as a crashed robot by the majority of robots, and ifRj has not owned its requested

zoneZonej. When the request (Rj, Zonej) is preempted,Rj restarts a new request ofZonej.

If Rj has ownedZonej then,Zonej is considered as a blocked zone, hence a request (Ri,

Zonei) of a robotRi that waits forRj andZonei intersects withZonej, is preempted. When the

request (Ri, Zonei) is preempted,Ri requests an alternative zone.

42

The preemptive protocol description

The collision prevention protocol in the face of failures, relies on a total order broadcast algo-

rithm, since it is fault-tolerant. The total order broadcast algorithm is defined in terms of two

primitivesTO-BroadcastandTO-Deliver. When requests areTO-Delivered, the Arbiter graph

Dagarbiter is generated as explained in Section.6.2.

Status of robots If Ri suspectsthat a robotRj has crashed, (whenRi ’s failure detector module

FDi triggers a suspicion after trustingRj) then,Ri TO-Broadcastsa message indicating thatRj

is suspected as a crashed robot.1

WhenRi ’s failure detector moduleFDi triggers a trust after suspectingRj) then,Ri TO-

Broadcastsa message indicating thatRj is trusted again.

When a robotRi TO-Delivers⌈n+1
2 ⌉ messages from different senders (majority of robots),

indicating that a robotRj is suspected as crashed,Ri sets thestatusof Rj to “crashed” (initially,

the status of a robot is set to the value “not-crashed”).

If a robotRi TO-Deliversa trustmessage concerning a robotRj then, the status ofRj is reset

to the value “not-crashed”.

Behavior of a robot Ri If Ri TO-Delivers⌈n+1
2 ⌉ messages from different senders (majority of

robots), indicating thatRi is suspected crashed, andRi has not ownedZonei, then the request of

Ri is preempted andRi restarts its request ofZonei.

If Ri TO-Delivers⌈n+1
2 ⌉messages from different senders (majority of robots) indicating that

Ri is suspected crashed, andRi has ownedZonei, thenRi ignores the messages, since other

robots considerZonei as a “blocked” zone and owned always byRi. WhenRi reaches thepost-

motionzonepost(Zonei), Ri releasesZonei. When a robotRj TO-Deliversthe release message

of Ri, Rj resets the status ofZonei to the value “unblocked” and resets the status ofRi to the

value “not-crashed”.

If the robotRi has actually crashed, thenZonei is held blocked. Because, it is impossible

for a robotRj to decidedeterministicallywhetherRi has crashed or not, in anasynchronous

distributed system. [14].

When a robotRi receives a release message from all the robotsRj thatRi waits for, it invokes

the procedure Reserve(Zonei).

Reserve(Zonei) A robot Ri starts the procedure Reserve(Zonei), when all the robotsRj that

Ri waits for, release their zonesZonej. In this preemptive protocol, a robot reserves a zone

via Total Order Broadcast, to ensure that the robots decide consistently whether a robotRi

1The suspicion ofRj does not mean thatRj has crashed.

43

has ownedZonei whenRi is suspected by the majority of robots in the system. So,Ri TO-

Broadcastsa message indicating thatRi reservesZonei. When a robotRi TO-Deliversa message

RESERVE(Zonei), Ri ownsZonei and sets the status ofRi to “not-crashed”. All robots agree that

Ri ownsZonei. Therefore, if the status ofRi changes to “crashed” afterRi has ownedZonei then,

Zonei is considered as a “blocked” zone and owned always byRi.

Crash Handler The Crash Handler of a robotRi is called, when the status of a robotRj be-

comes “crashed”, andRj has ownedZonej. In such a situation,Zonej is handled as a “blocked”

zone owned always byRj, sinceRi cannot decide deterministically whetherRj has really crashed

or not. If Rj has not really crashed then, the status ofZonej is reset to “unblocked” whenRj

eventually releasesZonej.

• If Zonei intersects withZonej (i.e., Ri waits forRj directly) then, the request (Ri, Zonei)

is preempted and the graphDagwait is updated by removing the vertex(Ri) and its related

(incoming and outgoing) edges fromDagwait. Also, for allRk that conflict withRj (Zonek

intersects withZonej), the vertex(Rk) with its related edges is removed fromDagwait.

The Crash Handler ofRi offers an alternative zoneZonei alternative to the robotRi, which

starts a request of the alternative zone. REQUEST(Zonei alternative). If there is no available

alternative chunk, then the Crash Handler algorithm raises an Exception.

• If Zonei does not intersect withZonej then, the wait-for graphDagwait is updated by

removing vertex(Rk) with its related (incoming and outgoing) edges, for all robotsRk

such thatZonek intersects withZonej. ThenRi continues the execution of the protocol.

Deadlock detector The deadlock detector, in presence of failures, is additionally, required to

check the intersection of a requested zone with a “blocked” zone. The status of a zoneZonej

is set to the value “blocked” when the status of the ownerRj becomes “crashed” andRj has

ownedZonej. The status of a zone is remained “blocked” until a RELEASE(Zonej) message of

the robotRj is TO-delivered.

Append-Graphs The Append-Graphs algorithm, in presence of failures, is required to update

the status of a “blocked” zoneZonej. The Append-Graphs algorithm sets the status ofZonej

to the value “unblocked”. The algorithm Append-Graphs is responsible for handling a released

zone, by removing the corresponding vertex and its related edges from the graphDagwait before

appending the graphDagarbiter. Thus, Append-Graphs algorithm unblocks a zone, when the

owner releases the blocked zone.

44

Algorithm 6 Fault tolerant Collision prevention protocol (Code for robotRi)
1: Initialisation:
2: PREVIOUS(RelZonei) := ⊥; Dagwait := ⊥; DELIVERED := ∅;
3: for all robotsRj do
4: Status(Rj) := “not-crashed”
5: count[Rj] := 0
6: end for

7: procedureRequest(Zonei)
8: TO-broadcast[REQUEST, Zonei , RELEASE, PREVIOUS(RelZonei)]

9: whenTO-Deliver[REQUEST, Zonej , RELEASE, PREVIOUS(RelZonej)]
10: DELIVERED := DELIVERED ∪ (REQUEST, Zonej , RELEASE, PREVIOUS(RelZonej))
11: Dagarbiter := Arbiter(DELIVERED)
12: Dagwait := Append-Graphs(Dagwait, Dagarbiter, DELIVERED)

13: when the vertex ofRi in Dagwait becomes asinkvertex (has no outgoing edges)
14: return {all robots Rj that Ri waits for, has released their zones}
15: end when
16: end when
17: endRequest(Zonei)

18: procedureReserve(Zonei)
19: TO-Broadcst(RESERVE(Zonei))
20: endReserve(Zonei)

21: task Status(Ri)
22: whenTO-Deliver(m)
23: if m is SUSPECT(Ri) then
24: TO-Broadcast(TRUST, Ri) {Ri TO-broadcasts a message to indicate that Ri has not crashed}
25: count[Ri] := count[Ri] + 1
26: if count[Ri] > ⌈ n+1

2 ⌉ andRi does not ownZonei then
27: update the wait-for graphDagwait by removing vertex(Ri) and its related edges
28: Restart(Ri , Zonei) {Ri restarts the procedure Request(Zonei)}
29: count[Ri] := 0
30: Status(Ri) := “not-crashed”
31: end if
32: end if
33: if m is TRUST(Ri) then
34: count[Ri] := 0 {resets the counter when Ri is trusted}
35: Status(Ri) := “not-crashed”
36: end if
37: if m is RESERVE(Zonei) then
38: Ri ownsZonei
39: count[Ri] := 0 {all robots agree that Ri owns Zonei}
40: Status(Ri) := “not-crashed”
41: whenRi reaches thepost-motionzonepost(Zonei)
42: PREVIOUS(RelZonei) := Zonei except the place thatRi may possibly occupy.
43: end when
44: end if
45: end when
46: end

45

Algorithm 7 Status algorithm
1: task Status(Rj)
2: if (Status(Rj) =“not-crashed”) and suspect(Rj) then
3: TO-Broadcast(SUSPECT, Rj) {Ri TO-broadcasts a message that Rj is suspected, when FDi suspects Rj}
4: end if
5: if (Status(Rj) =“crashed”) and trust(Rj) then
6: TO-Broadcast(TRUST, Rj) {Ri TO-broadcasts a message that Rj is trusted, when FDi trusts Rj}
7: end if

8: whenTO-Deliver(m)
9: if m is SUSPECT(Rj) then

10: count[Rj] := count[Rj] + 1
11: if count[Rj] > ⌈ n+1

2 ⌉ then
12: Status(Rj) := “crashed”
13: end if
14: end if
15: if m is TRUST(Rj) then
16: count[Rj] := 0 {resets the counter when Rj is trusted}
17: Status(Rj) := “not-crashed”
18: end if
19: if m is RESERVE(Zonej) then
20: Status(Rj) := “not-crashed”
21: count[Rj] := 0 {sender(m) is Rj , thus the Status of Rj is updated by all robots}
22: Rj ownsZonej {All robots agree that Rj owns Zonej}
23: end if
24: if (Status(Rj) =“crashed”) and (Rj does not ownZonej) then
25: Request Preemption of (Rj , Zonej) {The request of (Rj , Zonej) is preempted}
26: update the wait-for graphDagwait by removing vertex(Rj) and its related edges
27: count[Rj] := 0
28: Status(Rj) := “not-crashed”
29: end if
30: if (Status(Rj) = “crashed”) and (Rj ownsZonej) then
31: Crash-Handler(Rj , Zonej) {In such a situation, Zonej is held owned by Rj}
32: end if
33: end when
34: end

Algorithm 8 Restart algorithm
1: procedureRestart(Ri , Zonei)
2: Request Preemption (Ri , Zonei) {The request (Ri , Zonei) is preempted, thus Ri must restart the request of

Zonei}
3: update the wait-for graphDagwait by removing vertex(Ri) and its related edges
4: Request(Zonei) {Ri restarts the protocol by Request(Zonei) with PREVIOUS(RelZonei)=⊥}
5: end

46

Algorithm 9 Deadlock detector algorithm
1: function Deadlock-detector (list)
2: if Zonei ∈ list intersects with “blocked” zonethen
3: return true
4: end if

5: if Zonei ∈ list intersects withpre(Zonej) of Rj that does not have a request inlist then
6: Deadlock Handler(Rx, Zonex, Ry, Zoney)
7: end if

8: for all (Rx, Ry) ∈ list do
9: Deadlock situation 1:=

[Zonex ∩ pre(Zoney) , ∅] and [Zoney ∩ pre(Zonex) , ∅] and [post(Zonex) ∩ post(Zoney) = ∅]
10: Deadlock situation 2:=

[Zonex ∩ post(Zoney) , ∅] and [Zoney ∩ post(Zonex) , ∅] and [post(Zonex) ∩ post(Zoney) = ∅]
11: Deadlock situation 3:=

[Zonex ∩ pre(Zoney) , ∅] and [Zonex ∩ post(Zoney) , ∅] and [post(Zonex) ∩ post(Zoney) = ∅]
12: Deadlock situation 4:=

post(Zonex) ∩ post(Zoney) , ∅

13: if Deadlock situation 1 or Deadlock situation 2 or Deadlock situation 3 or Deadlock situation 4then
14: Deadlock Handler(Rx, Zonex, Ry, Zoney)
15: end if
16: end for
17: end

Algorithm 10 Crash Handler algorithm
1: function Crash-Handler(Rj , Zonej)
2: status(Zonej) := “blocked” {all robots update the status of Zonej to “blocked”}
3: for all Rk such thatZonek intersects withZonej do
4: update the wait-for graphDagwait by removing vertex(Rk) and its related edges.
5: end for

6: if Zonei intersects withZonej then
7: Request Preemption(Ri , Zonei) {The request (Ri , Zonei) is canceled}
8: if no possible alternative chunkthen
9: throw Exception {There is no solution}

10: return Exception
11: end if

12: Zonei := Zonei alternative {The Crash Handler proposes an alternative chunk for Ri}
13: Request (Zonei)
14: end if
15: end

47

Algorithm 11 Append-Graphs
1: function Append-Graphs(Dagwait, Dagarbiter, list)
2: for all (RELEASE, PREVIUOUS(RelZonej) ,⊥) ∈ list do
3: if status(PREVIUOUS(RelZonej)) = “blocked” then
4: status(PREVIUOUS(RelZonej)) := “unblocked”
5: remove the vertex(Rj) from Dagwait
6: count[Rj] := 0 {Rj has not crashed}
7: Status(Rj) := “not-crashed”
8: else
9: remove the vertex(Rj) and its incoming edges fromDagwait

10: end if
11: end for

12: for all Ry ∈ Dagarbiter do
13: for all Rx ∈ Dagwait do
14: if Zoney intersects withZonex then
15: if Zoney intersects withpost(Zonex) then
16: Deadlock-Handler(Rx, Zonex, Ry, Zoney) {Ry must wait-for Rx, but if Zoney intersects with

post(Zonex) then Ry calls the Deadlock-Handler}
17: else
18: Dagwait := Dagwait ∪ DirEdge(Ry, Rx) {Ry must wait-for Rx}
19: end if
20: end if
21: end for
22: end for
23: return Dagwait
24: end

Proof of correctness for the preemptive fault-tolerant protocol

We prove that the preemptive protocol satisfies thesafetyproperty (Mutual Exclusion), and the

Non-Triviality property, also we prove that the Liveness property holds if robots are provided

with a failure detector of clasŝP.

Theorem 4 (Mutual Exclusion) If a requested zone Zonei of Ri intersects with a requested

zone Zonej of Rj then exclusively either Ri or Rj becomes the owner of its requested zone.

(Zonei ∩ Zonej , ∅)⇒ (Ri ownsZonei) XOR (Rj ownsZonej)

Proof. The total order broadcast algorithm, guarantees that all robotsTO-Deliverthe requests

and the reservations in the same total order, in presence of failures (crash of robots).

The protocol relies on âS failure detector, with majority of correct robots. The number

of faulty robots f is less than half of the robots of the system. (f < ⌈n2⌉), wheren is the total

number of robots. The problem of total order broadcast isequivalentto the consensus problem,

and it has been shown in [6], that^S is the weakest class of failure detector that allows solving

the consensus problem in an asynchronous system prone to process crashes, if the majority of

processes are correct.

48

If a robot Ri suspects a robotRj, thenRi TO-Broadcastsa suspicion message thatRj has

crashed. All robotsTO-Deliverssuspicion messages thatRj has crashed in the same total order.

WhenRi TO-Delivers(⌈n+1
2 ⌉) suspicion messages thatRj has crashed, there are two situa-

tions:

• If Rj has not ownedZonej, then the request ofRj is preempted.

– If Rj has not really crashed, then it restarts a request ofZonej.

