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Abstract

Distributed computing extends its scope to address problems relevant to mobile computing
where hosts are physically mobile. Since a robot can be seen as a mobile computer, it is natural
to consider a group of autonomous mobile robots as a kind of mobile distributed system. How-
ever, there are two fundamental differences with conventional distributed systems. The first
is that robots usually require knowledge about their physical positions, and the second is that
robots must control their own motion.

Many interesting applications of mobile robotics envision groups or swarms of robots co-
operating toward a common goal. Consider a distributed system composed of cooperative au-
tonomous mobile robots cultivating a garden. This application requires that robots move in all
directions sharing the same geographical space. We consider a category of robotic applications
where mobile robots have limited energy resources and wide geographical distribution. There
is no centralized control nor global synchronization.

Itis very important to focus on the problem of preventing collisions between mobile robots.
Collision prevention leads to a dependable system and prevents the occurrence of serious dam-
ages to the robots which causes failures in the system.

In order to achieve a fail-safe motion, robots need to coordinate their movement. Coopera-
tion is however difficult to obtain under the weak communication guarantees offered by wireless
networks, because retransmission of messages is needed to ensure messages delivery in wire-
less environments. The communication delays to deliver messages are difficult to anticipate.
Therefore, a time-free collision prevention protocol is very important in wireless environments.

The main contribution of this dissertation is providing a motion coordination platform that
makes a system of mobile robots fail-safe independently of timeliness properties of the sys-
tem. Mobile robots rely on this platform for their motion planning. The mobility coordination
platform consists of time-free collision prevention protocols for an asynchronous system of co-
operative mobile robots. The platform guarantees that no collision between robots can occur. In
this dissertation, we analyze the performance of the protocols. A performance analysis provides
insights for a proper dimensioning of system’s parameters in order to maximize the average ef-
fective speed of robots. We consider also the collision prevention in presence of robots failures
by crash, and provide fault-tolerant collision prevention protocols that tolerate the crash of a
certain number of robots. We consider two system models, closed group and dynamic group
models.

The first contribution is to provide collision prevention protocols for asynchronous cooper-
ative mobile robots in a dynamic group model. In this model, the composition of the system
of which robots have only a partial knowledge, can change dynamically. Robots have limited
communication range, hence they naturally form an ad hoc network on which they rely for their
communication. The collision prevention protocol relies on a Neighborhood Discovery primi-
tive which is readily available through most of wireless communication devices. The collision
prevention protocol is based on a locality-preserving distributed path reservation system that
takes advantage of the inherent locality of the problem, in order to reduce communication.



The second contribution of this dissertation is to provide collision prevention protocols for
asynchronous cooperative mobile robots in a closed group model, in which a robot knows the
composition of the group and can always communicate with all robots of the group.

The third contribution is providing group membership and view synchrony protocols among
robot teams, in a distributed system model composed of a group of teams of worker robots that
rely on physical robot messengers for the communication between the teams. The protocols
tolerate the crash of a certain number of messengers robots and teams. Unlike traditional dis-
tributed systems, there is a finite amount of messengers in the system, and thus a team can send
messages to other teams only when some messenger robot is available locally.
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Chapter 1

Introduction

Context Distributed computing extends its scope to address problems relevant to mobile com-
puting where hosts are physically mobile. Since a robot can be seen as a mobile computer, it
is natural to consider a group of autonomous mobile robots as a kind of mobile distributed sys-
tem. However, there are two fundamental differences with conventional distributed systems.
The first is that robots usually require knowledge about their physical positions, and the second
is that robots must control their own motiof] [

There has been increased research interest in systems composed of multiple autonomous
mobile robots exhibiting cooperative behavior. Such systems are of interest for several rea-
sons. Tasks may be inherently too complex (or impossible) for a single robot to accomplish, or
performance benefits can be gained from using multiple rolfsjts. [

Many interesting applications of mobile robotics envision groups or swarms of robots co-
operating toward a common goal. Consider a distributed system composed of cooperative au-
tonomous mobile robots exploring an unknown environméhtExploring an unknown envi-
ronment by cooperative mobile robots requires that mobile robots move in all directions in the
same geographical space.

A robot computes a collision-free path, between the current robot location and the goal. This
path avoids collisions with fixed obstacles due to motion planning. A robot that operates in an
unknown environment, sense directly within the motion. In many classes of applications of
autonomous cooperative mobile robots (e.g., exploring unknown environments), where speeds
of robots are unknown to other robots, the motion planning approaches cannot guasaitee a
motion as mobile robots may collide with each other, because of the unknown speeds of robots
and the uncertainty of the sensory information.

We consider a category of robotic applications (e.g., exploration of unknown environments)
where mobile robots have limited energy resources and wide geographical distribution. The
robots use sensors to explore the environment, they are not provided with a vision capability. In
the considered system, there is no centralized control nor global synchronization.



Motivation The robots are moving in different directions to explore the environment. Robots
share the physical space, thus collisions between mobile robots can possibly occur. It is very
important to focus on the problem pfeventingcollisions between the mobile robots. Collision
prevention leads to a dependable system and prevents the occurrence of serious damages to the
robots which causes failures in the system.

Existing techniques that avoid collisions between mobile robots or vehicles are based on
real-time approaches, or assuming the existence of a known constant upper bound on the com-
munication delays, processing speed and on robots speed movement.

A robot knows neither the positions of other robots nor their destinations precisely at a given
instant. Additionally, the speed of a robot is unknown by robots and there is no known upper
bound on robot’s speed since in the considered applications a robot is autonomous and possi-
bly it does not know the composition of the group of robots. So a robot cannot estimate the
position of another robot in the system. Therefore, robots need to cooperate in order to coordi-
nate their movement and hence to achieve a fail-safe motion. Cooperation is however difficult
to obtain under the weak communication guarantees offered by wireless networks, because re-
transmission of messages is needed to ensure messages delivery in wireless environments. The
communication delays to deliver messages of arbitrary size are difficult to anticipate. Hence, a
time-based protocol possibly fails because of violating some timing property in such environ-
ments, so, a time-free collision prevention protocol is very important.

Contribution  The main contribution of this dissertation is providing a motion coordination
platform that makes a system of mobile robots fail-safe. Cooperative mobile robots rely on this
platform the for their motion planning. The mobility coordination platform consists of time-
free collision prevention protocols for an asynchronous system of cooperative mobile robots.
The platform guarantees that no collision between robots can occur. In this dissertation, we
analyze the performance of the protocols. A performance analysis provides insights for a proper
dimensioning of system’s parameters in order to maximize the average effective speed of robots.

We consider the collision prevention problem in face of robots failures by crash, and provide
fault-tolerant collision prevention protocols that tolerate the crash of some robots and allows the
system of robots to progress.

This dissertation provides time-free collision prevention protocols, for asynchronous coop-
erative mobile robots in two system models, closed group and dynamic group models.

The first contribution is to provide collision prevention protocols for asynchronous cooper-
ative mobile robots in a dynamic group model. In this model, the composition of the system
of which robots have only a partial knowledge, can change dynamically. Robots have limited
communication range, hence they naturally form an ad hoc network on which they rely for their



communication. The collision prevention protocol relies on a Neighborhood Discovery primi-
tive which is readily available through most of wireless communication devices. The collision
prevention protocol is based on a locality-preserving distributed path reservation system that
takes advantage of the inherent locality of the problem, in order to reduce communication.

The second contribution of this dissertation is to provide collision prevention protocols for
asynchronous cooperative mobile robots in the closed group model, in which a robot knows the
entire composition of the group and can always communicate with all robots of the group.

A third contribution is providing group membership and view synchrony protocols among
robot teams, in a distributed system model composed of a group of teams of worker robots that
rely on physical robot messengers for the communication between the teams. The protocols
tolerate the crash of a certain number of messengers robots. Unlike traditional distributed sys-
tems, there is a finite amount of messengers in the system, and thus a team can send messages
to other teams only when some messenger robot is available locally.

1.1 Related work

Martins et al. (RO, 21]) demonstrated a scenario of three cooperating cars, elaborated in the
CORTEX project, and relies on the existence of Timely Computing Base (TCB) wormholes.
The TCB concept was introduced in3¢, 32]). In [21], authors presented how to use an
application’s fail-safety and time-elasticity characteristics to overcome the uncertainty of the
environment in TCB based systems.

Our approach in Chaptét for a dynamic group model and that i&1] use limited local
communication and their designs rely on the concept afoanhole The wormhole of the
system in 1] is encapsulated in the TCB components which are interconnectecoytel
network. The control network is isolated from thayloadnetwork (of the application) using
a dual network architecture. The wormhole of our platform is encapsulated in the primitive
Neighborhood Discovery which is available through most wireless communication devices. The
fundamentabifference between our fail-safe platform arid], is that the approach ir2[l] is
time-elastic, while our approach is time-free.

The approach inq1] requires that the composition of the group is known by all the partici-
pants, so if we compare the approachdd]jwith our approach for the closed group model then,

a fundamental difference is that the approach2ifj [s based on a wormhole but our approach
for the closed group model is purely asynchronous.

Both, our approach for the dynamic group model and the approa@ijindly on a worm-
hole, but our dynamic group model does not require that a robot knows the composition of the
group, while the approach ir2{] requires that the composition of the group is known to each



robot and a robot can communicate with all robots of the group.

Nett et al. (R6, 25]) presented a layered system architecture for cooperative mobile systems
in real-time applications. They considered a traffic control application as a testbed of their
system architecture. In this testbed a group of mobile robots are driving along two overlapping
closed loops sharing a specified predetermined space. The architectzg, i) aimed at
real-time cooperative mobile systems. Our approach fundamentally differs in several aspects.
The system in @6, 25]) is synchronous assuming the existence of a known constant upper
bound on the communication delays, while our approach is asynchronous. The communication
infrastructure in (26, 25]) is based on wireless LAN and the designed communication protocols
use the access point (base station) as a central router since each station must be within the reach
of the access point, which implies a full connectivity. The mobile robots in our system form
naturally a mobile ad hoc network on which they rely for their communication. MANETs
have no centralized control nor global synchronization, also the real-time constraints to deliver
messages of arbitrary size are not guaranteed.

The problem of robots collision avoidance has been handled using different strategies which
are sensor-based motion planning methods. The detailed information about motion planning
strategies is inspired fron2)].