– If Rj has really crashed, then it just occupies thepre(Zonej). If a robotRi requests

a zoneZonei that intersects withpre(Zonej), then the Deadlock detector detects this

situation (Algorithm.9, line.6), hence the Deadlock Handler is called to resolve this

deadlock situation by proposing an alternative chunk toRi.

• If Rj has ownedZonej, thenZonej is considered as a blocked zone. Hence, no robot other

thanRj can ownZonej.

– If Rj has not really crashed, thenRj releases the blocked zone whenRj reaches

post(Zonej).

– If Rj has really crashed, thenZonej remains blocked.

The ownership ofZonej byRj is decided consistently by all robots (procedure Reserve(Zonej)),

since the reserving a zone is performed relying on the total order broadcast.

Consequently, the ownership of intersecting zones satisfies the mutual exclusion property,

and thesafetyproperty is satisfied.�

Theorem 5 (Liveness)If a robot Ri is a correct robot, Ri requests Zonei then eventually (Ri

owns Zonei or an exception is returned), with the additional assumption that robots are provided

with ^P failure detector. TheLivenessproperty does not hold if robots are provided witĥS
failure detector.

Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception), with the additional assumption that robots

are provided witĥ P failure detector.

Proof. Robots are provided witĥP failure detector. The STRONGCOMPLETENESSproperty

of the failure detector, implies that there is a time after which every faulty robot is permanently

suspected by all correct robots. Therefore, eventuallyRi (correct robot) suspects permanently a

faulty robotRj.

If Ri is suspected by the majority of robots (> ⌈n+1
2 ⌉), then the request ofRi is preempted,

andRi restarts its request ofZonei. Robots are provided with âP failure detector (STRONG

49

COMPLETENESSand EVENTUAL STRONG ACCURACY). The EVENTUAL STRONG ACCU-

RACY property of the failure detector, implies that, there is a time after which correct robots are

not suspected by any correct robot. Thus, ifRi is a correct robot, then eventually, it will not be

suspected by any correct robot. Since, there are at least⌈n+1
2 ⌉ correct robots in the system, then

eventuallyRi will not be suspected by the majority of robots, so eventually,Ri owns a requested

zoneZonei.

If Ri waits for a robotRj, such thatRj is suspected, as a crashed robot, by the majority of

robots, then:

• If Rj has not ownedZonej, then the request ofRj is preempted, and consequently, the

wait-for relation betweenRi andRj is canceled.

• If Rj has ownedZonej, thenZonej is considered as a blocked zone. There are two situa-

tions:

– If Zonei intersects withZonej then, the Crash Handler preempts the request (Ri,

Zonei) (Algorithm. 10, line. 7), and thenRi restarts a request of an alternative zone.

If the Crash Handler does not find an alternative chunk, then an exception is re-

turned. (Algorithm.10, line.9).

– If Zonei does not intersect withZonej then, the wait-for graphDagwait is updated,

and a vertex(Rk) is removed with its edges, for robotsRk such thatZonek intersects

with Zonej. Then,Ri continues the execution of the protocol.

Therefore, if a robotRi is a correct robot,Ri requestsZonei ⇒ ^ (Ri ownsZonei or Excep-

tion), with the additional assumption that robots are provided with^P failure detector.

TheLivenessproperty does not hold if robots are provided with^S failure detector, because

the EVENTUAL WEAK ACCURACY property implies that, there is a time after whichsome

correct robot is never suspected by any correct robot. So, the ACCURACY property does not

hold for all correct robots, and a correct robot might be suspected by correct robots.�

Lemma 6 The possible deadlock situations are the same deadlock situations presented in Lemma.3,

(failure-free protocol) with the additional deadlock situation, that occurs if a requested zone in-

tersects with a “blocked” zone.

Proof. If a requested zoneZonei intersects with a blocked zoneZonej, then this situation is

a deadlock situation. Because, the robotRj is suspectedas a crashed robot, and it is, deter-

ministically impossible to distinguish a crashed robot from a very slow one, in asynchronous

distributed systems prone to crash failures. Thus,Zonej is considered as a “blocked” zone for

Rj, andZonei that intersects withZonej creates a deadlock situation.�

50

Theorem 6 (Non triviality) An exception is raised only when a deadlock situation occurs.

Proof. An exception is raised by the Deadlock Handler algorithm (the same as for the failure-

free protocol). The Deadlock Handler returns an exception when it does not find a solution to

resolve a detected deadlock situation.

Additionally, the fault-tolerant protocol raises an exception when the Crash Handler module

does not find a solution for the deadlock situation presented in Lemma.6, where a requested

zone intersects with a “blocked” zone. (Algorithm.10, line.9).

Consequently, an exception is raised only when a deadlock situation occurs.�

5.3.3 A non-preemptive fault-tolerant collision prevention protocol

The non-preemptive fault-tolerant collision prevention protocol is based on the following idea.

If a robotRi waitsdirectly for a robotRj (Zonei intersects withZonej), andRi suspects thatRj

has crashed, thenRi cancels the request (Ri, Zonei) and requests an alternative zone that does not

intersect withZonej. The difference with the previous fault-tolerant protocol is that, the request

of a robotRi can not be preempted due to the vote of other robots in the system, howeverRi

cancels its request ofZonei (due to a decision ofRi) whenRi suspects the robotRj.

Proof of correctness for the non-preemptive protocol

We prove that the non-preemptive fault-tolerant protocol satisfies the properties,safetyproperty

(Mutual Exclusion), the Liveness property, and the Non-Triviality property.

Theorem 7 (Mutual Exclusion) If a requested zone Zonei of Ri intersects with a requested

zone Zonej of Rj then exclusively either Ri or Rj becomes the owner of its requested zone.

(Zonei ∩ Zonej , ∅)⇒ (Ri ownsZonei) XOR (Rj ownsZonej)

Proof. If a robotRi suspects a robotRj andZonei intersects withZonej then,Ri cancels the

request (Ri, Zonei) and then the Alternative Handler algorithm proposes an alternative chunk

for Ri that does not intersect withZonej.

Therefore, the non-preemptive collision prevention protocol satisfies the safety property of

the system, that no collision can occur between robots.

(Zonei ∩ Zonej , ∅)⇒ (Ri ownsZonei) XOR (Rj ownsZonej). �

Theorem 8 (Liveness)Ri is a correct robot, Ri requests Zonei then eventually (Ri owns Zonei

or an exception is returned).

Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception).

51

Algorithm 12 Non-preemptive fault tolerant collision prevention protocol (Code for robotRi)
1: Initialisation:
2: PREVIOUS(RelZonei) := ⊥; Dagwait := ⊥; DELIVERED := ∅;

3: procedureRequest(Zonei)
4: TO-broadcast[REQUEST, Zonei , RELEASE, PREVIOUS(RelZonei)]

5: whenTO-Deliver[REQUEST, Zonej , RELEASE, PREVIOUS(RelZonej)]
6: DELIVERED := DELIVERED ∪ (REQUEST, Zonej , RELEASE, PREVIOUS(RelZonej))
7: Dagarbiter := Arbiter(DELIVERED)
8: Dagwait := Append-Graphs(Dagwait, Dagarbiter, DELIVERED)

9: if SUSPECT(Rj) andZonei intersects withZonej then
10: Cancel request (Ri , Zonei)
11: end if

12: Alternative(Ri , Zonei)

13: when the vertex representingRi in Dagwait becomes asinkvertex
14: return
15: end when
16: end when
17: endRequest(Zonei)

18: procedureReserve(Zonei)
19: Ri reservesZonei {Ri owns Zonei}
20: whenRi reaches thepost-motionzonepost(Zonei)
21: PREVIOUS(RelZonei) := Zonei except the place thatRi may possibly occupy.
22: end when
23: endReserve(Zonei)

Algorithm 13 Cancel-Request algorithm
1: procedureCancel Request(Ri , Zonei)
2: TO-Broadcast(CANCEL, Ri , Zonei) {The request (Ri , Zonei) is canceled}

3: whenTO-Deliver(CANCEL, Ri , Zonei)
4: update the wait-for graphDagwait by removing vertex(Ri) and its related edges
5: end when
6: end

Algorithm 14 Alternative Handler algorithm
1: function Alternative(Ri , Zonei)
2: if no possible alternative chunkthen
3: throw Exception {There is no solution}
4: return Exception
5: end if

6: Zonei := Zonei alternative {The Alternative Handler proposes an alternative chunk for Ri}
7: Request (Zonei)
8: end

52

Proof. If a robotRi requestsZonei andRi waits for some robotRj then:

• If the failure detectorFDi of Ri suspects thatRj has crashed andZonei intersects with

Zonej then,Ri cancels its request (Ri, Zonei) and requests an alternative zone. If there

is no available alternative chunk, then an exception is raised by the Alternative Handler

algorithm. (Algorithm.14, line.3).

• If the failure detectorFDi trustsRj then,Ri waits forRj until Rj releasesZonej.

A request (Ri, Zonei) cannot be preempted neither by a robotRk nor by a vote of other robots in

the system. The robotRi cancels the request (Ri, Zonei).

Robots are provided with âS failure detector (STRONG COMPLETENESSand EVENTUAL

STRONG ACCURACY). The STRONG COMPLETENESSproperty of the failure detector, implies

that there is a time after which every faulty robot is permanently suspected by all correct robots.

Therefore, eventuallyRi (correct robot) suspects permanently a faulty robotRj and cancels the

request (Ri, Zonei).

Consequently, if a correct robotRi requestsZonei then eventually (Ri owns Zonei or an

exception is returned).�

Lemma 7 The possible deadlock situations are the same deadlock situations presented in Lemma.3,

(failure-free model) with the additional deadlock situation, that occurs if a robot Ri suspects a

robot Rj and Zonei intersects with Zonej.

Proof. If a robotRi suspects that a robotRj has crashed andZonei intersects withZonej then, a

possible deadlock situation may occurs, if the robotRi keeps waiting forRj. Because,Ri cannot

determine whetherRj has crashed or not.�

Theorem 9 (Non triviality) An exception is raised only when a deadlock situation occurs.

Proof. In addition to exceptions raised by the Deadlock Handler algorithm which are dis-

cussed in the failure-free protocol (Section.6.2, Algorithm.5), an exception is raised by the non-

preemptive fault-tolerant protocol (the Alternative Handler algorithm. Algorithm.14, line. 3).

The Alternative Handler algorithm raises an exception when it does not find an alternative chunk

for a robotRi that suspectsRj andZonei intersects withZonej.

Consequently, an exception is raised only when a deadlock situation occurs.�

53

5.4 Performance analysis

We study the performance of our protocol in terms of the time needed by a robotRi to reach

a given destination when robots are active (robots do not sleep), in the failure-free model. We

compute the average effective speed of robots executing our collision prevention protocol. For

simplicity, we assume in this section that the physical dimensions of robots are too small such

that a robot can be considered as a point in the plane. The geometrical incertitude related to the

positioning system, translational and rotational movement are neglected.

5.4.1 Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted by:Vmot. We calculate the average time

required for a robotRi to reserve and move along a chunk of lengthDch with a physical speed

Vmot.

When a robot requests a zone, it releases the previously owned zone thus, a robot waits at

most for (n− 1) robots wheren is the number of robots of the system. So, the average number

of robots thatRi waits on is:

navg =
n− 1

2
(5.1)

Communication delays. The average communication delays in the system is denoted:Tcom.

When all the robots are active running the protocol (robots do not sleep), then the time needed

to reserve and move along a chunk denotedTch is computed as the sum of the time needed by

each of the following steps:

1. The delay of the Total Order Broadcast algorithm denoted by:TAB. We assume that the

delay of the total order broadcast algorithm is:T n

2. The time needed for local computations by robots (to build thewait-for graph) is ne-

glected.

3. The time to receive the release messages fromnavg robots each of which has owned its

zone for Dch

Vmot
time units is:navg(Tcom+

Dch

Vmot
).

4. The time needed byRi to move along a chunk is:Dch

Vmot
.

Therefore, the time needed to reserve and move along a chunkTch is:

Tch = Tn+ navg(Tcom+
Dch

Vmot
) +

Dch

Vmot
(5.2)

So,

Tch = Tn+
n− 1

2
Tcom+ (

n+ 1
2

)
Dch

Vmot
(5.3)

54

5.4.2 Average effective speed

In this subsection, we compute the average effective speedV of a robotRi as a function of the

chunk lengthDch and of the number of robotsn in the system. A robotRi makes on averageDtrip

Dch

steps to move along a path of lengthDtrip. The time to progress a distanceDtrip is:

Ttrip =
Dtrip

Dch
[Tn+

n− 1
2

Tcom+ (
n+ 1

2
)

Dch

Vmot
] (5.4)

The speedV is Dtrip

Ttrip
. Thus, the average effective speedV is:

V =
Dch

Tn+ n−1
2 Tcom+ (n+1

2Vmot
)Dch

(5.5)

The previous relation shows that the effective speed is a function of the chunk length and the

number of robotsn , also the effective speed depends on some system-based fixed parameters

such as the communication delaysTcom and the physical speed of robotsVmot. The effective

speed depends also on the performance of the Total Order Broadcast algorithm.

5.4.3 Average effective speed vs Chunk length

In this Subsection, we focus on the relation between the average effective speed and the chunk

length for a given number of robotsn.

The first derivative of the function effective speed with respect to the chunk length is:

dV
dDch

=

Tn+ n−1
2 Tcom

[Tn+ n−1
2 Tcom+ (n+1

2Vmot
)Dch]2

(5.6)

The derivative of the effective speed with respect to the chunk length is always positive. So,

the effective speed increases as the chunk length increases.

The explanation is that a robotRi waits at most forn − 1 robots (in a static group ofn

robots) to move along each chunk of its path.Ri needs to do a certain number of steps to reach

a destination, and the number of steps is a function of the chunk length. When the chunk length

increases, the number of steps decreases. Therefore, the average effective speedV increases

with the chunk lengthDch.

Equation.5.5 implies that the average effective speed approaches toward the value2Vmot

n+1 as

the chunk length tends to infinity.

lim
Dch→∞

V =
2

n+ 1
Vmot (5.7)

Figure.5.4 represents the relationship between the speed and the chunk length for different

values of number of robots. The average effective speed of robots increases as the chunk length

increases for a given number of robots, and there is an optimal value of the chunk length that

55

0 0.8 1.6 2.4

0.25

0.5

0.75

1

A
v
e
ra

g
e
 E

ff
e
c
ti

v
e
 S

p
e
e
d
 [
m

/
s
]

Chunk length [m]

n = 10[robot]

n = 2[robot]

n = 3[robot]

n = 6[robot]

n = 60[robot]

n = 1[robot]

T = 50 [ms]

Tcom =10 [ms]

Vmot = 1[m/s]

Figure 5.4: Average effective speed vs chunk length.

maximize the average effective speed for a given number of robots. That optimal value of the

average effective speed, remains constant as the chunk length getting larger than the optimal

value of the chunk length. The average effective speed has a horizontal asymptote at2Vmot

n+1

Numerical values. The values of the fixed system parameters are:Tcom= 10[ms], the physical

speedVmot = 1[m/s]. We consider that the time required by the Total Order Broadcast algorithm

is: T n whereT = 50[ms]. The values of the number of robots from one robot until 60 robots,

and the chunk length varies from zero to 3 meters. The effective speed increases as the chunk

length increases until it reaches a maximal value. Figure.5.4shows that, in a case of a system

composed of 3 robots for example, the maximal average effective speed is 0.48[m/s] which

corresponds to optimal chunk length≈ 2[m].