Minguez et al. 22 compute collision-free motion for a robot operating in dynamic and
unknown scenarios, also they survey the existing collision avoidance navigation approaches.
Motion planning algorithms consider a model of the environment (either previously known or
dynamically built), to compute a collision free path between the current robot location and
the goal. In dynamic or unknown environments the trajectories generated by motion planning
algorithms become inaccurate thus they can not be applied to such environments. Solving this
problem involves sensing directly within the motion planning by applyipg@eption-action
process that is repeated periodically at a high rate. These approaches use a local fraction of
the information available (sensory information), so they can fall into trap situations. Some of
these approaches apply mathematical equations to the sensory information and the solutions
are transformed into motion commands. (e.g3]). Another group of methods compute a set
of suitable motion commands to select one command based on navigation strateg29g.9., [
while other methods (e.g.2f]), compute a high level information description (entities near
obstacles, areas of free space), from the sensory information then apply different techniques
simplifying the difficulty of the navigation to obtain a motion command in complex scenarios.

Roadmap for this dissertation This dissertation is organized as follows.
Chapter2 introduces formal definitions of some agreement problems in distributed systems
that this thesis is concerned with, such as the Total order broadcast, failure detectors and their



classes, consensus.

Chapter3 explains the two system models. the dynamic group and the closed group models.
Also, it presents our definitions and terminology which are related to the collision prevention
protocols.

Chapterd defines the collision prevention problem and presents the properties of the colli-
sion prevention protocols.

Chapter5 presents the collision prevention protocols for the closed group model. It presents
the failure-free protocol and proves that it satisfies the properties of the collision prevention
problem. A performance analysis is provided and showed that a proper dimensioning of sys-
tem’s parameters in order to maximize the average effective speed of robots.

Also, Chapter5 introduces Fault-tolerant collision prevention protocols that consider the
crash of some robots.

Chapter6 presents the collision prevention protocol for a dynamic group of asynchronous
cooperative mobile robots. Chapt@ialso proves that the collision prevention protocol for a
dynamic group satisfies the properties mentioned in Chdsieows that a proper dimensioning
of system’s parameters in order to maximize the average effective speed of robots.

Chapter7 provides group membership and view synchrony protocols among robot teams, in
a distributed system model composed of a group of teams of worker robots that rely on physical
robot messengers for the communication between the teams.

ChapteB recalls the main contributions.



Chapter 2

Background

2.1 Motion planning

Motion planning is defined by finding a route to a robot from an initial position to a final
position, in presence of obstacles. The motion planning is illustrated in Figlre.

Motion planning algorithms consider a model of the environment (either previously known
or dynamically built), to compute a collision free path between the current robot location and
the goal. In dynamic or unknown environments the trajectories generated by motion planning
algorithms become inaccurate thus they can not be applied to such environments. Solving this
problem involves sensing directly within the motion planning by applyipg@eption-action
process that is repeated periodically at a high rate. These approaches use a local fraction of
the information available (sensory information), so they can fall into trap situations. Some of
these approaches apply mathematical equations to the sensory information and the solutions are
transformed into motion commands. (e.@.3]).

2.2 Total Order Broadcast

Obstacle
X
>
Obstacle A goal position

initial
position

Figure 2.1: Motion planning.
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Figure 2.2: Total Order Broadcast primitive.

TOTAL ORDER BROADCAST also called AoMiC BROADCAST, is a fundamental problem in
distributed systems, especially with respect to fault-tolerance. Tm® T ORDER BROAD-
CAST primitive ensures that messages sent to a set of processes are, in turn, delivered by all
those processes in the same total order. Informally, the problem is defined as a broadcast prim-
itive whereby all processes deliver the same sequence of messages. Eiguhestrates the
total order broadcast primitive.

There exists a vast amount of literature about Total Order Broadcast presente@izge D
et al. [LO] for a survey). The text in this section is largely inspired frd][

2.2.1 Specification of Total Order Broadcast

The problem is defined in terms of two primitives, which are call@dbroadcast(mandTO-
deliver(m) wherem is some message. When a procpssxecutesl O-broadcast(mjrespec-
tively TO-deliver(m), we say thatp TO-broadcastsn (respectively TO-delivem). We as-
sume that every messagecan be uniquely identified, and carries the identity of its sender,
denoted bysender(m) In addition, we assume that, for any given messagand any run,
TO-broadcast(mjs executed at most once. In this context, total order broadcast is defined by
the following properties (Hadzilacos and Toueg 1994; Chandra and Toueg 1986 [

e (VALIDITY). If a correct process TO-broadcasts a messagthen it eventually TO-
deliversm.

e (UNIFORM AGREEMENT). If a process TO-delivers a messagethen all correct pro-
cesses eventually TO-delivars

e (UNIFORM INTEGRITY). For any messag®, every process TO-deliversat most once,
and only ifmwas previously TO-broadcast lsgnder(m)

e (UNIFORM TOTAL ORDER). If a processep andq both TO-deliver messag@sandn?,
thenp TO-deliversm beforent if and only if g TO-deliversm beforen.

7



Validity and Uniform Agreement are liveness properties, while Uniform Integrity and Uni-
form Total Order are safety properties for the Total Order Broadcast.

2.2.2 Fault-tolerance issues

Process Failures. The specification of total order broadcast requires the definition of the no-
tion of acorrectprocess. The following set of process failure classes are commonly considered.

e Crash failures. When a process crashes, it ceases functioning forever. This means that it
stops performing any activity including sending, transmitting, or receiving any message.

e Omission failures. When a process fails by omission, it omits performing some actions,
such as sending or receiving a message.

e Timing failures. A timing failure occurs when a process violates some of the timing
assumptions of the system model. Obviously, this type of failures does not exist in an
asynchronous system models, because of the absence of timing assumptions in such sys-
tems.

e Byzantine failures. Byzantine failures are the most general type of failures. A Byzan-
tine component is allowed any arbitrary behavior. For instance, a faulty process may
change the content of messages, duplicate messages, send unsolicited messages, or even
maliciously try to break down the whole system.

Synchrony and timeliness The synchrony of a system defines the timing assumptions that are
made on the behavior of processes and communication channels. More specifically, one usually
considers two major parameters. The first parameter iptheess speed intervalvhich is
given by the difference between the speed of the slowest and the fastest process in the system.
The second parameter is tbemmunication delgywhich is given the time elapsed between the
sending and the receipt of messages. The synchrony of the system is defined by considering
various bounds on these two parameters.

A system where both parameters have a known upper bound is cadlgtthronous sys-
tem At the other extreme, a system in which process speed and communication delays are
unbounded is called amsynchronous system

There is an important theoretical result related to the consensus problem. It has been proven
that there is no deterministic solution to the consensus problem in asynchronous distributed
systems if just a single process can crasH].|



Dolev et al. [L1] showed that total order broadcast can be transformed into consensus, thus
proving that the impossibility of consensus also holds for total order broadcast. These impossi-
bility results were the motivation to extend the asynchronous system by introduréoigsto
make consensus and total order broadcast deterministically solvable.

Chandra et al{] showed that consensus can be transformed to total order broadcast. The
result holds also for arbitrary failures. Thus, consensus and total order broadcast are equivalent
problems, that is, if there exists an algorithm that solves one problem, then it can be transformed
into an algorithm that solves the other problem.

2.3 Failure detection

A recurrent pattern in all distributed algorithms is for a procese wait for a message from
some other process If g crashes, procegsis blocked. Failure detection is one basic mecha-
nism to prevenp from being blocked.

Unreliable failure detection has been formalized by (Chandra and Toueg 1996)tdrms
of two properties:accuracyand completenessCompleteness prevents the blocking problem
just mentioned. Accuracy prevents algorithms from running forever without solving the prob-
lem.

A failure detection is an oracle that provides information about the current status of pro-
cesses, whether a given process has crashed or not. The notion of failure detection has been
formalized by (Chandra and Toueg 1996]}. [Briefly, a failure detector is modeled as a set of
distributed modules, one moduteD; is attached to each procegs Any processy; can query
its failure detector modulB D; about the status of other processes.

Failure detectors may henreliablein the sense that they provide information that may not
always correspond to the real state of the system. For instance a failure detector Fiddule
may provide the erroneous information that some propessis crashed while, in realitp; is
correct and running. ConverselyD; may provide the information that a procqssis correct
while, px has actually crashed.

To reflect the unreliability of the information provided by failure detectors, we say that a
processp; suspectsome procesB; wheneverD; the failure detector module attachedpio
returns theunreliableinformation thatp; has crashed. In other words, a suspicion is a belief
(e.g., “pi believes thap; has crashed”) as opposed to a known fact (efg.has crashed angl
knows that”).

There exists several classes of failure detectors, depending on how unreliable the infor-
mation provided by the failure detector can be. Classes are defined by two properties, called
completenesandaccuracy that constrain the range of possible mistakes.



We distinguish four classes of failure detectafs(perfect), 0P (eventually perfect),S
(strong), and>S (eventually strong). The four classes share the same property of completeness,
and only differs by their accuracy property).[

e STRONG COMPLETENESSEventually every faulty process is permanently suspected by
all correct processes.

STRONG ACCURACY No process is suspected before it crashes. [¢Phss

EVENTUAL STRONG ACCURACY There is a time after which correct processes are not
suspected by any correct process. [clag]

WEAK ACCURACY Some process is never suspected. [clss

e EVENTUAL WEAK ACCURACY There is a time after which some correct process is never
suspected by any correct process. [ckas]

A failure detector of clas®S with a majority of correct processes allows to solve ¢ba-
sensugproblem.[/]. Moreover, Chandra et al7] showed that a failure detector of class is
the weakest failure detector that allows to solve the consensus. The weakest failure detector to
solve the consensus problem is said toc®’, which differs from¢S by satisfying a weak
completeness property instead of Strong Completeness. However, Chandré]gtrakdd the
equivalence oS andoW.

2.4 Consensus Problem

Consensus is defined by the primitive®pose(v) anddecide(v) which satisfy the following
properties.

e TERMINATION. Every correct process eventually decides some value.

e UNIFORM INTEGRITY. Every process decides at most once.

e AGREEMENT. No two correct processes decide differently.

e UNIFORM VALIDITY . If a process decides thenv was proposed by some process.

Consensus can be solved in asynchronous systems prone to process crashes, augmented with
failure detectors. Inq] Chandra and Toueg present two algorithms that solve consensus. One
uses a failure detector of claSsand toleratesr(— 1) faulty processes (in asynchronous systems

with n processes), and the other uses a failure detector of ¢l&sand toleratesf( < n/2)

failures.
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Figure 2.3: Reliable Broadcast primitives.
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Figure 2.4: Reliable Broadcast agreement property.