5.4.4 Average effective speed vs number of robots

In this Subsection, we focus on the relation between the average effective speedV with respect

to the total number of robotsn in the system for a given value of the chunk length. The relation

average effective speed vs number of robots is presented in Equation.5.5. The effective speed

decreases as the number of robots increases for a given chunk length, because a robotRi must

wait for more robots.

56

0 2.5 5 7.5 10

0.25

0.5

0.75

1

A
v
e
ra

g
e
 E

ff
e
c
ti

v
e
 S

p
e
e
d
 [
m

/
s
]

Number of robots [robot]

Dch = 1[cm]

5[cm]

envelop of the set of curves

10[cm
]

1[m
]

Figure 5.5: Average effective speed vs number of robots.

The derivative of the effective speed with respect to the number of robots is:

dV
dn
=

−Dch(T +
Tcom

2 +
Dch

2Vmot
)

[Tn+ n−1
2 Tcom+ (n+1

2Vmot
)Dch]2

(5.8)

Figure5.5shows the variation of the average effective speed with respect to the number of

robots for different values of the chunk length.

Numerical values. The values of the fixed system parameters are:Tcom= 10[ms], the physical

speedVmot = 1[m/s], T = 50[ms]. The values of the number of robots varies starting from a

system with a single robot to a system with 10 robots, for different values of chunk length from

1[cm] to 10 meters. (Figure.5.5).

The set of curves in Figure.5.5 have an envelop curve, given by the following equation:

V = 2Vmot

n+1

• The envelop curve corresponds to the average effective speed for very high values of the

chunk length (tends to infinity), since the average effective speed approaches to a constant

value for a given number of robots in the system.

• All curves in Figure.5.5approaches to zero, when the number of robots tends to infinity.

(horizontal asymptote at effective speed = 0).

57

5.5 Conclusion

In this chapter, we presented a fail-safe mobility management and achieved a collision preven-

tion platform for asynchronous cooperative mobile robots in a closed group model.

Our fail-safe platform consists of a time-free collision prevention protocols, which guarantee

that no collision can occur between robots. The collision prevention protocols are based on a

distributed path reservation system. Each robot in the system knows the composition of the

group, and can communicate with all robots of the group.

We have analyzed the performance of the protocol in terms of average effective speed of

robots as a function of the chunk length and the number of robots. The effective speed depends

also on some system parameters such as the average communication delays and the physical

speed of robots. The performance analysis show that the average effective speed of robots

increases with the chunk length for a given number of robots, and there is an optimal value of

the chunk length that maximizes the average effective speed for a given number of robots. The

performance analysis show also that the maximal value of the effective speed, remains constant

while the chunk length is getting larger than the optimal value. The average effective speed

decreases as the number of robots increases for a given chunk length. The effective speed of

robots approaches to zero as the number of robots becomes very large.

This chapter presented collision prevention protocols for a closed group of mobile robots,

and proved the correctness of the protocols and that they satisfy the properties of the collision

prevention problem presented in Chapter4 . The first protocol does not consider the crash of

robots, while the two other protocols are fault-tolerant protocols designed for robotic systems

prone to robot crashes.

The two fault-tolerant collision prevention protocols rely on^S failure detector and tolerate

the failures of half of the robots. One of the fault-tolerant collision prevention protocols is

preemptive in the sense that a request of a robot can be preempted due to a decision voted by

the other robots of the group, if the robot is suspected as a crashed robot. The second protocol

is non-preemptive, so a robotRi cancels its own request when it suspects a robotRj as a crashed

robot, if Ri waits forRj.

Both protocols tolerate the failures of half of the robots. The preemptive protocol reduces

the negative drawback of wrong suspicions, since a robot is considered as a crashed robot if it is

suspected by the majority of robots, while the non-preemptive protocol has the potential to do

more wrong suspicions than the preemptive protocol, since a robotRj is considered as a crashed

robot based on the suspicion of a robotRi individually, but the reaction against suspicion affects

the robotRi if it has wrongly suspectedRj, soRi cancels its request and restarts a new request of

an alternative zone. On the other hand, the decision of suspecting a robotRj, in the preemptive

protocol, affects the robotRj, if it has not owned its requested zoneZonej, so Rj is obliged

58

to retry again and restarts its request of the same zoneZonej. The preemptive and the non-

preemptive protocols exhibit the same behavior if a suspected robotRj has owned its requested

zoneZonej, so a robotRi that waits forRj and Zonei intersects withZonej, must cancel its

request and restarts a new request of an alternative zone, sinceZonej is considered as a blocked

zone until eventuallyZonej is released ifRj has not really crashed.

Both protocols ensure thesafetyproperty that no collision between robots can occur, based

on a^S failure detector with the majority of correct robots. However, the liveness property

is ensured by the non-premtive protocol, while the preemptive protocol requires^P failure

detector in order to ensure the liveness property.

On the other hand, the non-preemptive protocol requires more trials to request an alternative

zone by a robotRi if it suspectsRj, thus more exceptions are raised, while in the preemptive pro-

tocol, a robotRi requests an alternative zone when it conflicts with a robotRj that is suspected

by the majority of robots and only ifRj has owned its requested zoneZonej.

59

Chapter 6

Locality-preserving collision prevention
protocol for a dynamic group model

6.1 Dynamic group model

We consider a dynamic system of mobile robots S ={Ri} in which each robot has a unique

identifier. The total composition of the system, of which robots have only a partial knowledge,

can change dynamically. Robots have access to a global positioning device that, when queried

by a robotRi, returnsRi ’s position with a bounded errorεgps. The robots communicate using

wireless communication with a limited rangeDtr . If the distance between two robotsRi andRj

is less thanDtr , then the two robots can communicate with each other. Communications assume

retransmissions mechanisms such that communication channels are reliable. The system is

asynchronous in the sense that there is no bound on communication delays, processing speed

and on robots speed movement. Each robot has an access to a neighborhood discovery primitive

namedNDiscover.

Neighborhood discovery (NDiscover)

Characteristics. The neighborhood discovery primitive calledNDiscover is a function

that enables a robot to detect its local neighbors. These neighbors are within one communication

hop and satisfy a certain known predefined condition.

Implementation. NDiscovercan be implemented as the traditional neighborhood discov-

ery primitive of mobile ad hoc networks. An implementation ofNDiscoverprimitive can be

performed by Geocasting1 a ping message in a geographical region centered on the robot at

the time of callingNDiscoverwith a radius within the transmission range. All the robots that

1Geocast is defined by the transmission of a message to a predefined geographical region

60

Reservation

range

Transmission

range

Ri

Rj

Dch

Dtr

Zonei

Zonej

Figure 6.1: The reservation range is within half of the transmission range. RobotRi cannot
communicate with robotRj, andZonei does not intersect withZonej.

receive the message and satisfy the predefined condition acknowledge the caller ofNDiscover.2

Reservation range Robots have a limited wireless transmission range. It follows that a re-

served zone by a robot must be entirely within a circle centered on the robot with a radius within

half of the transmission range. The motivation behind this maximal value is that each robot can

communicate with all the robots that it might collide with. Figure6.1 illustrates the reservation

range property.

The collision prevention protocol provides a parameter namedreservation rangeand de-

notedDch, that is within half of the transmission range (Dch ≤ Dtr

2), such that a reserved zone by

a robot is entirely within a circle centered on the robot with a radius equals to thereservation

range.

6.2 Collision Prevention: locality-preserving protocol

All robots run the same distributed algorithm which is based on the following idea. When a

robot Ri requests a zoneZonei, Ri must determine all the robotsRj that conflict withRi. The

robotsRj are located within one communication hop with respect toRi, because the reservation

2An implementation ofNDiscoverrequires timing property for transmitting and processing the ping messages.
This timely behavior can be particularly achieved, sinceNDiscover relies on very lightweight ping messages
carrying only the position coordinates of the caller.

61

range of the robots must be within half of the transmission range. The Neighborhood Discovery

primitive returns the set of neighborsNeighbori within one communication hop with respect

to Ri. Therefore,Ri can determine the set of robotsRj that conflict withRi. Ri multicasts

Zonei to the list of neighborsNeighbori, thenRi waits until receive the response messages.

Consequently,Ri determines the set of robots that it conflicts with. Intuitively,Ri performs a

pair-wise negotiation with each of the robots thatRi conflicts with. Therefore,Ri and each robot

Rj decide consistently about the scheduling of their requests. So, a dynamic scheduling for

the conflicting requests takes place. WhenRi receives a release message from all the robots

that Ri waits for, it reservesZonei and becomes the owner ofZonei. After Ri has reached the

post-motionzone,Ri releasesZonei except for the area occupied byRi.

6.2.1 Variables

We present the variables used in the protocol.

• Zonei is the zone currently requested or owned by robotRi.

• Neighbori represents the set of robots that may possibly conflict with robotRi (i.e., the

output of the neighborhood discovery primitiveNDiscoveri).

• Gi is a set of{(Rj, Zonej)} such thatRj belongs toNeighbori, andZonej is the requested

or the owned zone ofRj such thatZonej intersects withZonei.

• WLAfteri is the list of robots waiting forRi until it releases its zone.

• WLBeforei is the list of robots thatRi waits for.

• Dependi is thedependencyset. If a robotRi requestsZonei then it conflicts with a set of

robots each of which conflicts with another set of robots and so on. Thedependencyset

is the union ofGk for each robotRk related toRi by thetransitive closureof the relation

conflict.

• Dag is await-for graph such that the vertices represent robots and a directed edge from

Ri to Rj represent thatRi waits forRj to releaseZonej.

• msgdenotes a message exchanged during the run of the protocol. Eachmsgmessage

consists of three fields, the first is the type of the message which belongs to the set

{REQUEST, RELEASE, WAIT FORME}, the second field is the identifier of the robot

sending the message, and the third field is the body of the message which consists of

the specifications and the parameters of the requested (or owned) zone. The type RE-

QUEST denotes a request message, RELEASE denotes a release message, and the type

62

WAIT FORME means that the receiver of the message must wait for the sender. (This

wait-for relation is called animposed wait-forrelation).

6.2.2 Protocol description

We explain the phases of the protocol with respect to a robotRi. The robotRi is located in the

pre-motionzonepre(Zonei). When robotRi requests a new zoneZonei, it proceeds as follows.

1. Discovery phase:Ri calls the neighborhood discovery primitiveNDiscoveri, to determine

the setNeighbori. This set consists of robotsRj, thatmaypossibly come in conflict with

Ri for Zonei, sinceZonej intersects with the circle centered onRi with radius equals to the

reservation range.

2. Negotiation phase: The Negotiation phase ofRi starts by the determination of the set

Gi which consists of the robots ofNeighbori that conflict with Ri. The output of the

Negotiation phase is thewait-for graph,Dagwait. Thus,Ri determines the set of robots

that it waits for. IfRi receives a request from a robotRk (Zonek intersects withZonei) and

Rk does not belong toGi, thenRk must wait forRi. The Negotiation phase proceeds as

follows.

• Ri multicasts a messagemsgi = (REQUEST, i,Zonei) indicating thatRi requests

Zonei to all the members ofNeighbori carrying the parameters ofZonei. This mul-

ticast does not require any routing because the neighbors are located within one

communication hop with respect toRi.

• Ri waits until it receives a response messagemsgj from each memberRj ∈ Neighbori.

• After Ri has received the messagesmsgj, Ri determines the set of robotsGi thatcon-

flict with Ri. (Gi is obtained from the received messagesmsgj after discarding the

release messagesmsgj = (RELEASE, j,Zonej), and discarding also the request mes-

sagesmsgj = (REQUEST, j,Zonej) such thatZonej does not intersect withZonei).

The setGi contains two disjoint subsets of robots: the first subset denoted (G1)i is

composed of robotsRj such thatRi does not belong toGj (i.e., Ri must wait for

Rj, Rj has sent the messagemsgj = (WAIT FORME, j,Zonej)). The second is the

complementary subset denoted (G2)i, which is composed of robotsRj such thatRi

belongs toGj. ThusRi must wait for all the robots of (G1)i, in addition to some

robots of (G2)i. (These robots would be determined later).

• Ri determines thedependencysetDependi by applying anEchoalgorithm inspired

from [28]. The Echoalgorithm is explained as follows.Ri multicasts a token mes-

sage to each robot that belongs toGi. Upon receipt of the first message ofRi by a

63

robotRk from Rj (Rj is called thefatherof Rk), it multicasts the message ofRi to all

the robots ofGk except itsfather Rj. When a robotRk has received the token mes-

sage ofRi from all the robots ofGk, Rk adds the contents ofGk to the token message

and sends it (echo) to thefather Rj. WhenRi has received the token message from

all the robots ofGi, it obtains thedependencyset3. The motivation for building the

dependency set is to enable the conflicting robots to build thewait-for graphDagwait

in a consistent manner and so to avoid cyclic wait-for relations.

• Ri uses the dependency setDependi to constructDagwait. The vertices represent the

robots of the setDependi and a directed edge fromRi to Rj means thatRi waits for

Rj. Dagwait is built as follows.Ri starts by establishing theimposed wait-forrela-

tions (Subsection.6.2.3), and then it breaks ties for the remainder of the conflicting

robots by applying a specified conflict resolutionpolicy. At first, Ri builds a graph

named WAIT FORME graph and denotedDagwm. This graph corresponds to the re-

lation betweenRi andRj from the set (G1)i. (Subsection6.2.3). The next step,Ri

builds a graph namedDagdr by adding the directed edges imposed by thedeadlock

risk situations. (Subsection6.2.3). After having established theimposed wait-for

relations,Ri adds the directed edges that result from resolving the conflicts accord-

ing to a specified policy. (Subsection6.2.4). Ri and the conflicting robots build the

same directed acyclic graphDagwait in a consistent manner.

• According to the graphDagwait, Ri determinesWLBeforei the set of robots that

Ri waits for. (WLBeforei = (G1)i and some robots of (G2)i). Ri updates the set

WLAfteri of robots that wait forRi, due to the graphDagwait. Ri dynamically up-

dates the setWLAfteri by adding robotsRk that does not belong toGi and whose

requested zoneZonek intersects withZonei. (Ri sends toRk the messagemsgi =

(WAIT FORME, i,Zonei)). Ri keeps updating the setWLAfteri until Ri releases the

zone.