Consensus and Total Order Broadcast have been shown in the literature to be equivalent
in systems prone to process crashes. The equivalence result basically states that Total Order
Broadcast can be reduced to Consensus, and Consensus can be reduced to Total Order Broad-
cast. The Consensus to Total Order Broadcast reduction consists in lpaepage(vlexecute
TO-Broadcastanddecide(v)occurring after the firsTO-Deliver(v)

2.5 Reliable Broadcast

Reliable Broadcast requires that all correct processes deliver the same set of messages (Agree-
ment), and that this set includes all messages broadcast by correct processes (Validity), and no
spurious messages (Integrity).

Formally, Reliable Broadcast is defined in terms of two primitives: R-broaduopsitd
R-deliverm), which satisfy the following propertiesi§]

Figure2.3illustrates the two primitives R-broadcast and R-deliver. Fi@udand Figure2.5
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Figure 2.5: Reliable Broadcast (All or Nothing) property.

illustrates the properties of Reliable Broadcast.

e VALIDITY . If a correct process R-broadcasts a messagjeen, it eventually R-delivers
m.

e AGREEMENT. If a correct process R-delivers a messagéhen, all correct processes
eventually R-delivem.

e UNIFORM INTEGRITY. For every messag®e, every process R-delivera at most once,
and only ifmwas previously R-broadcast by senae(

If a process fails during the broadcast of a message, Reliable Broadcast allows two possi-
ble outcomes: either the message is deliveredlbgorrect processes or by none.

Reliable Broadcast can be implemented by the following algoritjmWW/henever a process
p R-broadcasts a messagep sendanto all processes. Once a proceggceivesn, if g # p
then,q sendanto all processes, and in any cagqd?-deliversm.

2.6 Group membership and view synchrony

The group membership is to maintain a list of currently active processes. The list can change
with new members joining and old members leaving or crashing. Figyére

Each process hasveewof the list of currently active processes, and when this list changes,
thegroup membershipervice reports the change to the processes by installing a new view. The
group membership installs the same view at all correct processes.

A view v consists of a unique identifier and a list of processes (members of thevyiew
The group membership service maintains a list of currently active processes, in failure-prone
distributed systems, and delivers this information to the application whenever its composition
changes. (Figurg.7illustrates a group membership service for a distributed system in presence
of failures).
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The reliable multicast services deliver messages to the current view members. For more
information on the subject, we refer to the survey of Chockler eBhl.A group membership
can also be combined with failure detecti@4], and then it can be seen as a high-level failure
detection mechanism that provides consistent information about suspicions and falyres [
17]. In short, a group membership keeps a track of what processes belong to the distributed
computation and what processes does not.

A group membership service provides a list of non-crashed processes that currently belong
to the system, and satisfies three properiggsvalidity, agreement and termination.

e Validity. The validity property is explained as follows: lgtandvi,; be two consec-
utive views, if a procesp € Vv; \ vi;1 then some process has execuesalve(p)and if a
process € Vi,1 \ Vi then some process has execytad(p).

e Agreement. The agreement property ensures that the same view would be installed
by all the processes of the group (agreement on the view) since agreement on uniquely
identified views is necessary for synchronizing communications. So, if a prpcess

view v; installs viewvi,1, and procesg in view v, installs viewv,, ,, thenvi,; =V ,

e Termination. The termination property means that if a progessv executegoin(q),
then unles$ crashes, eventually a viewis installed such that eitheye v orp ¢ v'.
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Chapter 3

System models and definitions

3.1 System models

We consider a system of mobile rob&@s= {R;}, in which each robot has a unique identifier.

Robots have access to a global positioning device that, when queried by &rotattirns
R’s position with a bounded erregps. The robots communicate using wireless communication.
Communications assume retransmissions mechanisms such that communication channels are
reliable.

The system is asynchronous in the sense that there is no bound on communication delays,
processing speed and on robots speed movement.

We consider two system models, ttlesed groupand thedynamic groupmodels.

Closed group model The closed group model consists of a static group of cooperative mobile
robots, composed af mobile robotsS = {Ry,...,R,}, such that the total composition of the
group is known to each robot. A robot can always communicate with all robots of the group.

Dynamic group model The dynamic group model consists of a dynamic group of coopera-
tive mobile robots. The entire composition of the system, of which robots have only a partial
knowledge, can change dynamically.

Robots have limited communication rangg, hence they naturally form an ad hoc network
on which they rely for their communication. If the distance between two rdR@BdR; is less
thanDy,, then the two robots can communicate with each other. Each robot has an access to a
neighborhood discovery primitive naméiDiscover which is readily available through most
of wireless communication devices.

3.2 Definitions

15



post-zone

motion-zone

Figure 3.1: Reservation Zone.

A robotic application determines a destination that a robot has to reach. Then, the motion
planning layer computes a path along which a robot moves to reach the goal. For convenience,
a robot needs to move along a path by steps. Hence, a path determined by the motion planning
layer, is divided into smaller parts, each of which is calleghank

Paths. We denote byhunka line segment along which a robot moves. A path of a robot is
a continuous route composed of a series of contiguous chunks. A path can take an arbitrary
geometric shape, but we consider only line segment based paths for simplicity.

Errors. There are three sources of geometrical incertitude concerning the position and the
motion of a robot. Error related to the position information provided by the positioning system
denoteckyps In addition, the motion of a robot creates two additional sources of errors, the first
error is related to the translational movement, denotgd:The second error is related to the
rotational movement, denotes;.

Zones. A zoneis defined as the area needed by a robot to move safely along a chunk. This
includes provisions for the shape of the robot, positioning error and imprecisions in the moving
of the robot. The zone must be a convex shape and contains the chunk the robot is following.
Figure 3.1 shows the zon&oneg for a robotR moving along a chunlAB, whered represents

the radius of the geometrical shapeR)f The zoneZong is composed of the following three
parts, illustrated in Figur8.1: the first part namegre-motionzone and denotepre(Zoneg),

is the zone that robd® possibly occupies while waiting (before moving). The second part

16



Pr e(ZOHei)

Figure 3.2: A robotR releases the pervious zone and keeps only the place that may occupy
pre(Zone)

namedmotion zone and denotethotior(Zong), is the zone that robd® possibly occupies
while moving. The third part nameebst-motiorzone and denotgabs(Zong), is the zone that
robotR, possibly reaches after the motion.

We say that a robd®, is theownerof a zoneZoneg (Zong is grantedto R), if R reserves
Zone and did not release it yet. A robB releaseshe zoneZong that it has owned and keeps
only a part ofpos{Zoneg) under its reservation. The part of the zone that has been relea&ed by
is denotedRelZone Figure3.2shows that th@re-motionzonepre(Zone) is entirely included
within the previougpost-motiorzone, and presents also the current and the previous positions
of R.

Figure 3.3 presents the previously released zone PrevitelZlong and the current re-
quested zon&one.

Releasing a zone. RelZongis the zone that a robd® releases whelR reaches the post-
motion zongpos{Zoneg).

RelZone = pre(Zong) U motionZong) U SubPos®ong), where: SubPosipng) c
pos(Zong)

pre(Zong) c PREVIOUS(pos(Zong))

17



Figure 3.3:Zong is the current requested zone by a roBpotPreviousRelZong is the previ-
ously released zone By,.

Relation between robots. We say thaR; conflictwith R; if the requested zon&one inter-
sects withZong of robotR;. If R conflicts withR; then, one of them owns its requested zone
and eventually releases it before the other robot owns its requested zone.

However, there are specified intersection situations betves® and Zong, such that
neitherR norR; can move. In this dissertation, we use the term “deadlock” to express specified
intersection situations between a zofieng and a zone&Zong. These intersection situations
imply that neitheiR can ownZone nor R; can ownZons,.

We say that a robd®, is in a deadlock situation with a robB%. For example, a deadlock
situation between two robots, occurs when a robot requests a zone that intersects with both the
pre-motionand thepost-motiorzones of the other, so none of the robots can move. The condi-
tions and expressions of the deadlock situations are discussed in details in Suli&@ction

3.2.1 Deadlock situations

There are pathological intersection situations betw&ame andZong, such that neitheR nor

R; can move, or if one of them has granted its zone before the other then, the other robot may
not be able to own its requested zone (starvation situation). We saRtlaid R; are in a
deadlock situation because none of the robots can own its requested zone, or if one of the robot
owns its requested zone then, the other robot starves.

18
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(b) The roboR; waits forR;, soR; releasepre(Zong)

. ) ) beforeR, ownsZone.
(a) Deadlock riske(R, R;j). Zone intersects with

pre(Zong) and thepost- motiorzones do not intersect.

Figure 3.4:Zone intersects witlpre(Zong) and the post-motion zones do not intersect.

A robot R is in adeadlock risksituation with robotR;, when the requested zoa®ne
intersects either with thgre-motionor with thepost-motiorzone of the robok;.

This situation is calledleadlock riskbecause a deadlock situation occurdohe intersects
with both pr§Zong) andpos{Zong). A deadlock situation occurs alsogbs(Zong) intersects
with pos(Zong). The other possible deadlock situations between two robots occur when each
robot requests a zone that intersects withgieemotionzone of the other, and when theotion
zone of each robot intersects with thest-motiorzone of the other.

A robotR; is in adeadlock risk; situation with roboR; if Zong intersects witfpre(Zong)
and thepost-motiorzones do not intersect. A deadlock igkR;, R;) situation is presented in
Figure3.4(a)

ArobotR is in adeadlock risk,s; with R; if motion(Zong) intersects wittpos(Zoneg) and
the post-motionzones do not intersect . A deadlock riskR, R;) situation is presented in
Figure3.6(a)

e Deadlock risk,(R;, R;): [Zong N pre(Zong) # 0] and [pos{Zong) N pos(Zong) = 0]

o Deadlock risk.s{Ri, R;): [Zong N pos(Zoneg) # 0] and [pos(Zone) N pos(Zong) = 0]
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Figure 3.5: Deadlock situation 1Zong intersects withpre(Zong) and Zong intersects with

pre(Zong) and the post-motion zones do not intersect.

(b) The robot R; waits for R, so R releases
motior(Zong) beforeR; ownsZong.

(a) Deadlock riskos{Ri, Rj). Zoneg intersects with
pos(Zong) and thepost- motionzones do not inter-

sect.
Figure 3.6:Zone intersects wittpos{Zong) and the post-motion zones do not intersect.
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Figure 3.7: Deadlock situation Zone intersects witlpos{Zong) andZong intersects with
pos(Zong) and the post-motion zones do not intersect.

Conditions and expressions of deadlock situations The deadlock situations are as follows.

1. Deadlock situation 1: Deadlock righ(R;, R;) and Deadlock riske(R;, R). The Deadlock
situation 1 is illustrated in Figur.5.