• Ri waits until receives a release message from each robot in the setWLBeforei.

3. Reservation phase: WhenRi has received a release message from all the robots of the

setWLBeforei, or (when the setWLBeforei is empty),Ri reservesZonei and becomes the

owner ofZonei.

4. Release phase: WhenRi reaches thepost-motionzonepost(Zonei), it releasesZonei ex-

cept the place thatRi occupies. Ri multicasts a release message to all the robots that

belong to the setWLAfteri and to robotsRa such thatRi ∈ Neighbora (due toNDiscovera

3Thedependencyset is not computed each timeRi requests a zone. It can be “piggybacked” with the messages
of type WAIT FORME.

64

primitive) and the request messagemsga = (REQUEST, a, Zonea) of Ra is not received

yet byRi. WhenRi reaches thepost-motionzone, the robots of the setWLAfteri and the

robotsRa are within one communication hop with respect toRi, hence the robots of the

setWLAfteri and the robotsRa can receive the release message ofRi.

6.2.3 Imposed wait-for relations

If a robot Ri conflicts with robotRj, then the Conflict Resolver determines thewait-for rela-

tion by breaking ties betweenRi andRj, according to a specifiedpolicy. However, there are

situations where thewait-for relation is imposed. The situations where thewait-for relation is

imposed are discussed in the WAIT FORME Handler and the Deadlock detector.

WAIT FORM E Handler The input of the WAIT FORME Handler is the dependency setDependi,

and the output is the directed acyclic graphDagwm. This handler generatesDagwm by establish-

ing the imposedwait-for directed edges that correspond to the situation whereRi must wait for

Rj becauseRj is a member of the set (G1)i. (Subsection.6.2.2). The relation WAIT FORME is

transitive, so if a robotRi must wait forRj and the robotRj must wait forRk, thenRi must wait

for Rk. Therefore, no cycles can be created in the graphDagwm.

Deadlock detector There are specified intersection situations betweenZonei andZonej, such

that neitherRi norRj can move, because ifRi is grantedZonei and eventually releasedRelZonei

beforeRj is grantedZonej then, a collision may occur betweenRi andRj. Also, if Rj is granted

Zonej and eventually releasedRelZonej beforeRi is grantedZonei then, a collision may occur

betweenRi andRj. We say thatRi andRj are in a deadlock situation because none of the robots

can own its requested zone. The deadlock situations are discussed in details in Chapter3.

Thedeadlock risksituation imposeswait-for relations between two conflicting robots. IfRi

is in deadlock riskpre situation withRj, thenRi must wait forRj. So that,Rj releasespre(Zonej)

beforeRi ownsZonei. If Ri is in deadlock riskpost situation withRj, thenRj must wait forRi.

The deadlock detector establishes thewait-for relations between the conflicting robots of the

dependency setDependi according to thedeadlock risksituations. The deadlock detector adds

the directed edges imposed by thedeadlock risksituations, to the graphDagwm generated by the

WAIT FORME Handler. If a cycle is created by adding a directed edge to the graphDagdr, then

the deadlock detector calls the Deadlock Handler. A cycle inDagdr results from the following

situation. A robotRi must wait for a robotRj (WAIT FORME relation) andZonei intersects with

post(Zonej). Thus, the deadlock detector generates the directed acyclic graphDagdr or calls the

Deadlock Handler in case of detecting a deadlock situation or a cycle.

65

Algorithm 15 Collision prevention protocol (Code for robotRi)
1: Initialization: Gi := ∅; WLBeforei := ∅; WLAfteri := ∅;

2: procedureRequest(Zone)
3: Phase 1:
4: NDiscoveri ⇒ Neighbori {Neighborhood discovery}

5: task Reply
6: when reception of a messagemsgi = (REQUEST, k,Zonek)
7: if Rk < Neighbori andZonek intersects withZonei then
8: Send(msgi = (WAIT FORME, i,Zonei)) to Rk {The taskReplyruns in parallel with the next phases,

until Ri releases the zone}
9: WLAfteri := WLAfteri ∪ {Rk} {Ri keeps updating the set WLAfteri until Ri releases the zone}

10: end if
11: end when
12: end

13: Phase 2:
14: multicast (msgi = (REQUEST, i,Zonei)) to Neighbori {Negotiation}
15: wait until receive response msgj from all Rj ∈ Neighbori
16: build the setGi = (Rj , Zonej) such thatRj ∈ Neighbori andZonej intersects withZonei .
17: determine thedependencysetDependi
18: Dagwm := WAIT FORME Handler(Dependi)
19: Dagdr := Deadlock Detector(Dagwm, Dependi)
20: Dagwait := Conflict Resolver(Dagdr, Dependi , policy)
21: build the setWLBeforei and update the setWLAfteri according to the directed acyclic graphDagwait
22: if WLBeforei , ∅ then
23: while reception of a release message fromRj ∈WLBeforei do
24: Gi := Gi \ {Rj , Zonej} {Ri removes the entry of Rj from the set Gi}
25: end while {receive the release message from all Rj of the set WLBeforei}
26: end if
27: endRequest

28: Phase 3:
29: reserve(Ri , Zonei) {Ri reserves the zone Zonei}

30: procedure Release(Zone)
31: Phase 4:
32: whenRi reaches thepost-motionzonepost(Zonei)
33: if WLAfteri , ∅ then
34: multicast(RelZonei) to WLAfteri {release(Ri , RelZonei)}

{Ri multicasts a release message to all Rj of the set WLAfteri}
35: end if
36: end when
37: endRelease

66

Algorithm 16 WaitForMe Handler algorithm
1: function WaitForMe-Handler (Dependi)
2: for all (Rx, Ry) ∈ Dependi do
3: if Rx must wait forRy (WAIT FORME) then
4: Dagwm := Dagwm∪ DirEdge(Rx, Ry) {Rx must wait for Ry, because Ry ∈ Gx but Rx < Gy}
5: end if
6: if DirEdge(Rx, Ry) and DirEdge(Ry, Rz) then
7: Dagwm := Dagwm∪ DirEdge(Rx, Rz) {The relationWAIT FORME is transitive}
8: end if
9: end for

10: return Dagwm
11: end

Algorithm 17 Deadlock detector algorithm
1: function Deadlock-Detector (Dagwm, Dependi)
2: Dagdr := Dagwm

3: for all (Rx, Ry) ∈ Dependi do
4: Deadlock situation 1:=

[Zonex ∩ pre(Zoney) , ∅] and [Zoney ∩ pre(Zonex) , ∅] and [post(Zonex) ∩
post(Zoney) = ∅]

5: Deadlock situation 2:=
[Zonex ∩ post(Zoney) , ∅] and [Zoney ∩ post(Zonex) , ∅] and [post(Zonex) ∩
post(Zoney) = ∅]

6: Deadlock situation 3:=
[Zonex ∩ pre(Zoney) , ∅] and [Zonex ∩ post(Zoney) , ∅] and [post(Zonex) ∩
post(Zoney) = ∅]

7: Deadlock situation 4:=
post(Zonex) ∩ post(Zoney) , ∅

8: if Deadlock situation 1 or Deadlock situation 2 or Deadlock situation 3 or Deadlock sit-
uation 4then

9: Deadlock Handler(Deadlock situation)
10: end if
11: if deadlock riskpre(Rx, Ry) or deadlock riskpost(Ry, Rx) then
12: Dagdr := Dagdr ∪ DirEdge(Rx, Ry) {Rx waits-for Ry}

13: end if
14: if deadlock riskpost(Rx, Ry) or deadlock riskpre(Ry, Rx) then
15: Dagdr := Dagdr ∪ DirEdge(Ry, Rx) {Ry waits-for Rx}

16: end if
17: if DetectCyclethen
18: Deadlock Handler(Deadlock situation)
19: end if
20: end for
21: return Dagdr

22: end

67

6.2.4 Conflict Resolver

The Conflict Resolverbreaks ties and determines thewait-for relation between two conflict-

ing robots according to a conflict resolutionpolicy, if there is no imposedwait-for relation

between the two robots. A conflict resolution policy can be as follows.Ri waits-for Rj if the

number of the previous requested zones byRi is higher than that ofRj. In our protocol, the

conflict resolution policy is specified by the robotic application. For example, the robot farther

to the intersection zonewaits-for the closer one, and in case of an equidistance situation, their

identifiers are used to break the symmetry. The Conflict Resolver generates the graphDagwait

by breaking ties between each pair of the robots of the dependency setDependi. The graph

Dagwait is generated in a consistent manner, such that each robot of the setDependi generates

thesamegraphDagwait starting from the graphDagdr by adding the directed edges representing

the wait-for relations after resolving the conflict between each pair of the conflicting robots.

The dependency set is scanned according to the increasing order of the identifiers of robots and

the conflict resolution policy is applied. If adding a directed edge creates a cycle then the new

directed edge is reversed to break the cycle. A robotRi determines the set of robots that it waits

for WLBeforei, and updates the setWLAfteri according to the directed acyclic graphDagwait.

Algorithm 18 Conflict Resolver algorithm
1: function Conflict-Resolver (Dagdr, Dependi , policy)
2: Dagwait := Dagdr
3: for each robot’s identifierx from MIN ID to MAX ID such thatRx ∈ Dependi do
4: for each robot’s identifiery > x to MAX ID such thatRy ∈ Dependi do
5: if Conflict(Rx, Ry) and no edge (Rx, Ry) then
6: DirEdge(Rx, Ry) := policy(Rx, Ry) {apply the conflict resolution policy}
7: Dagwait := Dagwait ∪ DirEdge(Rx, Ry)
8: if DetectCyclethen
9: DirEdge(Rx, Ry) := DirEdge(Ry, Rx) {If a cycle is detected then inverse the direction of the edge}

10: end if
11: end if
12: end for
13: end for
14: return Dagwait
15: end

6.2.5 Deadlock Handler

The Deadlock Handler resolves a deadlock situation detected by the deadlock detector module.

The policy used by the Deadlock Handler to resolve a deadlock situation is based on aRequest

Preemptionstrategy. Hence, if there is a deadlock situation between two requests (Deadlock

situation 1, Deadlock situation 2, or Deadlock situation 4) then, the request which has the larger

robot’s identifier is preempted (the setDependi is scanned according to the increasing order of

robots identifiers).

68

If a robot Ri must wait for a robotRj (WAIT FORME relation) andZonei intersects with

post(Zonej) then, the request (Ri, Zonei) is preempted. This situation is denoted by “Cycle-

Situation” in Algorithm19.

If Deadlock situation 3 (Zonei intersects with bothpre(Zonej) and post(Zonej)) then, the

request (Ri, Zonei) is preempted.

When a request is preempted, the setsGi andWLAfteri are updated by removing the pre-

empted request.

The Deadlock Handler proposes an alternative chunk to the robotRk which request was

preempted.Rk restarts a new request of an alternative zone. The Deadlock Handler of a robot

Rk proposes an alternative chunk offered by the motion planning layer. If there is no possible

alternative chunk then, the Deadlock Handler raises an exception.

The design of the collision prevention protocol yields a flexibility to handle the exceptions

caused by deadlock situations, due to the module Deadlock Handler. The Deadlock Handler

can apply an application-based policy in order to resolve deadlock situations.

Algorithm 19 Deadlock Handler algorithm
1: function Deadlock Handler (Ri , Zonei , Rj , Zonej)

2: Cycle-Sitaution :=Zonei intersects withpost(Zonej) andRi must wait forRj

3: if Deadlock situation 3 or Cycle-Situationthen
4: Request Preemption (Ri , Zonei)
5: else
6: Request Preemption (the request of the higher robot’s identifier)

{Deadlock situation 1, Deadlock situation 2, or Deadlock situation 4}
{Preempt the request which has the higher robot’s identifier}

7: end if

8: if no possible alternative chunkthen
9: throw Exception {There is no solution}

10: return Exception
11: end if
12: Zone:= Zonealternative

13: Request (Zone) {The Deadlock Handler proposes an alternative chunk}
14: end

6.3 Example

Consider the following example illustrated in Figure6.2. A robotRi requestsZonei. The neigh-

borhood discoveryNDiscoveri returns the setNeighbori = {Ra, Rb, Rj, Rk} since each ofZonea,

Zoneb, Zonej, Zonek intersects with the circle centered onRi with radiusDch.

Ri multicasts the parameters ofZonei to {Ra, Rb, Rj, Rk}. ThenRi waits until receive the

messages{msga, msgb, msgj, msgk}.

69

Zo
n
e i

Ri

Zo
n
e

Z
o
n
e
j

Rj

Z
o
n
e
a

R a

Zone
k

R k

Zon
eb

R
b

Dch

Dtr

Figure 6.2: Example.Ri requestsZonei andNeighbori = {Ra, Rb, Rj, Rk}.

R
i

R
a

(a) The
graph Dagwm
(WAIT FORME

relations).

Ri

Ra

Rj

Rk

(b) The graphDagdr (Deadlock risk
imposed wait-for relations).

Figure 6.3: The graphsDagwm andDagdr related to the imposed wait-for relations.

70

Ri

Ra

Rj

Rkgranted

Pending

Figure 6.4: The wait-for graphDagwait.

• Ri discards msgb becauseZoneb does not intersect withZonei.

• Ri discards msgk becauseZonek does not intersect withZonei.

• Ri < Ga, so msga = (WAIT FORME, a,Zonea).

• Ri ∈ Gj, so msgj = (REQUEST, j, Zonej).

So, Gi = {(Ra, Zonea), (Rj, Zonej)}. (G1)i = {(Ra, Zonea)}, (G2)i = {(Rj, Zonej)}. The

dependency setDependi = {(Ra, Zonea), (Rj, Zonej), (Rk, Zonek)}.

The graphDagwm related to the WAIT FORME relations is presented in Figure6.3(a). Zonej

intersects withpre(Zonek) hence,Rj must wait forRk, (Deadlock riskpre(Rj, Rk), and also Dead-

lock riskpost(Rk, Rj)). The graphDagdr related to the Deadlock risk imposed wait-for relations

is presented in Figure6.3(b).

The wait-for graphDagwait is generated by adding the directed edge (Ri, Rj) to the graph

Dagdr. The Conflict Resolution policy determines the wait-for relation betweenRi andRj. The

wait-for graphDagwait is illustrated in Figure6.4.

6.4 Proof of correctness

We prove that the collision prevention protocol for a dynamic group model satisfies the fol-

lowing properties. TheSafetyproperty, theLivenessproperty and theNon Triviality property

presented in Chapter4.

Lemma 8 The wait-for graph Dagwait has no cycles.

Proof. The wait-for graphDagwait is based onDagwm andDagdr.

71

R
a

R
c

R
b

R
d

(a) A directed edge (Rc, Ra) is added.

R
a

R
cR

b

R
d

(b) The direction is reversed, so the di-
rected edge is replaced by (Ra, Rc).

Figure 6.5: Adding a directed edge to the wait-for graphDagwait.

• The graphDagwm is a directed acyclic graph, since the WAIT FORME relation is transitive.

if a robotRx must wait forRy and the robotRy must wait forRz, thenRx must wait forRz.

(Algorithm 16, Line 7). Therefore, no cycles can be created in the graphDagwm.

• The graphDagdr is a directed acyclic graph. If a robotRi must wait for a robotRj

(WAIT FORME relation) andZonei intersects withpost(Zonej) then, the Deadlock detector

algorithm detects a cycle, (Algorithm17, Line 18) and consequently calls the Deadlock

Handler. Therefore, if a cycle is detected then, the Deadlock Handler breaks the cycle by

preempting the request (Ri, Zonei). Therefore, the graphDagdr does not contain a cycle.

• We prove that the graphDagwait is a directed acyclic graph.Dagwait is generated starting

from Dagdr which is a directed acyclic graph. If adding a directed edge toDagwait creates

a cycle, then the direction is reversed. We prove that reversing the direction of the edge

does not create a cycle and hence the wait-for graphDagwait is a directed acyclic graph.

For a directed acyclic graph that consists of three vertices{Ra, Rb, Rc}, if adding the

directed edge (Rc, Ra) creates a cycle then, the direction is reversed, and the edge (Ra, Rc)

obviously breaks the cycle.

For a directed acyclic graph that consists of more than three vertices, the proof proceeds

by contradiction.

Let us assume that the directed edge (Ra, Rc) creates a cycle. So, the vertexRd participates

in the created cycle, thus there is a path fromRc to Ra via Rd. But, by assumptions the

edge (Rc, Ra) creates a cycle viaRb. Consequently, there exists a cycle (Ra, Rb, Rc, Rd)

and the original graph is not a directed acyclic graph, which leads to a contradiction.

Therefore, reversing the direction of an edge does not create a cycle inDagwait.

72

Figure6.5(a)shows that the directed edge (Rc, Ra) is added toDagwait, so it creates the

cycle (Ra, Rb, Rc). Figure6.5(b)shows that the edge is replaced by (Ra, Rc) andDagwait

is a directed acyclic graph.

Therefore, the wait-for graphDagwait has no cycles.�

Lemma 9 The wait-for relations between robots related by the transitive closure of the relation

(conflict), are generated consistently, so the robots build the same wait-for graph Dagwait.

Proof. The setDependi consists of the union ofGk for each robotRk related toRi by the

transitive closure of theconflictrelation, soDependi equals toDependk.

The robots thatRi conflicts with, belong toGi or to WLAfteri. We prove that the setGi is

sufficient to build the wait-for graphDagwait consistently.

Let us consider three conflicting robotsRa, Rb andRc, such that each zone intersects with

the two other zones. The setsGa, Gb are as follows. the setGa containsRb, but does not contain

Rc, (Rc ∈ WLAftera). The setGb contains bothRa andRc. When the dependency setDependb

is computed,Rb deduces the wait-for relation betweenRa andRc and thatRc waits-forRa, since

theZonea intersects withZonec andRc < Ga.

If Ra receives the setGb (due to the dependency setDependa) beforeRa receives the re-

quest message ofRc then,Ra deduces that a request message ofRc eventually arrives, andRc

eventually belongs to the setWLAftera, sinceZonea intersects withZonec.

If Rc neither belongs toGa nor toGb then,Rc belongs toWLAftera and toWLAfterb, soRc

waits forRa andRb.

We prove that the wait-for graphDagwait is generated consistently. The wait-for graph

Dagwait is generated by a robotRi based on the setDependi, by applying a sequence of de-

terministic functions. The graphDagwm is generated according to the imposed wait-for relation

WAIT FORME. Then, the graphDagdr is generated according to the imposed wait-for relations

of the Deadlock riskpre and Deadlock riskpost situations (Lemmas [1, 2], Chapter5). Since,

the imposed wait-for relations define deterministic functions, then the wait-for graphDagdr is

generated consistently.

The Conflict Resolver defines a deterministic function (policy) to break ties between two

conflicting robots, based on the graphDagdr and the setDependi which is scanned according

to the increasing order of robots identifiers. Hence the wait-for graphDagwait is generated

consistently, so the robots that are related by the transitive closure of the relation (conflict) build

the same wait-for graph.�

Theorem 10 (Mutual Exclusion) If a requested zone Zonei of Ri intersects with a requested

zone Zonej of Rj then exclusively either Ri or Rj becomes the owner of its requested zone.

73

(Zonei ∩ Zonej , ∅)⇒ (Ri ownsZonei) XOR (Rj ownsZonej)

Proof. A robot Ri requestsZonei. If Zonei intersects with a zoneZonej of a robotRj, then

Rj must be within the transmission range ofRi, (reservation range property:Dch ≤ half of the

transmission range), thusRi andRj can communicate.

The neighborhood discovery primitiveNDiscoveri returnsRj ∈ the set of neighborsNeighbori,

sinceZonej intersects with the reservation zone ofRi, (the reservation zone ofRi is the circle

centered onRi with radiusDch). Thus,Rj ∈ Gi.

• If Ri < Gj then,Ri must wait forRj (WAIT FORME relation). If Zonei intersects with

post(Zonej) then, this situation is detected by the Deadlock detector and the Deadlock

Handler preempts the request (Ri, Zonei) (Algorithm 19, Line 4).

• If Ri ∈ Gj and there is no deadlock situation betweenZonei andZonej then, the wait-

for relation is determined either by the Deadlock Detector (Algorithm17) if there exists

deadlock riskpre(deadlock riskpost) imposed wait-for relation, or by the conflict resolver

(Algorithm 18) otherwise. If there is a deadlock situation betweenZonei andZonej then,

one of the requests is deterministically selected to be preempted.

Consequently, there is a wait-for relation betweenRi andRj. According to Lemma9 the

wait-for relations between conflicting robots are generated consistently, soRi andRj establish

the same wait-for relation and eitherRi waits forRj or Rj waits forRi.

Let us consider thatRi waits forRj, soRj releasesRelZonej, after thatRi ownsZonei. When

the robotRi is the owner ofZonei, the robotRj is deprived from its ownership to the zoneZonej.

The robotRj just keeps a part ofpost(Zonej) under its reservation.Zonei does not intersect with

the part ofpost(Zonej) that is still owned byRj, because:

1. pre(Zonei) ∩ post(Zonej) = ∅ (Proof by contradiction). Ifpre(Zonei) intersects with

post(Zonej), then this situation is the Deadlock riskpre(Rj, Ri) or the Deadlock riskpost(Ri,

Rj) situations. In both situationsRj must wait forRi according to Lemmas. [1, 2], which

leads to a contradiction, since the assumption is thatRi waits forRj.

2. motion(Zonei) ∩ post(Zonej) = ∅ (Proof by contradiction). If themotionzone ofRi in-

tersects with thepost-motionzone ofRj, then the situation is: Deadlock riskpost(Ri, Rj).

Thus,Rj must wait forRi which leads to a contradiction.

3. post(Zonei) ∩ post(Zonej) = ∅ (Proof by contradiction). If thepost-motionzones inter-

sect, then the situation is a deadlock situation (Deadlock situation 4), which leads to a

contradiction.

74

Consequently, the ownership of intersecting zones satisfies the mutual exclusion property,

and theSafetyproperty holds.�

Lemma 10 The possible deadlock situations are as follows. Deadlock situations that belong

to the set DS ={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock

situation 4}, and a situation where a robot Ri must wait for a robot Rj, and Zonei intersects

with post(Zonej).

Proof. The same proof as for Lemma3 in Chapter5. �

Theorem 11 (Non triviality) An exception is raised only when a deadlock situation occurs.

Proof. An exception is raised by the Deadlock Handler (Algorithm19, Line 9) when the

Deadlock Handler does not find a solution for a deadlock situation.

The Deadlock Handler is called by the Deadlock Detector (Algorithm17, Lines [9, 18]).

Line 9 corresponds to a deadlock situation that belongs to the setDS={Deadlock situation 1,

Deadlock situation 2, Deadlock situation 3, Deadlock situation 4}. Line 18 corresponds to

the deadlock situation, where a robotRi must wait for a robotRj, andZonei intersects with

post(Zonej).

Therefore, an exception is raised only when a deadlock situation occurs.�

Theorem 12 (Liveness)If a robot Ri requests Zonei then eventually (Ri owns Zonei or an ex-

ception is returned).

Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception)

Proof. If a robotRi requests a zoneZonei, then:

1. If Zonei does not intersect with a zoneZonej, thenRi ownsZonei.

2. If Zonei intersects with a zoneZonej, then a wait-for relation is established betweenRi

andRj and a directed edge is added to the wait-for graphDagwait. According to Lemma.8

the graphDagwait has no cycles. Therefore,Ri eventually ownsZonei.

3. If a deadlock situation is detected, then the Deadlock Handler is called. If the Dead-

lock Handler algorithm does not find a solution to resolve a deadlock situation, then an

exception is raised by the Deadlock Handler according to Theorem11

75

4. RobotRj ∈ WLAfteri eventually receives the release message ofRi when Ri reaches

post(Zonei). Because,Ri multicasts a release message to all the robots that belong to

the setWLAfteri and to robotsRa such thatRi ∈ Neighbora (due toNDiscovera primitive)

and the request messagemsga = (REQUEST, a, Zonea) of Ra is not yet received byRi.

WhenRi reaches thepost-motionzone, the robots of the setWLAfteri and the robotsRa

are within one communication hop with respect toRi (due to the reservation range prop-

erty, Dch ≤ half of the transmission range). Hence the robots of the setWLAfteri and the

robotsRa can receive the release message ofRi.

Therefore,Ri requestsZonei ⇒ ^ (Ri ownsZonei or Exception).�

6.5 Performance analysis

We study the performance of our protocol in terms of the time needed by a robotRi to reach a

given destination when robots are active (robots do not sleep). We compute the average effective

speed of robots executing our collision prevention protocol. We provide insights for a proper

dimensioning of system’s parameters in order to maximize the average effective speed of the

robots. For simplicity, we assume in this section that the physical dimensions of robots are too

small such that a robot can be considered as a point in the plane. The geometrical incertitude

related to the positioning system, translational and rotational movement are neglected.

6.5.1 Intersection probability

Consider a set of robots, each one moves along a chunk (line segment) of length equal to the

reservation rangeDch. At first let us determine the regionreg around a line segmentAiBi of

lengthDch such that line segments of lengthDch issued from points located in the regionreg

maypossibly intersect withAiBi and line segments of lengthDch issued from points outside

reg can notintersect withAiBi. The regionreg is illustrated in Figure.6.6(a). It represents

the region of possible collisions for a robotRi that is located at pointAi and moves along the

line segmentAiBi of lengthDch. Consider the robots located in the regionreg each of which

moves along a line segment of lengthDch. We calculate, basing on geometrical analysis, the

probability of intersectionPr. The probability of intersection is the proportion (on average)

between the number of robotsRj such that the chunk ofRj canpossiblyintersect with the chunk

of Ri, (line segmentAiBi) and the number of robots in the regionreg. The intersection between

the line segmentAiBi and the other line segments is a function of three variables (x, y, θ) where:

(x, y) are the coordinates of the start point of a line segment, (x, y) ∈ regandθ is the slope of the

line segment. The probability of intersectionPr equals to the proportion between the volume

generated by the tuplet (x, y, θ) (such that the line segment whose start point is (x, y) and of

76

Chunk
A

i
B

i

D
ch

(a) The region (reg) for the line segmentAi Bi .

Symmetric axisA
i

B
i

C
i

D
i

!

(x, y)

(b) Intersection probability.

Figure 6.6: Segments intersection.

slopeθ intersects withAiBi) and the global volume generated by (x, y, θ) (such that (x, y) scans

the regionregandθ rotates from 0 to 2π). The probabilityPr is given by the following relation:

Pr =
{(x, y, θ) | S egment(x, y, θ) ∩ AiBi , ∅}

{(x, y, θ) | (x, y) ∈ reg} (6.1)

The regionreg is symmetric with respect to the symmetry axis that is collinear withAiBi (Fig-

ure.6.6(b)), so we study the intersection from one side of the symmetry axis. A line segment of

slopeθ, of lengthDch and intersects withAiBi must be included in the parallelogram (rhombus)

formed by the line segmentAiBi and the two parallel line segmentsAiCi and BiDi of length

Dch and of slopeθ. The parallelogram is illustrated in Figure.6.6(b). The area of this parallel-

ogram (rhombus) is:Srho(θ) = D2
ch sinθ, and the area of the regionreg is Sreg = D2

ch(π + 2).

Consequently, the probability of intersectionPr is:

Pr =
2
∫ π

0
Srho(θ)dθ

2πSreg
=

2
π(π + 2)

(≈ 12%) (6.2)

6.5.2 Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted by:Vmot. We calculate the average time

required for a robotRi to reserve and move along a chunk of lengthDch with a physical speed

Vmot.

Number of robots to wait on. A robot Ri must wait on robots that are present in the region

regwhere collisions may occur. Thus, on averageRi must wait on half the robots existing in the

regionreg, each of which waits also on other robots and so on. Consequently the total number

77

of robotsnavg thatRi must wait on to reserve a chunk is:

navg =

∞∑

k=1

(
Pr · nreg

2
)k (6.3)

wherePr is the probability of collision (Subsection.6.5.1) andnreg is the number of robots

in the regionreg.

In order to minimize the time needed to reserve a chunk, the total number of robotsnavg

thatRi waits on must be minimal, (we can reduce the value of the reservation range). Thus, the

geometric series must be convergent. So,Pr·nreg

2 < 1, which implies thatnreg < π(π + 2). The

number of robots in the regionreg must be at mostπ(π + 2) ≈ 16 robots, in order to minimize

the time to reserve a chunk.

The total number of robotsnavg thatRi waits on to reserve a chunk is:

navg =
1

1− nreg

π(π+2)

− 1, nreg < π(π + 2) (6.4)

Communication delays. The average communication delays in the system is denoted:Tcom.

When all the robots are active running the protocol (robots do not sleep), then the time needed

to reserve and move along a chunk denotedTch is computed as the sum of the time needed by

each of the following steps:

1. The delayTnd of the primitiveNDiscover.

2. The time elapses untilRi builds thewait-for graph, (the local computation time is ne-

glected).Ri needs 2Tcom time units to multicastZonei to the neighbors and to receive their

requested zones. After thatRi needs 2(navg− 1)Tcom time units on average, to determine

the dependencyset. (defined in Subsection.6.2.1). Therefore, the time needed to build

thewait-for graph is: 2navgTcom.

3. The time to receive the release messages fromnavg robots each of which has owned its

zone for Dch

Vmot
time units is:navg(Tcom+

Dch

Vmot
).

4. The time needed byRi to move along a chunk is:Dch

Vmot
.