2. Deadlock situation 2: Deadlock rigk(Ri, R;) and Deadlock risks(R;, R). The Dead-
lock situation 2 is illustrated in Figuré.7.

3. Deadlock situation 3: Deadlock riskR,, R;) and Deadlock risks{(R;, R;). The Dead-
lock situation 3 is illustrated in Figure.8.

4. Deadlock situation 4pos(Zong) N pos(Zong) # 0. The Deadlock situation 4 is illus-
trated in Figures.9.

The deadlock situations are expressed as follows.

1. Deadlock situation 1:
[ZongNpre(Zong) # 0] and [Zong Npre(Zong) # 0] and [pos(Zong) N pos(Zong) = 0]

2. Deadlock situation 2:
[ZoneN pos(Zong) # 0] and [Zong N pos(Zoneg) # 0] and [pos(Zong) N pos(Zong) =
0]
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Figure 3.8: Deadlock situation Zong intersects with bothgre(Zong) andpos(Zong)).

Figure 3.9: Deadlock situation $os{(Zoneg) intersects witrpos{Zong).
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3. Deadlock situation 3:
[Zonenpre(Zong) # 0] and [Zongnpos(Zong) # 0] and [pos{Zong)Npos(Zong) = 0]

4. Deadlock situation 4:
pos(Zong) N pos(Zong) # 0

Definition 1 DS is the set of the four deadlock situations.
DS ={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock situation 4

Imposed wait-for relations between robots Thedeadlock risksituations between a robBt
and a roboR;: deadlock risk(R;, R;) and deadlock risks(R, R;) imposes wait-for relations
betweerR andR;.

¢ If R isin deadlock risk situation withR;, thenR; must wait forR;. So thatR; releases
pre(Zoneg) beforeR ownsZone. Figure3.4(b)illustrates thaRk; must wait forR;.

e If R is in deadlock risk,s; situation withR;, thenR; must wait forR;. So thatR releases
motior(Zone) beforeR; ownsZong. Figure3.6(b)illustrates thaR; must wait forR,.
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Chapter 4

Collision prevention problem: definition
and specification

4.1 Collision Prevention: problem

The collision prevention consists of a distributed path reservation system, such that a robot must
reserve a zone before it moves. When a robot reserves a zone, it casafeymside the zone.

The path reservation is performed in a consistent manner. All robots run the same protocol.
When a robot wants to move along a given chunk, it must reserve the zone that surrounds this
chunk. When this zone is reserved, the robot moves along the chunk. Once the robot reaches
the end of the chunk, it releases the zone except for the area that the robot occupies. When
moving along a path, the robot repeats this procedure for each chunk along the path.

4.2 Problem definition and specification

A robot can move only in a zone that it owns. When a rdRaequests a zongone, it invokes

the primitivereg. We say thaZone is grantedto R, (R owns Zong upon return fronreq and
invocation of the primitiveeserve WhenR, reserves Zongit moves along the chunk. Once the
robot reaches the end of the chunkraleases Zoneaupon return fronreserveand invocation

of the primitiverelease If a robot requests a zone, then either the robot is granted the zone or
it receives an exception. The relationship between robots and zone changes in time. A zone
is said to be free if it is not owned by any robot. In order to resolve the collision prevention
problem, and to keep the system of mobile robots always in progress towards its final goal,
certain properties agafetyandlivenesamust hold. If a robot requests a zone, then eventually it
owns this zone or receives an exception. We say that the robot owns the zone and all the points
contained in this zone. A given point can be owned by only one robot. If a robot owns a zone,
it eventually releases that zone.
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Property 1 (Mutual exclusion) If the requested zone Zqr# R intersects with the requested
zone Zongof R; then exclusively either;Rr R; becomes the owner of its requested zone.

Consequently, a point in the plane can be owned by only one robot.
(Zone N Zong # 0) = (R ownsZong) XOR (R; ownsZong)

Property 2 (Liveness) If a robot R requests Zonehen eventually (Rowns Zongor an excep-
tion is raised).

R requestZong = ¢ (R ownsZong or Exception)
Property 3 (Non triviality) Exception is raised only if a deadlock situation occurs.

The following property must hold to ensure timegrity of the system. If a robot owns a zone,
then eventually it leaves that zone. If a robot leaves a zone, then it releases that zone.
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Chapter 5

Collision prevention protocol for a closed
group model

5.1 Closed group model

We consider a system of mobile robotsS = {Ry,...,R,}, in which each robot has a unique
identifier. The total composition of the system is known to each robot.

Robots have access to a global positioning device that, when queried by &rolettirns
R’s position with a bounded erregs.

The robots communicate using wireless communication such that aRpbab communi-
cate with all robots of the system. Communications assume retransmissions mechanisms such
that communication channels are reliable.

The system is asynchronous in the sense that there is no bound on communication delays,
processing speed and on robots speed movement.

5.2 Collision Prevention: protocol

Idea of the protocol. All robots run the same distributed algorithm which is based on the fol-
lowing idea. When arobd® requests a zonéong, R broadcasts a message indicating a request
of a zone RQUEST(Zong)and a release of the previous owned zoneLEASE(PREVIOUS(RelZong).

A wait-for graph is generated according to the delivered requests and releases. The wait-for
graph represents the wait-for relations between robots. If a requestedang®f a robotR,
intersects with a requested zafeng of robotR;, then a wait-for relation betwed® andR; is
established. When a robBf reaches thpost-motiorzonepos(Zoneg), R releases the previous
zone, and requests a new zone.

All the robots in the system deliver requests and releases in the same order, thus consistent
reservations and releases of zones take place.
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5.2.1 Variables

We present the variables used in the protocol.
e Zone is the zone currently requested or owned by rdRot

e DELIVEREDIs an ordered sef(R, REQUEST, Zong, RELEASE, PREVIOUS(RelZong)}.
The list DELIVERED represents the TO-delivery of the Total Order Broadcast algorithm.
A robot R, TO-broadcasts a request of a zofeneg and a release of the previous zone
PREVIOUS(RelZong. The Total Order Broadcast ensures that all robots in the system
deliver the same list BLIVERED.

e Dag,ie IS a directed acyclic graph generated by the Arbiter algoritirag, ., IS a
wait-for graph such that the vertices represent the robots whose requests belong to the list
DELIVERED, and a directed edge from vert&(to vertexR;) indicates thaR, waits for
R;.

e Dag,,;: is a directed acyclic graph that is generated by appending the Arbiter graphs
Dag,,ier 9€Nerated by successive batches of the protocol.

5.2.2 Protocol description

We explain the phases of the protocol with respect to a rBpothe robotR, is located in the
pre-motionzonepre(Zong). When robotR requests a new zor#oneg, it proceeds as follows.

1. TO-broadcast:

R performs a total order broadcast of a message carryirgaRsTwith the parameters

of the requested zor#ong, and also a RLEASEwith the parameters of the released zone
PREVIOUS(RelZong. The robotR, releases the previous zone and requests a new zone
Zone.

2. TO-deliver:

The TO-deliver of the total order broadcast algorithm returns an ordered set denoted by
DELIVERED which is composed of requested and released zones.IVBRED corre-
sponds to a batch of the protocol. The total order broadcast guarantees that the list
DELIVERED of R is identical (with respect to the composition and to the order of the
elements) to the list BLIVERED of a robotR; of the group.

3. Arbiter:
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All robots deliver the same set of requested and released zones in the same order. How-
ever, the collision prevention problem imposes a wait-for relation between two requested
zones which might be different from the order delivered by the total order broadcast.

In addition, the sequential order of requests delivered by the total order broadcast imposes
that a robotR;, must wait for all the robots that their request’s index iBUDVERED is
smaller than that oR’s request, even if the requested zones do not intersect.

The Arbiter algorithm generates a directed acyclic graph based on thedisVBERED

such that the requested zones that do not intersect with other zones are granted to the
corresponding robots simultaneously, and a rdkatirectly waits only for robotsy; if

Zong intersects witlZone.

The Arbiter module starts by checking the deadlock situations between the requested
zones of the list BLIVERED. (The deadlock situations are illustrated in Chag)enf a
deadlock situation is detected, then the Deadlock Handler is called to resolve the deadlock
situation.

The algorithm Arbiter generates an acyclic directed glaph,;., as follows. The ver-

tices of the graptbag,i, represent robots and a directed edge between two vertices
represents a wait-for relation between the corresponding robots. The Arbiter algorithm
scans the list BLIVERED according to the order delivered by the total order broadcast.
The algorithm compares each requested zone of a Rpwaith all the requested zones

of robotsR, of larger request’s index in the listERIVERED. If Zong intersects with
Zong thenR, waits for R, because the index @&, is larger than the index d®, in the

list DELIVERED. A directed edge from the vertex Bj to the vertex oR, is added to the

g rar:’l‘]Dagarbiter'

Imposed wait-for relations
e If [Zong N pre(Zong) # 0] and [pos(Zong) N pos(Zong) = 0 then, R, must wait
for R;.
e If [Zong N pos(Zoneg) # 0] and [pos(Zone) N pos(Zoneg) = 0] then, R; must wait
for R.

The Arbiter algorithm performs deterministic computations based on the#isMBRED
such that all the requesting robots generatesémeedirected acyclic grapBDag, ;-

. Append-Graphs:

The algorithm Append-Graphs appends the generated dpagl), ., t0 the wait-for
graphDag,,;; using the list ZELIVERED. At first, the algorithm updates the graplag,,;
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by removing the vertices that correspond to the released zones of theelist ERED.
After that, the algorithnappends Dag,;., the wait-for graptDag,,;; such that a robd®;
that belongs tdag,,,i,, Must wait-for a roboR; that belongs tdag,,; if Zone inter-
sects withZons.

A deadlock situation If the requested zongong of R, in Dag, e, iINtersects with the
post-motiorzone ofR; in Dag,,;., then a deadlock occurs becadgenust causally wait
for R;, howeverZone intersects witlpos(Zong). The Deadlock handler is responsible
for resolving this problem, which can be done by preempting the requé$taoid then

R requests an alternative zone.

. Reservation: When all the robots thatis waiting for, release their zones, the request
procedure oR returns andR reserveZong, henceR; becomes the owner @ons.

. Release: WheR, reaches thpost-motioreonepos(Zone), it computes its new position

and thus it computes the zone to be released whiZioing except the place th& may

possibly occupy (footprint and the positioning system eegg). R performs a total

order broadcast of a message carrying the parameters of the next requested zone and the
parameters of the current released zone. Initially, the released zone isLséf torobot

does not acquire a next zone, thémne is set toL.

The total order broadcast of a message carrying both the next requested zone and the
current released zone guarantees that all the robots deliver the sameUiseRED and

hence generates the same gréjdy, ;.. Which enables to update the wait-for graph
consistently, by removing the vertices corresponding to the robots that has released their
zones, and by appending the grdpag,.i..r Which represents the wait-for relations be-
tween the robots that have requested the next zones.

5.2.3 Deadlock Handler

When a deadlock situation is detected, then the Deadlock Handler is called to resolve the dead-

lock situation. The policy used by the Deadlock Handler to resolve deadlock situations is based

on aRequest Preempticstrategy, which is summarized by preempting the request of the robot

that has the larger index in the listEDIVERED. Then, the robot that has the larger index,

restarts a request of an alternative zone.

The design of the collision prevention protocol yields a flexibility to handle the exceptions

caused by deadlock situations, due to the module Deadlock Handler. The Deadlock Handler can

apply a policy that is an application-dependent policy, in order to resolve deadlock situations.

29



Algorithm 1 Collision prevention protocol (Code for robBf)
1: Initialisation:
2:  Previous(RelZong) := 1; Dag,,; := L; DELIVERED := 0;

3: procedure Reques®oneg)
4: TO-broadcasfREQUEST, Zong, RELEASE, PREVIOUS(RelZong] {R TO-broadcasts a request of a new
zone Zongand a release oPREVIOUS(RelZong}
{Zong is set toL if R; does not acquire to move any mére

5.  whenTO-Deliver[REQUEST, Zong, RELEASE, PREVIOUS(RelZong)]
6: DELIVERED := DELIVERED U (REQUEST, Zong, RELEASE, PREVIOUS(RelZong))
7 Dag,irer := Arbiter(DELIVERED) {Apply the deterministic function ArbitdDELIVERED) to decide the
wait-for relations
8: Dag, it := Append-Graphd&§ag, i, Dag,piter» DELIVERED) {Append algorithrh
{update Dag,;; by removing the released requests and appending the new refuests

9: whenthe vertex ofR in Dag,,;; becomes ainkvertex (has no outgoing edges)
10: return {all robots R that R waits for, has released their zorjes
11: end when

12: end when
13: end RequesiZoneg)

Algorithm 2 Arbiter
1: function Arbiter(list)
2: Deadlock-detectoli6t) {If a deadlock situation then, the Deadlock detector calls the Deadlock Hgndler

3: for each indexx from MININDEX(list) to MAXINDEX(list) such thaR € list do
4 for each indexy > x to MAXINDEX(list) such thaR, < list do
5 if Deadlock rislge(Ry, Ry) or Deadlock riskos{R,, Ry) then
6: Dag,piter := Dabymier U DirEdgeRy, R)) {Rx must wait-for R}
7: end if
8 if Deadlock riskos{Rx, Ry) or Deadlock riske(Ry, Ry) then
9: Dag,piter := DaGypiter U DIrEdgeRy, Ry) {Ry must wait-for R}
10: end if
11: if Conflict(R,, Ry) and no edgeR, R,) then
12: Dagypiter := Dagypiter U DIrEdgeRy, Ry)  {X, y represent the indexes of robotg, AR, in list and y
> X}
{a directed edge from a vertex of higher index in list to a vertex of lower inhdex
{The wait-for relation between two robots is set according to their indexes in list
13: end if
14: end for
15:  end for
16:  return Dag,piter

17: end
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Algorithm 3 Append-Graphs

1: function Append-Graph$§ag,,i;, Dad.piter» liSt)

2: for all (RELEASE, PREVIOUS(RelZong) #.1) € list do
3: remove the vertex representiRgand its incoming edges frobag,,;  {Update the current wait-for
graph Dag,,;;, Since R releases the zorerRevVIOUS(RelZong)}
4: end for
5.  for all R, € Dag, e, dO
6: for all Ry € Dag,,;; do
7: if Zoneg intersects witfZong, then
8: if Zoneg intersects wittpos(Zong) then
9: Deadlock-HandleRy, Zong, Ry, Zong) {Ry must wait-for R, but if Zong intersects with
pos(Zong) then R calls the Deadlock-Handlgr
10: else
11: Dag,,;; := Dag,,; U DirEdgeR, Ry) {Ry must wait-for R}
12: end if
13: end if
14: end for
15:  end for
16: return Dag,,;
17: end

Algorithm 4 Deadlock detector algorithm

1: function Deadlock-detectotlift)
2: if Zone € list intersects witpre(Zong) of R; that does not have a requestiist then
3: Deadlock HandleRy, Zong, R,, Zong))
4:  endif
5. for all (R, R) € list do
6: Deadlock situation 1:=
[Zong N pre(Zong) # 0] and [Zong N pre(Zong) # 0] and [pos{Zong) N pos(Zong) = 0]
7 Deadlock situation 2:=
[Zong N pos(Zong) # 0] and [Zong N pos(Zong) # 0] and [pos(Zong) N pos(Zong) = 0]
8: Deadlock situation 3:=
[Zong N pre(Zong) # 0] and [Zong N pos(Zong) # 0] and [pos{Zong) N pos{Zong) = 0]
9: Deadlock situation 4:=
pos(Zong) N pos(Zong) # O
10: if Deadlock situation 1 or Deadlock situation 2 or Deadlock situation 3 or Deadlock situatiem 4
11: Deadlock HandleRy, Zong, Ry, Zong)
12: end if
13:  end for
14: end
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Algorithm 5 Deadlock Handler algorithm
1: function Deadlock-HandlerRy, Zong, Ry, Zong)

2:  Event 1 :=Zong intersects wittpre(Zong) andR, does not request a zone

3:  Event 2 :=Zong, intersects wittpos(Zong) andR, must wait forR,

4: if Event 1 or Event 2 or Deadlock situatiortt8n

5: Request PreemptioR{, Zong,)

6: else

7 Request Preemption (the request with the higher indexa@ni\2ERED) {Deadlock situation 1 or

Deadlock situation 2 or Deadlock situatior} 4

8: endif

9: if no possible alternative churtken
10: throw Exception {There is no solutioh
11: return Exception
12:  endif
13:  Zone:= Zongitermative
14: Request{ong {Deadlock Handler proposes an alternative chbink
15: end

If the Deadlock Handler does not find a solution, because there is no available alternative
chunk then, the Deadlock Handler raises an exception.

5.2.4 Example.

Consider an application composed of the following six robBfsR;, R«, Rp, Ry, Rs).

First batch The different intersections between the requested zones are represented in Fig-
ure.5.1

Zone intersects with Zong, Zone), Zong intersects withZone, Zong intersects with
(Zone, Zone), andZong, does not intersect with any other requested zone.

e Each robot performs a total order broadcast of a message carrying the parameters of the
requested zones. Each robot TO-deliver the same Esti\ERED.

DELIVERED = [(R¢, Zong), (R;, Zong), (Rs, Zone), (R, Zoneg), (R, Zong), (R,
Zong)].

e Generating the graph Arbiter. We assume in this example that there is no deadlock situ-
ations between the requested zones. Figuéxepresents the generated directed acyclic
graphDagarbiter'

The graph ArbiteDag, i, IS generated as follows. The algorithm checks the intersection
of Zong with the other requested zones iEDVERED. Zong intersects with botZone
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Figure 5.1: A group composed of six robots.

Figure 5.2: The directed acyclic graph generated by the Arbiter algorithm in the first batch.
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yojeq puodasg

yojeq 3sirg

Figure 5.3: The resulting wait-for graph in the second batch.

andZone. Since the indexes of requests in the liglDVERED are ordered as follows:
indexRy) < indexRs) < index®R) then the directed edges between vertices representing
robots are added tBag,;,, as follows. A directed edge from the vert®) to the
vertexRs), a directed edge from the vert&y] to the vertex®), and a directed edge
from the vertexR) to the vertexRy).

Then, the Arbiter algorithm checks the intersectionZohg, with the other requested
zones, and adds a directed edge from the veRgx¢ the vertexi®,). The graptDag, e,
is presented in Figur&.2

e The wait-for graptDag,,;; is set to the grapbag, ., 9enerated by the first batch of the
protocol.

¢ In the wait-for graptDag,.;; the verticesR, Ry, Rp) aresinkvertices (has no outgoing
edges), so they do not wait for any robot. Therefore, they reserve the corresponding
zones, and become the owners0b&, Zong,, Zong,) respectively.

Second batch Letus consider thaR, Ry, R,) have reached thgost-motiorzones pos{Zoneg),
pos(Zong), pos(Zong)) respectively. Each of the robok, R, andR, performs a total or-

34



der broadcast of a message carrying a request for a nextZzorg and a release of the zone
PrREvVIOUS(RelZong). The intersections of the requested zones are as follGarsg, intersects
with both (Zong, Zong) but Zong does not intersect witdong,. The second batch proceeds
as follows.

¢ All robots deliver the list ELIVERED = [(R,, Zong,), (Ry, Zong), (R, Zong)].

e Update the wait-for graph by removing the following vertices: vefgx(vertexR;), and
vertex@y) in addition to their incoming edges, and append the gi2@d), p e,

We assume that each of the following zon2er{g,, Zong,, Zong) do not intersect with
apost-motiorzone pos(Zone), pos(Zong), pos{Zong)).

e Append-Graphs. In order to append the gr&aly, ;.. to the graplDag,,;;, the append
algorithm (Algorithm.3) checks the intersection between a zone that corresponds to a
vertex of Dag,,ir» aNd a zone that corresponds to a verteXoat,,;., for all vertices
of both graphs. In this example, let us consider tame, intersects withZong, then
R, must wait forR;. The graphDag,,, IS appended to the grafibag,,;; by adding a
directed edge from the vertd() to the vertexR;). Figure.5.3 represents the resulting
wait-for graphDag,,;; in the second batch.

If there is no intersection between a zone corresponds to a vertex of theD@agh .,

and a zone corresponds to a vertex of the gfaay,.;;, then the resulting wait-for graph

is composed of two disjoint subgraphs, thus there is no wait-for relation between a robot
from one subgraph, and a robot from the other subgraph.

The following batches of the protocol take place exactly as explained in the second batch.

5.2.5 Proof of correctness

Lemma 1 If Deadlock riskye(R;, R;), then Rmust wait for R.

Proof. The ruleR waits for R; = R; releasesRelZong beforeR owns Zong. Deadlock
riskore(Ri, Rj) = pos(Zoneg) does not intersect withos(Zong).