Therefore, the time needed to reserve and move along a chunkTch is:

Tch = Tnd + 2navgTcom+ navg(Tcom+
Dch

Vmot
) +

Dch

Vmot
(6.5)

Tch = Tnd + navg(3Tcom+
Dch

Vmot
) +

Dch

Vmot
(6.6)

Tch = Tnd + (
1

1− nreg

π(π+2)

− 1)(3Tcom+
Dch

Vmot
) +

Dch

Vmot
, nreg < π(π + 2) (6.7)

The optimal timeTch for a robotRi is when it is alone, so there are no robots in the regionreg.

In this case, the timeTch is: Tch(alone) = Tnd +
Dch

Vmot
.

78

6.5.3 Optimal reservation range

In this subsection, we compute the average effective speedV of a robotRi as a function of

the reservation range and the density of robots, then we determine an optimal value of the

reservation range that maximizes the effective speed ofRi for a given value of the density of

robots. In our protocol the reservation range is a constant parameter given by the system. The

density of robots in the system, denoted by:s. (s = nreg

Sreg
). A robot Ri makes on averageDtrip

Dch

steps to move along a path of lengthDtrip. The number of robots thatRi has to wait on to reserve

a chunk depends on the value of the reservation range and the density of robots. The time to

progress a distanceDtrip is:

Ttrip =
Dtrip

Dch
[Tnd + (

1

1− nreg

π(π+2)

− 1)(3Tcom+
Dch

Vmot
) +

Dch

Vmot
], nreg < π(π + 2) (6.8)

The speedV is Dtrip

Ttrip
, andnreg = s(π + 2)D2

ch. Thus, the average effective speedV is:

V =
−sD3

ch+ πDch

(3Tcom− Tnd)sD2
ch+

π

Vmot
Dch+ πTnd

, Dch <

√
π
√

s
(6.9)

The previous relation shows that the effective speed is a function of the reservation range and

the density of robots, also the effective speed depends on some system-based fixed parameters

such as the communication delays and the physical speed of robots. Figure.6.7 presents the

relationship between the speed and the reservation range for different densities. The values of

density start from zero (Ri is alone) until 3[robots/m2].

Numerical values. The values of the fixed system parameters are:Tcom= 10[ms],Tnd = 1[s],

the physical speedVmot = 1[m/s].

Speed optimization for a given density. The first derivative of the function effective speed

with respect to the reservation range is:

dV
dDch

=

(Tnd − 3Tcom)s2D4
ch−

2π
Vmot

sD3
ch− π(3Tcom+ 2Tnd)sD2

ch+ π
2Tnd

[(3Tcom− Tnd)sD2
ch+

π

Vmot
Dch+ πTnd]2

, Dch <

√
π
√

s
(6.10)

The denominator of Equation6.10is always positive sinceDch <
√
π√
s
, the speed is maximal when

the numerator of Equation6.10becomes zero. Figure.6.7shows the optimal reservation range

for a given density, the value of the optimal reservation range maximizes the effective speed of

a robot. The curve that corresponds to the density zero (when robot is alone), in Figure.6.7,

shows that the effective speed always increases as the reservation range increases, until the

effective speedV approaches to the physical speedVmot when the value of the reservation range

becomes very large. The curve has a horizontal asymptote atV = Vmot = 1[m/s]. The effective

79

0 2.5 5 7.5 10

0.25

0.5

0.75

1

A
v
e
ra

g
e
 E

ff
e
c
ti

v
e
 S

p
e
e
d
 [
m

/
s
]

Reservation range [m]

Tcom = 10 [ms]

Tnd = 1 [s]

vmot = 1 [m/s]

Ri
 is alone (density = 0)

1
 [ro

b
o
t/

m
2

]

0
.3

 [ro
b
o
t/

m
2

]

3
 [ro

b
o
t/

m
2

]

Optimal reservation range = 1.53 [m]

density = 0.3 [robot/m2]
Speed = 0.51 [m/s]

0
.2

 [ro
b
o
t/

m
2

]

0
.6

 [ro
b
o
t/

m
2

]

Figure 6.7: Average effective speed vs reservation range.

speed ofRi depends on the reservation range, even in the case whenRi is alone, because it needs

to do a certain number of steps to reach a destination, and the number of steps is a function of

the reservation range. When the reservation range increases, the number of steps decreases.

The relation between the effective speed and the reservation range (whenRi is alone), is the

following: V = Dch
Dch
Vmot
+Tnd

. In each step,Ri needsTnd time units to discover that it is alone. IfDch

approaches to infinity, thenV approaches toVmot.

Numerical values. For a densitys = 0.3[robot/m2], the optimal reservation range is≈
1.53 [m] which gives a maximal speed≈ 0.51 [m/s].

6.5.4 Speed vs density of robots

In this subsection, we focus on the relation between the effective speed of a robotRi and the

density of robots for a given reservation range. The relationship between the effective speed

and the density is presented in Equation6.9. The derivative of the effective speed with respect

to the density of robots is:

dV
ds
=

−(πVmot
D4

ch+ 3πTcomD3
ch)

[(3Tcom− Tnd)sD2
ch+

π

Vmot
Dch+ πTnd]2

, s<
π

D2
ch

(6.11)

Equation6.11shows that the effective speed always decreases when the density of robots in-

creases for a given reservation range, as the derivative of the effective speed with respect to

80

0 0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

A
v
e
ra

g
e
 E

ff
e
c
ti

v
e
 S

p
e
e
d
 [
m

/
s
]

Density [robot/m2]

Tcom = 10 [ms]

Tnd = 1 [s]

vmot = 1 [m/s]

D
c
h =

1
.8

 [m
]

D
c
h
=
2
 [m

]

D
ch=1[m]D

ch =1.5[m
]

D
ch=0.9[m]

D
ch=0.7[m]

curve of maximal speed vs density

envelop of the set of curves

Figure 6.8: Average effective speed vs density of robots.

the density is always negative. Figure.6.8presents the relationship between the effective speed

and the density for different values of the reservation range, (from 0.7[m] to 2[m]). The curve

that represents the maximal speed as a function of the density, envelops the set of curves in

Figure.6.8. A point that belongs to the envelop corresponds to the optimal reservation range

for the given density.

6.6 Conclusion

In this chapter, we presented a fail-safe mobility management and achieved a collision preven-

tion platform for asynchronous cooperative mobile robots, in a dynamic group model.

The collision prevention protocol for the dynamic group model, requires neither initial nor

complete knowledge of the composition of the group, it relies on a neighborhood discovery

primitive which is readily available through most of wireless communication devices. The

protocol is based on a locality-preserving distributed path reservation system that takes advan-

tage of the inherent locality of the problem, in order to reduce communication. In the dy-

namic group model, the design of the collision prevention protocol yields a scalability due to

its locality-preserving property. Therefore, the protocol can handle large sized dynamic group

of cooperative mobile robots, provided with limited energy resources and limited transmission

range.

The dynamic group model is motivated by robotic applications with wide area and large

number of robots, where some robots might be out of the transmission range of other robots.

A performance analysis provides insights for a proper dimensioning of system’s parameters

81

in order to maximize the average effective speed of the robots.

The collision prevention platform tolerates the crash of a certain number of robots such that

the system of robots keeps in progress towards its final goal, in presence of the crash of a certain

number of robots.

The failure of a robot by crash has aSnowballeffect, because the robots that are waiting for

the crashed robot are blocked and the robots that wait for the blocked robots are consequently

blocked.

The collision prevention platform for a dynamic group of mobile robots can reach a certain

degree of fault-tolerance in a large scale system, due to the locality-preserving property. If a

robot crashes then, the local neighbors that are located within one communication hop with

respect to the crashed robot at the time of the crash, are blocked waiting on the crashed robot.

The two-hop and farther neighbors that do notconflictwith any of the blocked robots, are not

affected at the time of the crash. Therefore, the impact of a crash is limited in space and affects

only a part of the system for a period of time, however, theSnowballeffect takes place with the

progress of time.

For the dynamic group model, a non-preemptive fault-tolerant protocol relies on a failure

detector of clasŝ S with the majority of correct robots. If a robot waits for another robot

and suspects that the robot has crashed then, the waiting robot cancels its request. In order to

cancel a request, a robot executes a Reliable Broadcast of a message, indicating that its request

is canceled. The destination of the broadcasted message is the set of robots that conflict with the

robot sender. (the zones are intersecting). Reliable Broadcast guarantees that either the message

is delivered by all correct robots or none.

82

Chapter 7

Fault-tolerant group membership
protocols using physical robot messengers

In this Chapter, we consider a distributed system that consists of a group of teams of worker

robots that rely on physical robot messengers for the communication between the teams. Unlike

traditional distributed systems, there is a finite amount of messengers in the system, and thus a

team can send messages to other teams only when some messenger robot is available locally.

It follows that a careful management of the messengers is necessary to avoid the starvation of

some teams.

Concretely, this Chapter proposes algorithms to provide group membership and view syn-

chrony among robot teams. We look at the problem in the face of failures, in particular when a

certain number of messenger robots can possibly crash.

Consider a robotic mining system composed of mobile robots (worker robots) that cooperate

in order to excavate minerals. As there are several excavation sites in the mine, the worker robots

are organized into teams, one team working at each site. Teams must coordinate their actions

but communication between teams is made difficult by the geography of the mine. For instance,

teams are unable to communicate using radio transmission (e.g., [2]) because of propagation

problems. Using sound waves for transmission is hard in the presence of echos, and even

potentially hazardous in unstable environments. Infrared transmission (e.g., [18]) is impossible

without a direct line-of-sight. Wired communication requires a costly infrastructure that may

be difficult to deploy in such environment. Thus, to overcome these problems, communication

between the teams relies on messenger robots that physically carry messages from one team to

the next.

The distributed system modeled in this Chapter consists of robot teams that communicate by

exchanging messages carried by physical messengers. Each team has a pool of robot messen-

gers that it can use to carry messages to other teams. When a team has no messenger left in its

pool, it is unable to send messages. Conversely, when a messenger coming from another team

delivers a message, the number of messengers available in the pool increases by one. Initially,

83

each team has a given number of messenger in its pool but, in the models we consider, a subset

of the messengers can possibly crash during the execution of the system.

This model differs from conventional distributed systems in several aspects. For instance,

since a team is unable to communicate when no messenger remain in its pool, a distributed

algorithm must adequately balance the use of messengers to avoid deadlock situations wherein

the system waits for messages from a team that has become unable to communicate.

We look at two important building blocks of group communication, namely group mem-

bership and view synchrony [8]. Group membershipprovides a mechanism to allow teams to

dynamically join or leave the system during an execution. Membership changes are done con-

sistently by all teams, through the installment of group membership views. A view consists of a

view sequence number and the list of teams that belong to the group. As all teams must agree on

every view installed, they also agree on the composition of the group for any given view.View

synchronyrelates to broadcast communication among the group members. In short, it ensures

that a message broadcasted within a view is received by all teams before they install the next

view, thus providing a form of “all-or-nothing” semantics in the face of failures.

Related work There exist many definitions of group membership and view synchrony, dis-

cussed extensively by Chockler et al. [8]. Correspondingly, there are many systems supporting

some form of group membership and view synchrony in conventional distributed systems, such

as Isis [3], Transis [12], Totem [24], Moshe [19], and many others (e.g., [13, 1]). In mobile

robotics, Schemmer et al. [27] present two membership protocols for robots communicating

through wireless network protocols such as 802.11. However, none of these group member-

ship protocols consider a system where communication uses physical messengers, and they are

hence not adapted to such environments.

In contrast, mobile agent systems consider mobile entities that can carry information. There

is however a very fundamental difference between mobile agents and robot messengers. While

the former are software entities that can be easily replicated or regenerated programmatically,

the latter are physical and cannot be easily recovered after a failure. Thus, protocols developed

for mobile agents cannot easily be adapted to our system model.

This Chapter identifies the importance of a distributed systems relying on physical messen-

gers, and to provide a group membership and view synchrony protocol for such systems. This

Chapter presents in fact two protocols, where the first one tolerates the failure of a bounded

number of messengers, while the second one additionally tolerates the failure of entire teams.

We present the protocols, provide arguments to support their correctness, and discuss their com-

plexity in terms of time and energy consumption.

This Chapter is organized as follows. Section7.1presents the system model and basic def-

84

W

MSG

Communication route

Messenger

MSG MSG MSG MSG MSG
MSG

MSG

MSGMSGMSG

MSG

Team T1

Team T2

Team T3

Communication route

Communication route

workers Pool of messengers

W W W W W

W W

WW

Figure 7.1: System model.

initions. Section7.2 describes two failure models; one in which messengers can fail, and a

second one in which teams can also fail. Section7.3presents and discusses two group member-

ship algorithms, one for each failure model. Finally, Section7.4concludes this Chapter.

7.1 System model & definitions

7.1.1 System model

We model a distributed system as a set of teams of autonomous mobile robotsS = {T1, . . . ,Tn}
and a set ofm messengers, wherem > 1. Every team has an identifier, a set of robots named

“workers” responsible for executing the required tasks, and a pool of robot messengers.

Communication between teams is done by sending a messenger from the pool to convey

messages. Messengers travel from a team to another by following a “communication route.”

We assume that a direct route exists between any pair of teams, although this assumption is

in fact not restrictive since two routes can physically share the same path. When a messenger

delivers its last message at a teamTi, the messenger joins the pool of teamTi. The capacity of

a messenger is assumed to be large enough to accommodate any finite number of messages.

85

The system is purely asynchronous in the sense that timing assumptions are made neither

on processing speed nor on the time it takes for a messenger to carry a message from a team to

another.

Figure7.1.

7.1.2 Energy complexity

In addition to the complexity metrics used in traditional distributed systems, we consider an

additional complexity metric that we callenergy complexity.

Energy complexity counts the total number of“hops” traveled by messengers during a

single execution of the algorithm. A hop is the journey of one messenger from one team to

another. Roughly speaking, the energy complexity of an algorithm corresponds to the energy

spent by the algorithm during a single run.

7.1.3 Group membership & view synchrony

The membership service maintains a list of currently active teams, in failure-prone distributed

systems, and delivers this information to the application whenever its composition changes. The

reliable multicast services deliver messages to the current view members. For more information

on the subject, we refer to the survey of Chockler et al. [8]. A group membership can also

be combined with failure detection, and then it can be seen as a high-level failure detection

mechanism that provides consistent information about suspicions and failures [30, 17]. In short,

a group membership keeps a track of what teams belong to the distributed computation and what

team does not.

In our model, a group membership service provides a list of non-crashed teams that currently

belong to the system, and satisfies three properties [8]: validity, agreement and termination.