The released zone property shows that phe-motionand themotionzone are included
within the released zone (see Chajggr

Therefore,Zone does not intersect witdong, and the ruleR must wait forR; does not
cause a collision betwed® andR;. O

Lemma 2 If Deadlock riskes{R;, R;) then R must wait for R
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Proof. The ruleR; waits forR = R releasesRelZong beforeR; owns Zong. Deadlock
riskpos{Ri, Rj) = pos{Zong) does not intersect withos(Zone).

The released zone property shows ghraZong) andmotionZong) are included within the
released zonRelZong(see ChapteB).

Therefore,Zone does not intersect witdong, and the ruleR; must wait forR; does not
cause a collision betwed® andR;. O

Lemma 3 The possible deadlock situations are as follows. A situation that belongs to the set
DS ={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock situajion 4

a situation where a requested zone intersects with the pre-motion zone of a robot that has not
requested a zone, and a situation where a rohahRst wait for a robot R and Zoneintersects

with pos{Zong).

Proof. At first, We prove that each of the situations of the[3&tis a deadlock situation.

Deadlock situation 1

e R ownspre(Zong). If R waits forR;, thenR; ownsZong andR; has ownegre(Zong).
The situation Deadlock rigk(R;, R) implies thatZong intersects witlpre(Zoneg). Thus,
a collision may occur betwedR andR;.

e R; ownspre(Zong). If R; waits forR;, thenR, ownsZong andR; has ownegre(Zong).
The situation Deadlock rigk(R;, R;) implies thatZoneg intersects wittpre(Zong). Thus,
a collision may occur betwedR andR;.

So, neitherR nor R; can own the requested zone, Deadlock situation 1 is a deadlock
situation.
Deadlock situation 2

e If R waits for R;, thenR; releasesRelZong beforeR, ownsZoneg. So, R; still owns
pos(Zong) c SubPogtZong). The situation Deadlock rigks{R;, R;) implies thatZoneg
intersects witlpos(Zoneg). Thus a collision may occur betweghandR;.

e If R} waits for R, thenR releaseRelZone beforeR; owns Zong. So, R still owns
pos(Zong) c SubPogtZone). The situation Deadlock rigsks(R;, R)) implies thatZong
intersects witlpos{Zone). Thus, a collision may occur betwehandR;.

So, neitherR nor R; can own the requested zone, Deadlock situation 2 is a deadlock
situation.

36



Deadlock situation 3

¢ If R waits forR;, then the situation Deadlock rigk(R;, R;) may cause a collision be-
tweenR andR; (previous arguments).

e If R; waits forR;, then the situation Deadlock risk(R;, R;) may cause a collision between
R andR;.

So, neitherR nor R; can own the requested zone, Deadlock situation 3 is a deadlock
situation.

Deadlock situation 4

e If R waits forR;, thenR; releasefkelZong beforeR ownsZone, butRelZong contains
a part ofpos(Zong) denoted bySubPogZong) (see chapteB). The part pos(Zoneg)
c SubPogZong)) is still owned byR;. WhenR; ownsZong then it ownspos{Zong).
Thus, a possible collision may occur betweggnand R;, since thepost-motionzones
pos(Zoneg) andpos(Zong) intersect.

¢ If R; waits forR; then a possible collision may occur between the two robots. (previous
arguments)

So, neitheR norR; can own the requested zore,Deadlock situation 4 is a deadlock situation.
Consequently, the elements[of are deadlock situations.
We prove that a deadlock situation is one of the situations mentioned above in (L&mma
A zoneZong is composed of three zonegre-motion motion andpost-motionzone. So,
Zone = pre(Zong) U motion(Zoneg) U pos{Zong). The possible intersection situations between
two zonesZong andZong are analyzed as follows.

e pre(Zoneg) N pre(Zong) = 0. The intersection betweepre(Zong) and pre(Zoneg) is
impossible. pre(Zoneg) is the zone thaR may occupy (footprint andyps). The pre-
motionzones are supposed not intersecting initially. During the run of the protocol, the
pre-motionzone pre(Zong) is entirely included within the previousost-motionzone.
pre(Zong) c PREVIOUS(pos(Zone)). If pos(Zoneg) intersects wittpos(Zone), then it
is a deadlock situation (Deadlock situatioe £S).

o If pre(Zoneg) intersects withpos(Zone), then this situation is the Deadlock rigk(R;,
R;) or the Deadlock riske(R;, R) situations. So, in both situatiof§ must wait forR
according to Lemmas1[ 2]. This situation is not a deadlock situation.

e If (Zone N Zong) c (motion(Zong) N motion(Zong)), then eitherR; waits forR; or R;
waits forR,. So, this situation is not a deadlock situation.
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e If motion(Zong) intersects wittpre(Zong), then it is the Deadlock rigk(R;, R;) situa-
tion. According to Lemmal Deadlock risk,.(R;, R;) is not a deadlock situation.

¢ If motiorn(Zone) intersects wittpre(Zong), andmotior(Zong) intersects withpre(Zone),
then it is a deadlock situation (Deadlock situatienlS).

o If motion(Zoneg) intersects witpos{(Zone), then it is the Deadlock rigks(R;, R;) situa-
tion. According to Lemma2 Deadlock risk.s(R;, R;) is not a deadlock situation.

¢ If motion(Zone) intersects witlpos(Zong), andmotion(Zoneg) intersects witlpos(Zone),
then it is a deadlock situation (Deadlock situatioa PS).

e If pos(Zone) intersects wittpos{Zong), then it is a deadlock situation (Deadlock situa-
tion 4€ DS).

¢ If motion(Zong) intersects with botlpre(Zong) and pos{Zong), then it is a deadlock
situation (Deadlock situation 8 DS).

We prove that, a situation where a requested zone intersects with the pre-motion zone of a
robot that has not requested a zone, is a deadlock situation, and a situation whereR robot
must wait for a roboR;, andZoneg intersects witlpos{Zons), is a deadlock situation.

e If arobotR; has not requested a zone, then no wait-for relation betieand a roboR;
is established. A robdR, initially knows the position§re(Zong)) of each roboR; in the
system. So, if a requested zoAene intersects with the pre-motion zone of a rolbjt
that has not requested a zone, tiilcan not ownZong, otherwise a collision between
R andR; occurs. Therefore, this situation is a deadlock situation, since nétfmar R;
can move.

e If arequested zone by a robtintersects with th@ost-motiorzone of a roboR;, then
R; must wait forR, (Lemma.2), otherwise, a collision may occur betweBnandR;.
Therefore, if a requested zone by a roBbtintersects with thgost-motionzone of a
robotR;, andR must wait forR;, then a deadlock situation occurs betwéeandR,;.

Consequently, the possible deadlock situations are as follows. A situation that belongs
to the setDS={Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock
situation 4, a situation where a requested zone intersects with the pre-motion zone of a robot
that has not requested a zone, and a situation where a Rolbatist wait for a roboR;, and
Zong intersects witlpos{(Zong). o

Theorem 1 (Non triviality) An exception is raised only when a deadlock situation occurs.
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Proof. An exception is raised only by the Deadlock Handler algorithm (Algorithrtine. 10).
The Deadlock Handler returns an exception when it does not find a solution to resolve a dead-
lock situation.

The Deadlock Handler is called by the Deadlock detector algorithm (Algordhhmes. [3,
11]). In Algorithm. 4, line. 3, the situation is that, a requested zone intersects witlpthe
motionzone of a robot that has not requested a zone. According to LeB)rtas situation is
a deadlock situation.

In Algorithm. 4, line. 11, the situation belongs to the 986, so it is a deadlock situation
according to LemmaB.

The Deadlock Handler is also called by the Append-Graphs algorithm (AlgorgHime. 9),
when a robotR, must wait for a roboR,, andZone intersects with thgost-motionzone
pos{Zong). This is a deadlock situation according to Lemi3a.

Consequently, an exception is raised only when a deadlock situation oocurs.

Lemma 4 The wait-for graph Dag,,;., has no cycles.

Proof. The algorithm Arbiter starts from a totally ordered set of elemksitsLet us consider
two different elements dist (R, Zong) and R;, Zong). These two elements have two different
indexes, assuming that the index Bf (Zong) is larger than the index oR, Zong). According

to the Arbiter algorithm Algorithm2, if Zong intersects withZong then a directed edge is
added to the grapbag,,,;,.; from the element of the higher index to the element of lower index
in list. Thus a directed edge frorR{, Zong) to (R, Zong). Each index ifist corresponds to
one and only one elemeatlist. If a directed edge from vertelR() to vertexR) € Dag,yier
then it is impossible that a directed edge from velRX(© vertexR;) belongs tdDag, yer-

The previous arguments are valid for more than two elements. Let us consider the case of
three elements R, Zone), (R;, Zong), (R, Zong) < list and assume that each zone intersects
with the two other zones, and ind&(Zong) < index®;, Zong) < index®, Zong). Accord-
ing to Algorithm.2 the following directed edges belong to the grédg, - A directed edge
from vertexRy) to vertexR;), a second directed edge from vert@y(to vertexg), and a third
directed edge from vertel() to vertexR). Since, a total order relation teansitivethen it is
impossible that a directed edge from vert)to vertexR) belongs tdag,piier- O

Lemma 5 The wait-for graph Dag,;; has no cycles.
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Proof. The wait-for graptDag,;; results from appending the graphs generated by the Arbiter
algorithm, in successive batches of the protocol. According to lerdraagraphDag, ., has

no cycles. Appending Arbiter grapli¥ag, ., IS managed by the Append-Graphs algorithm
(Algorithm. 3) that removes the vertices which represent the robots that have released their
previous zones, and then Algorithappends the Arbiter gragbag, i, that corresponds to

the requests of zones.

Consider two graphBag,,,; generated in a batch numbeandDag,,,, generated in the
next batchr + 1.

The Append algorithm, at first, updat&sag,,; by removing the vertices of robots that
released their previous zones. When a rdRatequests a zond3; must release the previous
zone. All the robots in the system update the wait-for gr@pl, .;; consistently, by removing
the same set of vertices corresponding to the robots that have released their previous zones. The
consistency result is provided by the total order broadcast. (Algoritimine. 4).

v vertexR), if vertex(R) € Dag,,,, = vertexR) ¢ Dag,;- BecauseR must release
PREVIOUS(RelZong before requestingone, thus vertexi®) is removed fronDag,; -

¥ vertexR), if vertex(R) € Dag,,,; = vertexR) ¢ Dag,,,,. Becausér has not yet released
its zone, thud can not request a new zone. Consequently, the verticBagf,, andDag,,
are distinct vertices.

The appending mechanism relies on adding a directed edge from a veidaggf, to a
vertex of Dag,,,, if the requested zones by the corresponding robots are intersecting zones.
The appending mechanism implies the impossibility that an edge is directed from aR@rtex(
€ Dag,, to a vertexR;) € Dag,,,,. Therefore, if the requested zone by a roBpsuch that
vertexR) € Dag,,, intersects witiZzong of a robotR; such that vertexg;) € Dag,,,, thenR,
must wait forR;. Consequently, no cycles can be created by apperidatg,,, to the graph
Dag,,;- So, the wait-for grapbag,,; has no cycler

Theorem 2 ( Mutual Exclusion) If a requested zone Zonef R intersects with a requested
zone Zongof R; then exclusively either;Rr R; becomes the owner of its requested zone.

(Zone N Zong # 0) = (R ownsZong) XOR (R; ownsZong)

Proof. If a requested zonZone of a robotR; intersects with a zongong of a robotR;, then
one of them waits for the other, because a directed edge is added to th®a@ph., from the
request of the higher index to the request of lower index in the IBtiPERED. (Algorithm. 2,
line. 12).

Let us consider thd®, waits forR;, soR; releasefkelZong, after thatR ownsZong. When
the robotR is the owner oZoneg, the robotR; is deprived from its ownership to the zoAens.
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The robotR; just keeps a part gfos(Zong) under its reservatiorZong does not intersect with
the part ofpos(Zoneg) that still reserved by;, because:

1. pre(Zong) N pos(Zong) = 0 (Proof by contradiction). Ifore(Zoneg) intersects with
pos(Zong), then this situation is the Deadlock rigKR;, R)) or the Deadlock risjs(R,,
R;) situations. In both situatiorf3; must wait forR; according to Lemmas1[ 2]. (Algo-
rithm. 2, line. 9). This leads to a contradiction, since the assumption isRhafaits for
R;.

2. motior(Zong) N pos(Zong) = 0 (Proof by contradiction). If thenotionzone ofR in-
tersects with th@ost-motiorzone ofR;, then the situation is: Deadlock rigk{R, R;).
Thus,R; must wait forR; which leads to a contradiction.

3. pos(Zong) N pos(Zoneg) = 0 (Proof by contradiction). If theost-motiorzones intersect,
then the situation is a deadlock situation (Deadlock situatienDiS), which leads to a
contradiction.

The graphDag,,i IS generated based on the lisEDVERED , hence thesamelist (com-
position and order of requests) is delivered by all the rold&s), .., = Arbiter(DELIVERED).
The Arbiter algorithm (Algorithm2) performs deterministic computations starting from the list
DELIVERED, by adding a directed edge from the vertex that represents the robot of the higher
request index in BLIVERED to a vertex of lower request index, if the requested zones intersect.
If a deadlock situation is detected, then a request preemption policy is applied by the Deadlock
Handler algorithm, such that the request that has the higher index is preempted. So, the Arbiter
algorithm defines a deterministic function denoted Agbiter().

Consequently, all robots generate the same wait-for gtau,.;, and the ownership of
intersecting zones satisfies the mutual exclusion property.

Theorem 3 (Liveness)If a robot R requests Zonghen eventually (Fowns Zongor an excep-
tion is returned).

R requestZong = ¢ (R ownsZong or Exception)

Proof. If arobotR requests a zongong, then:
1. If Zone does not intersect with a zo@®ng, thenR, ownsZone.

2. If Zone intersects with a zongong, then a directed edge is created between veREx(
and vertexR;) in the wait-for graphDag,.;. According to Lemmab5 the graphDag,,;
has no cycles. ThereforB; eventually owngone.
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3. If a deadlock situation is detected, then the Deadlock Handler is called. If the Dead-
lock Handler algorithm does not find a solution to resolve a deadlock situation, then an
exception is raised by the Deadlock Handler (Algorittaxine. 10).

ThereforeR requestZong = ¢ (R ownsZong or Exception).o

5.3 Fault-tolerant collision prevention protocols

We consider the crash of robots. If a rolsgthas crashed then, there exist some robots that are
blocked waiting forR; to releas&Zong. The set of robots that are blocked waiting Ryrgets
larger as the time progress&npwballeffect).
Therefore, it is necessary to provide collision prevention protocols that tolerates the crash
of some robots of the system, and allows the system of robots to progress toward their goals.
In this Section, we provide two fault-tolerant collision prevention protocols, the first is pre-
emptive in the sense that a request of a rd®as preempted iR; is considered as a crashed
robot. R; is considered crashed if it is suspected by the majority of robots in the system. The
second protocol is non-preemptive, so a request of a iRlisnot preempted, instead a rofyt
cancels a requedR( Zoneg) if R suspect®; andR, waits forR; (Zone intersects wittzonsg).

5.3.1 Failure model

We consider that a robot can fail by crash and that crash is permaneatrektrobot is defined
as a robot that never crashesfallty robot is defined as a robot that might crashes.

ArobotR, is provided with &S failure detectoF D; that triggers a 8spPICIONiIf it suspects
a robotR; after trusting it,FD; triggers also a RusTif it trusts R after suspecting it.

We assume that theajority of robots in the system are correct robots. The number of faulty
robotsf is less than half of the robots of the systerfi.{[31), wheren is the total number of
robots.

5.3.2 A preemptive fault-tolerant collision prevention protocol

The idea of the preemptive protocol is as follows. A request of a rBba preempted if it is
considered as a crashed robot by the majority of robots, aRghfs not owned its requested
zoneZong. When the requesRj, Zong) is preemptedR; restarts a new request abng.

If R; has ownedZong then, Zong is considered as a blocked zone, hence a reqégst (
Zoneg) of a robotR; that waits forR; andZong intersects withZong, is preempted. When the
request iR, Zong) is preemptedR requests an alternative zone.
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The preemptive protocol description

The collision prevention protocol in the face of failures, relies on a total order broadcast algo-
rithm, since it is fault-tolerant. The total order broadcast algorithm is defined in terms of two
primitives TO-Broadcasand TO-Deliver When requests afEO-Delivered the Arbiter graph
Dag,ier IS generated as explained in Secti6r

Status of robots If R suspectshat a roboR; has crashed, (wheR’s failure detector module
FD; triggers a suspicion after trustiri®)) then,R, TO-Broadcasts message indicating thgf
is suspected as a crashed robot.

WhenR’s failure detector modulé D; triggers a trust after suspectifgy) then,R TO-
Broadcastsa message indicating thRf is trusted again.

When a roboR TO-DeIiversr’%l] messages from different senders (majority of robots),
indicating that a roboR; is suspected as crashd®l sets thestatusof R; to “crashed” (initially,
the status of a robot is set to the value “not-crashed”).

If a robotR; TO-Deliversatrustmessage concerning a roligytthen, the status dg; is reset
to the value “not-crashed”.

Behavior of arobotR  If R TO-DeIiversr%l] messages from different senders (majority of
robots), indicating tha®, is suspected crashed, aRdhas not ownedoneg, then the request of
R is preempted anR, restarts its request @one.

If R TO-DeIiversr’lzl] messages from different senders (majority of robots) indicating that
R is suspected crashed, aRdhas ownedZong, thenR, ignores the messages, since other
robots consideZong as a “blocked” zone and owned alwaysRy WhenR, reaches thpost-
motionzonepos(Zone), R releasegong. When a roboR; TO-Deliversthe release message
of R, R; resets the status @ong to the value “unblocked” and resets the statu&kofo the
value “not-crashed”.

If the robotR has actually crashed, thé&foneg is held blocked. Because, it is impossible
for a robotR; to decidedeterministicallywhetherR; has crashed or not, in asynchronous
distributed system 1/4].

When aroboR; receives a release message from all the roRptisatR waits for, it invokes
the procedure Resen&gneg).

ReserveZong) A robot R starts the procedure ReserZe(g), when all the robot&; that
R waits for, release their zong®ng. In this preemptive protocol, a robot reserves a zone
via Total Order Broadcast, to ensure that the robots decide consistently whether &robot

1The suspicion oR; does not mean th&; has crashed.
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has ownedZong whenR; is suspected by the majority of robots in the system. BolO-
Broadcast@a message indicating thetreserve&ong. When aroboR, TO-Deliversa message
RESERVHZong), R ownsZong and sets the status Bf to “not-crashed”. All robots agree that
R ownsZoneg. Therefore, if the status & changes to “crashed” aft& has ownedone then,
Zong is considered as a “blocked” zone and owned alwayR,by

Crash Handler The Crash Handler of a rob& is called, when the status of a rolft be-
comes “crashed”, andl; has ownedonsg. In such a situatiorZong is handled as a “blocked”
zone owned always Hy;, sinceR, cannot decide deterministically whettigrhas really crashed
or not. If R; has not really crashed then, the statuZohg is reset to “unblocked” wheR,
eventually releasesong.

e If Zone intersects withiZong (i.e., R waits for R; directly) then, the requesR, Zoneg)
is preempted and the grapag,,; is updated by removing the vert&) and its related
(incoming and outgoing) edges fradag, ;. Also, for all R, that conflict withR; (Zone
intersects witdong), the vertexR) with its related edges is removed frddag, .

The Crash Handler dR offers an alternative zongong?te™mative t5 the robotR;, which
starts a request of the alternative zon&QRESTZong?®™Maive) |f there is no available
alternative chunk, then the Crash Handler algorithm raises an Exception.

e If Zong does not intersect witizong then, the wait-for graptbag,,; is updated by
removing vertexR) with its related (incoming and outgoing) edges, for all robRts
such thaZong intersects wittZong. ThenR, continues the execution of the protocol.