Validity is explained as follows: letvi andvi+1 be two consecutive views, if a teamTi ∈ vi \ vi+1

then some team has executedleave(Ti) and if a teamTi ∈ vi+1 \ vi then some team has executed

join(Ti). The agreement property ensures that the same view would be installed by all the teams

of the group (agreement on the view) since agreement on uniquely identified views is necessary

for synchronizing communications. Termination means that if teamTi executes join(Tq), then

unlessTi crashes, eventually a viewv′ is installed such that eitherTq ∈ v′ or Tp < v′. We present

the following notations used in this Chapter:

• |Ti | is the number of messengers exist in the pool of teamTi.

• initiator is the team which proposes (join) or a (leave) operation, and consequently initi-

ates a procedure of creating a new view.

86

• logical ring is a logical circular list of teams identifiers.

• vini is the initial view of the system.

• vact is the current view of the system.

• vfin is the resulting view of the system.

7.2 Failure Models

We consider that a messenger and a team can fail by crashing and that crashes are permanent.

We look at two slightly different failure models. In Model A, we consider the crash of mes-

sengers only, but assume that all teams are correct. We then look at a more general model

(Model B), in which both teams and messengers can possibly crash.

7.2.1 Model A: Messengers failures

In Model A, we consider the failure of messengers only, so a robot messenger may crash, for

instance while it travels from one team to another. However, it is assumed that team do not

crash.

We assume that the total number of faulty messengers is bounded, and denote this upper

bound byM.

In this model, we have the following properties:

• property A1: A messenger can fail by crashing, and when it crashes, the crash is perma-

nent.

• property A2: Teams never fail.

• property A3: There is at least one correct messenger in the system, so (M < m).

7.2.2 Model B: Teams/messengers failures

In Model B, we extend Model A by also considering that teams may fail. We assume that the

number of faulty teams and faulty messengers is bounded, and we denote the maximal number

of faulty teams, respectively messengers, byT, respectivelyM.

In this model, we have the following properties:

• Property B1: A whole team(s) may fail by crashing, and when a crash occurs, it is per-

manent.

87

• Property B2: Correct messengers never crash. Nevertheless, a correct messenger can be

rendered nonfunctional, as covered by Property B3.

• Property B3: When a team crashes, none of the messengers that were in its pool at the

instant of the crash can move. The rationale is that, without a proper source of energy

provided by the pool, the messengers are unable to travel to other teams. This affects all

messengers in the pool, regardless whether they are faulty or correct. However, messen-

gers that were in transit at the moment of the crash are not affected.

• Property B4: There is at least one correct team in the system, and at least one correct robot

messenger in the system, we can express this condition as follows:T < n andM < m.

• Property B5: Any set composed ofT teams, should contain at mostm− M − 1 robot

messengers in total, at any instant.

The motivation behind Property B5 is to guarantee the existence of at least one correct robot

messenger in the system, even ifT simultaneous crashes occur.

7.3 Group Membership and View Synchrony algorithms

In this section, we study the problem of group membership and view synchrony in our system

model, considering the two precedent failure models.

For each failure model, we give a brief explanation and illustrate our algorithm by an ex-

ample, then we give arguments showing its correctness, and finally we evaluate the energy and

time required to run the algorithm.

We represent the system as a logical ring of nodes sorted by increasing order of teams

identifiers, each node in the list represents a team of robots, the initial view contains all the

teams in the system.

7.3.1 Group membership & messengers failures (Model A)

We study the group membership and view synchrony in our system model, in presence of mes-

sengers failures.

Description of the algorithm (Model A)

• Condition: The team initiator has initially at least (M + 1) messengers in its pool.

In Model A, the team initiator executes the propose and commit rounds by sending a set of

messengers which has at least one correct. We illustrate the algorithm by the following simple

example:

88

Consider a system composed of three teams, we construct a logical ring of nodes{T1,T2,T3}.

The initial view is: {T1,T2,T3}. We suppose that the team (T2) starts to propose a new view

(team initiator), and it invokesjoin(Tp) operation, the teamT3 invokes aleave(T3) operation,

andT1 does not execute any operation. The teamT2 starts the propose round by sending a set of

(M + 1) messengers toT3, such that each messenger carries the same message which proposes

the view:vi
T2
= {T1,T2,T3,Tp}.

When the teamT3 receives this set of messengers (or at least one), it behaves as follows:

1. unifies all the identical messages received fromT2.

2. generates its own message:T3.leave(T3).

3. mergesmsgT2
andmsgT3

, then proposes the viewvi
T3
= {T1,T2,Tp}.

4. sends the set of messengers that it has received toT1, with the new viewvi
T3

.

WhenT1 receives the set of messengers fromT3, it does not change the view, acknowledges

the current proposed view, and sends the messengers toT2, which terminates the propose round

and starts the commit round when it receives at least one messenger fromT1. T2 starts the

commit round by sending the same set of messengers with the messagecommit{T1,T2,Tp} to

T3 which acknowledges the current viewvi and sends the set toT1.

The algorithm terminates whenT2 receives back at least one messenger of this set carry-

ing the commit message that it has sent, and the group membership algorithm is successfully

terminated, such that the teamTp has joined the group andT3 has left it, and the new view is

vi
= {T1,T2,Tp}.

Correctness arguments (Model A)

The condition|initiator | ≥ (M + 1) guarantees that the team initiator has at leastone correct

messenger, we show that this condition ensures the correct termination of the algorithm.

In the Model A, we need to send (M + 1) messengers from the initiator to the next team, in

order to guarantee the correct reception of messages by the next team,1 supposing that all the

teams are correct. (assumptions of this failure model)

The cardinality of this set remains larger than 1 and smaller or equal to (M + 1) because

some messengers may crash before reaching their destinations, and this set of messengers is

responsible for all the communications between the teams until return back to the initiator.

(propose and commit rounds).

1The set of messengers moving between teams may become smaller after each step of the algorithm, but this
set is never empty.

89

The algorithm guarantees that the same new view is acknowledged by all the teams in the

system, since there is no team crash in this model.

The properties: Validity, Agreement, and Termination are discussed exactly as in the failure-

free model presented in our research report [33].

Behavior Evaluation (Model A)

The initiator sends a set of (M+1) messengers, and this same set performs 2n hops between the

teams in order to define a new view, so the energy consumed is in the order ofO(2(M + 1)n).

But the time required isO(2n) because the robots move simultaneously.

7.3.2 Group membership & teams and messengers failures (Model B)

We study the algorithm of group membership in presence of both teams and messengers failures.

Description of the algorithm (Model B)

• Condition 1: The team initiator is a correct team.

• Condition 2: The team initiator has initially at least (M + 1) messengers in its pool.

We illustrate the group membership algorithm by the following simple example:

Consider a system composed of four teams, we construct a logical ring of nodes{T1,T2,T3,T4}.
The initial view isvini = {T1,T2,T3,T4}. We suppose that the teamT2 starts to propose a new

view (team initiator), and it invokes thejoin(Tp) operation. For simplicity, we suppose that

other teams do not execute any operation, and the teamsT1 andT3 are faulty.

propose round The teamT2 starts the propose round by sending a set composed of (M + 1)

messengers toT3, such that each messenger in the set carries the same message which proposes

the view vi
T2
= {T1,T2,T3,T4,Tp}. When this set of messengers arrives to the site ofT3, it

performs a crash detection protocol based on hand-shaking with all the workers ofT3. There

are two cases:

• T3 has crashed: the set of messengers returns back toT2 indicating the crash ofT3, then

the initiator changes the current view by removingT3 from the group (forced leave) and

sends this set of messengers toT4, carrying the newly proposed viewvi
T2
= {T1,T2,T4,Tp}.

• T3 is alive: it unifies the identical messages, and sends the set of messengers toT4, as in

Model A.

The propose round terminates when the team initiator receives back its set of messengers (or

part of it).

90

commit round T2 starts the commit round by sending the set of messengers with the message

commit{T1,T2,T4,Tp} to T4, which acknowledges the current viewvi and sends the set toT1.

When the messengers arrive to the site ofT1 they can face two cases:

• T1 has crashed: the set of messengers returns back toT2 indicating the crash ofT1, then

the initiator changes the current view by removingT1 from the group (forced leave) and

restarts the commit round by sending this set of messengers toT4 again, provided with

the current commit viewvi
T2
= {T2,T4,Tp}. ThenT4 acknowledges the commit view and

sends the messengers toT2.

• T1 is alive: it unifies the identical messages, and sends the set of messengers toT2, as in

Model A.

The algorithm terminates whenT2 receives back at least one messenger belongs to the set it has

sent, provided with the commit message, and the group membership algorithm is successfully

terminated, such that the teamTp has joined the group and (T1,T3) have left it because of their

crashes, and the new view isvi
= {T2,T4,Tp}.

Correctness arguments (Model B)

In this model, we have team failures in addition to messenger failures, so we need extra speci-

fications concerning a team correctness.

We show that the two previous conditions guarantee that the algorithm terminates correctly.

In our model a messenger can perform at most two hops, so when a messenger moves to a

crashed team, the next hop should be to a correct one, else the messenger would be idle. The

messenger returns to the team initiator after detecting a crashed team, and the initiator is a cor-

rect team according to (Condition 1), while (Condition 2) guarantees that the set of messengers

sent by the initiator, has at least one correct messenger. This set performs all the hops between

the teams as we discussed for Model A.

In this model, we provide the system with a perfect failure detector, because the detection of

a crashed team is carried out by a local hand-shaking mechanism, between at least one correct

messenger and all the workers of the team. After detecting a crashed team by a messenger,

this messenger moves to the team initiator (correct team), and proclaims the crashed team,

consequently, the crash is detected correctly and deterministically.

The commit round, permits to provide each non-crashed-team with the most recent view, be-

cause the initiator restarts the commit round whenever it detects a crashed team, so the commit

round terminates correctly by delivering the same viewvfin to all non-crashed teams.

The properties: Validity, Agreement, and Termination are discussed exactly as in the failure-

free model presented in our research report [33].

91

Behavior Evaluation (Model B)

The set of (M + 1) messengers may perform additional hops because of teams failures, so this

set needs to go backward to the initiator whenever it detects a crashed team. (additionalT

hops in the propose round, andn · T hops during the commit round). The energy consumed by

messengers is calculated as follows:

Propose round(worst case):(n+ T)(M + 1).

Commit round(worst case):(n · T)(M + 1).

The total energy consumption is (M + 1)(T + 1) · n+ T(M + 1).

The behavior evaluation in terms of energy can be written as :O(α · n+ β).
The behavior in terms of time is (T + 1) · n+ T, also it can be expressed as:O(λ · n+ µ).

Discussion The required energy and time to run the algorithm increase when fault-tolerance

requirements become harder. In the failure-free model [33] the algorithm requires energy and

time proportional to (2n), wheren is the size of the system (group of teams). In Model A the

energy becomes more significant, it isM times greater, which is justified by the cost required

to tolerate the messengers failures, but the execution time is equivalent to that in failure-free

model [33]. When the system is prone to teams failures in addition to messengers failures in

Model B, the required energy is (M · T) times greater than that in the failure-free model [33],

while the execution time is onlyT times greater.

7.4 Conclusion

We have introduced a distributed asynchronous system model composed of a group of teams of

cooperative mobile robots. The teams in our model communicate by physical robot messengers.

We have presented a group membership algorithm, discussed its correctness, and evaluated

its behavior in terms of energy and time, in two possible failure models: one in which only

messengers fail, and one in which entire teams can also fail.

We have shown the conditions that should be satisfied to solve the problem of group mem-

bership in our system model in each different failure model. This technique of communications

between teams of robots permits to implement a perfect failure detector since the detection of

a crashed team takes place locally on its site. This property permits to solve many agreement

problems in asynchronous distributed systems composed of a group of teams of robots.

Furthermore, in this model faulty robot messengers can be mapped to lossy channels in

classical distributed systems. We guaranteed reliable communications by using one set of mes-

sengers that has at least a correct messenger, this set circulates the messages and supports all

the communications between the teams of the system.

92

Algorithm 20 Algorithm(A) Group membership: messengers failures (code for TeamTi)
1: Initialisation:
2: S← {T1,T2, . . . ,Tn}
3: vini ← {Ti , i ∈ [1..n]}
4: vact← vini

5: old view← vini

6: msg← ∅
7: operation ={join(new team), leave(team)}

8: if (operation = join (newteam))then
9: Ti .propose (vact← vact

⋃ {newteam})
10: end if
11: if (operation = leave(team))then
12: Ti .propose (vact← vact \ {team})
13: end if
14: if (Ti = initiator) and (|initiator | ≥ (M + 1)) then
15: msg.initiator ← initiator(ID)
16: msg← msg

⋃{vact}
17: send set of (M + 1) messengers provided with (msg) to next(Ti)
18: wait until reception of the messengers sent
19: when reception of messengers sent
20: begin-commit-round()
21: end when
22: end if
23: if (Ti , initiator) then
24: unify all the identical propose messages received from previous(Ti) into one message (msg)
25: msg← msg

⋃{vact}
26: sendthe set of messengers receivedfrom previous(Ti) provided with (msg) to next(Ti)
27: end if
28: procedurebegin-commit-round
29: if (Ti = initiator) then
30: vf in ← vact

31: msg← commit(vf in)
32: sendthe set of messengersreceived from previous(Ti) provided with (msg) to next(Ti)
33: wait until reception of the messengers sent
34: when reception of messengers sent
35: terminate-commit-round()
36: end when
37: else
38: unify all the identical commit messages received from previous(Ti) into one message (msg)
39: sendthe set of messengersreceived from previous(Ti) provided with (msg) to next(Ti)
40: end if
41: newview← vf in

42: endbegin-commit-round

93

Algorithm 21 Algorithm(B) Group membership: Teams and messengers failures (code for
TeamTi)
1: Initialisation:
2: S← {T1,T2, . . . ,Tn}
3: vini ← {Ti , i ∈ [1..n]}
4: vact← vini

5: old view← vini

6: msg← ∅
7: operation ={join(new team), leave(team)}

8: if (operation = join (newteam))then
9: Ti .propose (vact← vact

⋃ {newteam})
10: end if
11: if (operation = leave(team))then
12: Ti .propose (vact← vact \ {team})
13: end if
14: if (Ti = initiator) and (|initiator | ≥ (M + 1)) then
15: msg.initiator ← initiator(ID)
16: msg← msg

⋃{vact}
17: send set of (M + 1) messengers provided with (msg) to next(Ti)

18: when reception of messengers carrying the failure detection message
19: vact← vact \ {Tk} {Propose round}

{Tk has crashed and the current message is (msg)}
20: msg← msg

⋃{vact}
21: if (next(Tk) , initiator) then
22: sendthe received set of messengerscarrying (msg) to next(Tk)
23: else
24: begin-commit-round()
25: end if
26: end when

27: wait until reception of messengers sent.
28: when reception of messengers carrying a “non failure-detection message”
29: begin-commit-round()
30: end when
31: end if
32: if (Ti , initiator) then
33: unify all the received identical propose messages into one message (msg).
34: msg← msg

⋃{vact}
35: sendthe received set of messengerscarrying (msg) to next(Ti)
36: end if

94

Algorithm 22 begin-commit-round (code for TeamTi)
1: procedurebegin-commit-round()
2: if (Ti = initiator) then
3: vf in ← vact

4: msg← commit(vf in)
5: list ← list \ {detectedcrashedteams} {vf in is identical to the updated logical ring of teams identifiers,

so when a team receives the commit message, it discovers the next team to send.}
6: if (the number of detected crashed teams< n-1) then
7: sendthe received set of messengerscarrying (msg) to next(initiator) in the new logical ring.
8: else
9: terminate-commit-round() {the number of detected crashed teams = n-1, i.e. the initiator is the only

correct team in the system}
10: end if

11: when reception of messengers carrying the failure detection message
12: vact← vact \ {Tk} {Commit round}

{Tk has crashed and the current message is (msg)}
13: msg← msg

⋃{vact}
14: begin-commit-round {restart from the beginning}
15: end when

16: wait until reception of messengers sent
17: when reception of messengers carrying a “non failure-detection message”
18: terminate-commit-round()
19: end when
20: else
21: unify all the received identical commit messages into one message (msg)
22: sendthe received set of messengerscarrying (msg) to next(Ti) in the new logical ring.
23: end if
24: newview← vf in

25: endbegin-commit-round

Algorithm 23 Messenger (code for messenger)
1: if detectcrash(messenger,Tk) then
2: move to the team initiator.{if a messenger detects that a team has crashed then, the messenger returns to

the team initiator}
3: end if

95

The model presented in this Chapter was motivated by a mining application in which teams

of worker robots cooperate to excavate minerals. The model is however by no means limited

to this application. In fact, a similar model applies to robot applications in underwater environ-

ment, deep space exploration, nano-scale robotic devices, or more generally in environments

where there are no established communication infrastructures.

96

Chapter 8

Conclusion

In this dissertation, we presented a fail-safe mobility management and achieved a collision

prevention platform for asynchronous cooperative mobile robots.

This platform consists of time-free collision prevention protocols, that ensure the safety

property of the system and guarantee that no collision can occur between mobile robots, what-

ever the temporal guarantees offered by the communications system.

We have presented collision prevention protocols for a closed group of mobile robots and

for a dynamic group. The closed group model of mobile robots is motivated by robotic appli-

cations with low number of robots in a limited space, in which mobile robots are always within

the transmission range of each other, and each robot knows the total composition of the group.

However, in wide area mobile robotic applications with large number of robots, the commu-

nication connectivity between mobile robots is not guaranteed. In such applications, mobile

robots can rely on the collision prevention platform for a dynamic group model.

The collision prevention protocol for the dynamic group model, requires neither initial nor

complete knowledge of the composition of the group, it relies on a neighborhood discovery

primitive which is readily available through most of wireless communication devices. The pro-

tocol is based on a locality-preserving distributed path reservation system that takes advantage

of the inherent locality of the problem, in order to reduce communication. Therefore, the proto-

col for a dynamic group model is scalable by design, while the scalability of the protocol for a

closed group model is low. The collision prevention protocol for a closed group invokes all the

robots in the system.

The collision prevention protocol for a closed group is robust with respect to time, while the

vulnerability to time resides only in the neighborhood discovery primitive used by the collision

prevention protocol for a dynamic group of robots. On the other hand, the closed group model

requires a total communication connectivity between mobile robots and also each robot must

know the total composition of the group.

In the dynamic group model, the design of the collision prevention protocol yields a scal-

97

ability due to its locality-preserving property. Therefore, the protocol can handle large sized

dynamic group of cooperative mobile robots, provided with limited energy resources and lim-

ited transmission range.

A performance analysis provides insights for a proper dimensioning of system’s parameters

in order to maximize the average effective speed of the robots.

The collision prevention platform tolerates the crash of a certain number of robots such that

the system of robots keeps in progress towards its final goal, in presence of the crash of a certain

number of robots.

The failure of a robot by crash has aSnowballeffect, because the robots that are waiting for

the crashed robot are blocked and the robots that wait for the blocked robots are consequently

blocked.

The collision prevention platform for a dynamic group of mobile robots can reach a certain

degree of fault-tolerance in a large scale system, due to the locality-preserving property. If a

robot crashes then, the local neighbors that are located within one communication hop with

respect to the crashed robot at the time of the crash, are blocked waiting on the crashed robot.

The two-hop and farther neighbors that do notconflictwith any of the blocked robots, are not

affected at the time of the crash. Therefore, the impact of a crash is limited in space and affects

only a part of the system for a period of time, however, theSnowballeffect takes place with the

progress of time.

Chapter5 presented two fault-tolerant collision prevention protocols rely on^S failure de-

tector and tolerate the failures of half of the robots. One of the fault-tolerant collision prevention

protocols is preemptive in the sense that a request of a robot can be preempted due to a decision

voted by the other robots of the group, if the robot is suspected as a crashed robot. The second

protocol is non-preemptive, so a robotRi cancels its own request when it suspects another robot

Rj as a crashed robot, ifRi waits forRj.

Therefore, if a robotRi suspects that a robotRj has crashed, andZonei intersects withZonej

then,Ri cancels the request (Ri, Zonei) and restarts a request of an alternative zone. Other robots

that wait forRi continue the execution of the protocol. This technique is applied for both group

models, the closed group model as well as the dynamic group model.

For the dynamic group model, a non-preemptive fault-tolerant protocol relies on a failure

detector of clasŝ S with the majority of correct robots. If a robot cancels its request then, it

executes a Reliable Broadcast of a message indicating that its request is canceled. The desti-

nation of the broadcasted message is the set of robots that conflict with the robot sender. (the

zones are intersecting). Reliable Broadcast guarantees that either the message is delivered by

all correct robots or none.

This dissertation also provides group membership and view synchrony protocols among

98

robot teams, in a distributed system model composed of a group of teams of worker robots that

rely on physical robot messengers for the communication between the teams. The protocols

tolerate the crash of a certain number of messengers robots and the crash of a certain number

of teams. Unlike traditional distributed systems, there is a finite amount of messengers in the

system, and thus a team can send messages to other teams only when some messenger robot is

available locally.

Chapter7 presents a group member a group membership algorithm, discussed its correct-

ness, and evaluated its behavior in terms of energy and time, in two possible failure models:

one in which only messengers fail, and one in which entire teams can also fail.

In Chapter7, we have shown the conditions that should be satisfied to solve the problem

of group membership in our system model in each different failure model. This technique of

communications between teams of robots permits to implement a perfect failure detector since

the detection of a crashed team takes place locally on its site. This property permits to solve

many agreement problems in asynchronous distributed systems composed of a group of teams

of robots.

Furthermore, in this model faulty robot messengers can be mapped to lossy channels in

classical distributed systems. We guaranteed reliable communications by using one set of mes-

sengers that has at least a correct messenger, this set circulates the messages and supports all

the communications between the teams of the system.

The model presented in Chapter7, was motivated by a mining application in which teams of

worker robots cooperate to excavate minerals. The model is however by no means limited to this

application. In fact, a similar model applies to robot applications in underwater environment,

deep space exploration, nano-scale robotic devices, or more generally in environments where

there are no established communication infrastructures.

99

Bibliography

[1] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. Rtcast: Lightweight multicast for real-

time process groups. InProc. IEEE. Symp. on Real-Time Technology and Applications

(RTAS’96), pages 250–259, Boston, MA, USA, 1996.

[2] B. Bellur, M. Lewis, and F. Templin. An ad-hoc network for teams of autonomous ve-

hicles. InProc. Symp. on Autonomous Intelligent Networks and Systems (AINS-02), Los

Angeles, USA, May 2002.

[3] K. Birman and R. van Renesse.Reliable Distributed Computing with the Isis Toolkit.

IEEE Computer Society Press, Los Alamitos, CA, USA, 1994.

[4] W. Burgard, M. Moors, and F. Schneider. Collaborative exploration of unknown environ-

ments with teams of mobile robots.Springer Verlag, 2002.

[5] Y. Cao, A. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents and

directions.Autonomous Robots, 4(1):7–27, 1997.

[6] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consen-

sus.J. ACM: Journal of the ACM, 43(4):685–722, 1996.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.J.

ACM: Journal of the ACM, 43(2):225–267, 1996.

[8] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A com-

prehensive study.ACM Comput. Surv, 33(4):427–469, December 2001.

[9] X. Défago. Distributed computing on the move: From mobile computing to cooperative

robotics and nanorobotics. InProc. ACM Int’l Workshop on Principles of Mobile Com-

puting (POMC’01), pages 49–55, Newport, RI, USA, August 2001.

[10] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms:

Taxonomy and survey.ACM Computing Surveys, 36(4):372–421, December 2004.

100

[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for distributed

consensus.J. ACM: Journal of the ACM, 34(1):77–97, 1987.

[12] D. Dolev and D. Malkhi. The Transis approach to high availability cluster communnica-

tion. Communications of the ACM, 39(4):64–70, April 1996.

[13] P. Ezhilchelvan and R. de Lemos. A robust group membership algorithm for distributed

real-time systems. InProc. 11th IEEE. Symp. on Real-Time Systems (RTSS ’90), pages

173–181, Lake Buena Vista, Florida, USA, December 1990.

[14] M. Fischer, N. Lynch, and M.Paterson. Impossibility of distributed consensus with one

faulty process.JACM: Journal of the ACM, 32, 1985.

[15] V. Hadzilacos and S. Toueg.Distributed Systems. Addison-Wesley, Second Edition, 1993.

[16] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related

problems. Technical Report TR94-1425, Cornell University, Computer Science Depart-

ment, May 1994.

[17] N. Hayashibara, X. D́efago, R. Yared, and T. Katayama. Theϕ accrual failure detector. In

Proc. 23nd IEEE Intl. Symp. on Reliable Distributed Systems (SRDS’04), Floriańopolis,

Brazil, October 2004.

[18] H. Hu, I. Kelly, D. Keating, and D. Vinagre. Coordination of multiple mobile robots

via communication. InProc. 13th IEEE Intl. Conf. on Mobile Robots (SPIE’98), pages

94–103, Boston, USA, November 1998.

[19] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A group membership service

for WANs. ACM Trans. Comput. Syst., 20(3):191–238, August 2002.

[20] P. Martins, P. Sousa, A. Casimiro, and P. Verı́ssimo. Dependable adaptive real-time ap-

plications in wormhole-based systems. InProc. IEEE Intl. Conf. on Dependable Systems

and Networks (DSN’04), Florence, Italy, June 2004.

[21] P. Martins, P. Sousa, A. Casimiro, and P. Verı́ssimo. A new programming model for

dependable adaptive real-time applications.IEEE Distributed Systems Online, 6(5), May

2005.

[22] J. Minguez and L. Montano. Nearness diagram (ND) navigation: Collision avoidance in

troublesome scenarios.IEEE Trans. on Robotics and Automation, 20(1):45–59, 2004.

101

[23] L. Montano and J. Asensio. Real-time robot navigation in unstructured environments

using a 3D laser rangefinder. InIEEE/RSJ Conf. on Intelligent Robots and Systems, pages

526–532, 1997.

[24] L. E. Moser, P. M. Melliar-Smith, D. A. Agrawal, R. K. Budhia, and C. A. Lingley-

Papadopoulos. Totem: A fault-tolerant multicast group communication system.Com-

munications of the ACM, 39(4):54–63, April 1996.

[25] E. Nett and S. Schemmer. Reliable real-time communication in cooperative mobile appli-

cations.IEEE Trans. Computers, 52(2):166–180, 2003.

[26] E. Nett and S. Schemmer. An architecture to support cooperating mobile embedded sys-

tems. InACM Intl. Conf. on Computing Frontiers (CF’04), pages 40–50, Ischia, Italy,

April 2004.

[27] S. Schemmer and E. Nett. Managing dynamic groups of mobile systems. InProc. 6th

IEEE Intl. Symp. on Autonomous Decentralized Systems (ISADS’03), pages 9–16, Pisa,

Italy, April 2003.

[28] A. Segall. Distributed network protocols.IEEE Trans. on Inf. Theory (IT-29), pages 23–

35, 1983.

[29] R. Simmons. The curvature-velocity method for local obstacle avoidance. InIEEE/RSJ

Conf. on Intelligent Robots and Systems, pages 3375–3382, 1996.

[30] P. Urb́an, I. Shnayderman, and A. Schiper. Comparison of failure detectors and group

membership: Performance study of two atomic broadcast algorithms. InProc. IEEE Intl.

Conf. on Dependable Systems and Networks (DSN’03), pages 645–654, San Francisco,

CA, USA, June 2003.

[31] P. Veŕıssimo. Uncertainty and predictability: Can they be reconciled? InFuture Directions

in Distributed Computing, pages 108–113, 2003.

[32] P. Veŕıssimo and A. Casimiro. The Timely Computing Base model and architecture.IEEE

Trans. Computers, 51(8):916–930, 2002.

[33] R. Yared, X. D́efago, and T. Katayama. Fault-tolerant group membership protocols using

physical robot messengers. Research Report IS-RR-2004-019, Japan Advanced Institute

of Science and Technology (JAIST), Hokuriku, Japan, December 2004.

102

[34] R. Yared, X. D́efago, and T. Katayama. Fault-tolerant group membership protocols using

physical robot messengers. In19th IEEE Int’l Conf. on Advanced Information Networking

and Applications (AINA), pages 921–926, Taipei, Taiwan, March 2005.

103

Publications

[1] R. Yared, X. D́efago, and T. Katayama.

Fault-tolerant group membership protocols using physical robot messengers.

In 19th IEEE Int’l Conf. on Advanced Information Networking and Applications (AINA’05),

pages 921–926, Taipei, Taiwan, March 2005.

[2] N. Hayashibara, X. D́efago, R. Yared, and T. Katayama.

Theϕ Accrual Failure Detector. InProc. 23nd IEEE Intl. Symp. on Reliable Distributed

Systems (SRDS’04), Floriańopolis, Brazil, October 2004.

Invited papers

• R. Yared, X. D́efago, and T. Katayama.

Distributed collision freedom protocol for a group of autonomous mobile robots. InJSF

workshop (Jourńees Scientifiques Francophones) JSF 2005, Tokyo, November 2005.

• R. Yared, X. D́efago, and T. Katayama.

Failure detection and group communications for autonomous mobile systems. InJSF

workshop (Jourńees Scientifiques Francophones) JSF 2004, Tokyo, November 2004.

Research reports

• R. Yared, J. Cartigny, X. D́efago, and M. Wiesmann.

Locality-preserving distributed collision prevention protocol for asynchronous coopera-

tive mobile robots.Research Report IS-RR-2006-003, JAIST, Japan, February 2006.

• R. Yared, X. D́efago, and T. Katayama.

Fault-tolerant group membership protocols using physical robot messengers.Research

Report IS-RR-2004-019, JAIST, Japan, November 2004.

104