Deadlock detector The deadlock detector, in presence of failures, is additionally, required to
check the intersection of a requested zone with a “blocked” zone. The status of Zage

is set to the value “blocked” when the status of the owRgbecomes “crashed” and; has
ownedZong. The status of a zone is remained “blocked” until BLRASE(Zong) message of

the robotR; is TO-delivered

Append-Graphs The Append-Graphs algorithm, in presence of failures, is required to update
the status of a “blocked” zongong. The Append-Graphs algorithm sets the statuZarig

to the value “unblocked”. The algorithm Append-Graphs is responsible for handling a released
zone, by removing the corresponding vertex and its related edges from theDggph before
appending the grapbag, - Thus, Append-Graphs algorithm unblocks a zone, when the
owner releases the blocked zone.
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Algorithm 6 Fault tolerant Collision prevention protocol (Code for roBot

1: Initialisation:

2 PrREVIOUS(RelZong) := L; Dag,,;; := L; DELIVERED :=0;
3: for all robotsR; do

4: StatusR;) := “not-crashed”

5 counfRj] :=0

6: end for

7: procedure RequesZong)

8. TO-broadcasfREQUEST, Zong, RELEASE, PREVIOUS(RelZong)]

9:  whenTO-Deliver[REQUEST, Zong, RELEASE, PREVIOUS(RelZong)]

10: DELIVERED := DELIVERED U (REQUEST, Zong, RELEASE, PREVIOUS(RelZong))

11: Dag,piter := Arbiter(DELIVERED)

12: Dag,.i: := Append-Graph$§ag, i, Dag,piter» DELIVERED)

13: whenthe vertex ofR; in Dag,,;; becomes ainkvertex (has no outgoing edges)

14: return {all robots R that R waits for, has released their zorjes
15: end when

16: end when
17: end RequesiZong)

18: procedure Reservefong)
19: TO-BroadcstRESERVHZONg))
20: end Reservefoneg)

21: task StatusR)
22:  whenTO-Delivei(m)

23: if mis SUSPECT(R) then

24: TO-BroadcagfTRUST, R) {R TO-broadcasts a message to indicate thah&s not crashef
25: coun{R] := counfR] + 1

26: if counfR] > {%1] andR, does not owrZoneg then

27: update the wait-for grafdbag,,;; by removing vertexg) and its related edges

28: Restartg;, Zone) {R restarts the procedure Request(Zghe
29: counfR]:=0

30: StatusR) := “not-crashed”

31L: end if

32: end if

33: if mis TRUST(R) then

34: counfR]:=0 {resets the counter when R trusted
35: StatusR) := “not-crashed”

36: end if

37: if mis RESERVEZone) then

38: R ownsZone

39: counfR]:=0 {all robots agree that Rowns Zong
40: StatudR) := “not-crashed”

41: when R, reaches theost-motiorzonepos(Zong)

42: PrREVIOUS(RelZong) := Zong except the place th& may possibly occupy.

43: end when

44; end if

45:  end when

46: end
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Algorithm 7 Status algorithm
1: task StatusR;)

2: if (StatusR;) ="not-crashed”) and suspeR) then

3 TO-BroadcasiSUsPECT, R;) {R TO-broadcasts a message thatiRsuspected, when FBuspects R
4:  endif
5:
6
7

if (Statusk;) =“crashed”) and trusK;) then
TO-BroadcadfTRUST, R;) {R TO-broadcasts a message thatiRtrusted, when FPtrusts R}
end if

8. whenTO-Delivei(m)

9: if mis SUSPECT(R;) then
10: counf{Rj] := coun{R;] +1
11: if counfRy] > [%1] then
12: Status;) := “crashed”
13: end if
14: end if
15: if mis TRUST(R;) then
16: counfR;] :=0 {resets the counter when B trusted
17: Status;) := “not-crashed”
18: end if
19: if mis RESERVHZong) then
20: Status;) := “not-crashed”
21: counfR;] :=0 {sender(m) is R thus the Status of;Rs updated by all robots
22: R; ownsZong {All robots agree that Rowns Zong}
23: end if
24: if (StatusR;) ="crashed”) andR; does not owrzong) then
25: Request Preemption dr, Zong) {The request of (RZong) is preempted
26: update the wait-for gragdbag,,;; by removing vertex®;) and its related edges
27: counfRj] :=0
28: Statud;) := “not-crashed”
29: end if
30: if (StatusR;) = “crashed”) andR; ownsZong) then
31: Crash-HandleR;, Zong) {In such a situation, Zonas held owned by B
32: end if
33:  endwhen
34: end

Algorithm 8 Restart algorithm
1. procedure RestartR, Zong)
2:  Request PreemptioR( Zong) {The request (RZoneg) is preempted, thus;Rnust restart the request of

Zong}
3: update the wait-for grapbag,,;; by removing vertexg) and its related edges
4: Requesf{ong) {R; restarts the protocol by Request(Zongith PREVIOUS(RelZong=1}
5: end
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Algorithm 9 Deadlock detector algorithm

1: function Deadlock-detectotlift)

2: if Zoneg € list intersects with “blocked” zonthen
3: return true

4: endif

if Zone € list intersects witlpre(Zong) of R; that does not have a requestist then
Deadlock HandleRy, Zong, R,, Zong)
end if

No O

for all (R, Ry) € list do
Deadlock situation 1:=
[Zong N pre(Zong) # 0] and [Zong N pre(Zong) # 0] and [pos(Zong) N pos(Zong) = 0]
10: Deadlock situation 2:=
[Zong N pos(Zong) # 0] and [Zong N pos(Zong) # 0] and [pos(Zong) N pos(Zong) = 0]
11: Deadlock situation 3:=
[Zong N pre(Zong) # 0] and [Zong N pos(Zong) # 0] and [pos{Zong) N pos{Zong) = 0]
12: Deadlock situation 4:=
pos(Zong) N pos(Zong) # O

13: if Deadlock situation 1 or Deadlock situation 2 or Deadlock situation 3 or Deadlock situatiem 4
14: Deadlock HandleRy, Zong, Ry, Zong)

15: end if

16: end for

17: end

Algorithm 10 Crash Handler algorithm
function Crash-HandleR;, Zong)

1

2:  statusfong) := “blocked” {all robots update the status of Zgrte “blocked"}
3:  for all R such thaZong intersects witlizong do
4

5

update the wait-for grapBag,,,; by removing vertex®c) and its related edges.
end for

6: if Zong intersects wittzong then

7. Request Preemptigifir;, Zong) {The request (RZone) is canceledl

8: if no possible alternative churtken

9: throw Exception {There is no solutioh
10: return Exception
11: end if
12: Zong := Zong?A'terative {The Crash Handler proposes an alternative chunk fgr R
13: Request{ong)
14: endif
15: end
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Algorithm 11 Append-Graphs

1: function Append-Graphg$§ag,,.i;, Dagympiter liSt)

2:  for all (RELEASE, PREVIUOUS(RelZong) #.1) € list do

3 if status(REVIUOUS(RelZong)) = “blocked” then

4 status(REvVIUOUS(RelZong)) := “unblocked”

5 remove the vertek|) from Dag,,;;

6: counfR;] :=0 {R; has not crashep
7. StatusR;) := “not-crashed”

8: else

9: remove the vertel;) and its incoming edges froag,,;;
10 end if
11: endfor

12:  for all Ry € Dag, e, dO

13: for all Ry € Dag,,;; do

14: if Zong intersects wittzong then

15: if Zoneg intersects wittpos(Zong) then

16: Deadlock-HandleRy, Zong, Ry, Zong) {Ry, must wait-for R, but if Zong intersects with
pos(Zong) then R calls the Deadlock-Handlgr

17: else

18: Dag,,;; := Dag,,; U DirEdgeR, Ry) {Ry must wait-for R}

19: end if

20: end if

21: end for

22: endfor

23:  return Dag,.i

24: end

Proof of correctness for the preemptive fault-tolerant protocol

We prove that the preemptive protocol satisfiesgatetyproperty (Mutual Exclusion), and the
Non-Triviality property, also we prove that the Liveness property holds if robots are provided
with a failure detector of class®.

Theorem 4 ( Mutual Exclusion) If a requested zone Zonef R intersects with a requested
zone Zongof R; then exclusively either;Rr R; becomes the owner of its requested zone.

(Zone N Zong # 0) = (R ownsZong) XOR (R; ownsZong)

Proof. The total order broadcast algorithm, guarantees that all rali®tBeliverthe requests
and the reservations in the same total order, in presence of failures (crash of robots).
The protocol relies on &S failure detector, with majority of correct robots. The number
of faulty robotsf is less than half of the robots of the systenfi. { [31), wheren is the total
number of robots. The problem of total order broadcasgisivalento the consensus problem,
and it has been shown i6]| that ¢S is the weakest class of failure detector that allows solving
the consensus problem in an asynchronous system prone to process crashes, if the majority of
processes are correct.
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If a robot R suspects a robdR;, thenR, TO-Broadcasts suspicion message thaf has
crashed. All robot3 O-Deliverssuspicion messages tigthas crashed in the same total order.

WhenR, TO-DeIivers(r”%l]) suspicion messages that has crashed, there are two situa-
tions:

¢ If R; has not ownedong, then the request @&, is preempted.

— If Rj has not really crashed, then it restarts a requedbof.

— If R; has really crashed, then it just occupies pine(Zong). If a robotR requests
a zoneZone that intersects witlpre(Zong), then the Deadlock detector detects this
situation (Algorithm9, line. 6), hence the Deadlock Handler is called to resolve this
deadlock situation by proposing an alternative chuni;to

e If R; has ownedong, thenZong is considered as a blocked zone. Hence, no robot other
thanR; can ownZons.

— If Rj has not really crashed, theé®) releases the blocked zone whBpreaches
pos(Zone).

— If R has really crashed, thefong remains blocked.

The ownership oZong by R; is decided consistently by all robots (procedure Res&mes)),
since the reserving a zone is performed relying on the total order broadcast.

Consequently, the ownership of intersecting zones satisfies the mutual exclusion property,
and thesafetyproperty is satisfieda

Theorem 5 (Liveness)If a robot R is a correct robot, Rrequests Zondahen eventually (R
owns Zongor an exception is returned), with the additional assumption that robots are provided
with ¢ failure detector. The.ivenessproperty does not hold if robots are provided witis
failure detector.

R requestZong = ¢ (R, ownsZong or Exception), with the additional assumption that robots
are provided witho® failure detector.

Proof. Robots are provided with% failure detector. The BRONG COMPLETENESSproperty
of the failure detector, implies that there is a time after which every faulty robot is permanently
suspected by all correct robots. Therefore, eventlllgorrect robot) suspects permanently a
faulty robotR;.

If R is suspected by the majority of robots (”%11), then the request d® is preempted,
andR restarts its request afong. Robots are provided with @ failure detector (3RONG
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COMPLETENESSand EVENTUAL STRONG ACCURACY). The BVENTUAL STRONG ACCU-
RACY property of the failure detector, implies that, there is a time after which correct robots are
not suspected by any correct robot. Thusyifs a correct robot, then eventually, it will not be
suspected by any correct robot. Since, there are atﬂéléstcorrect robots in the system, then
eventuallyR; will not be suspected by the majority of robots, so eventuRlpwns a requested
zoneZons.

If R waits for a robofR;, such thaR; is suspected, as a crashed robot, by the majority of
robots, then:

¢ If Rj has not ownedong, then the request dR; is preempted, and consequently, the
wait-for relation betweeR, andR; is canceled.

¢ If R; has ownedong, thenZong is considered as a blocked zone. There are two situa-
tions:

— If Zone intersects withZong then, the Crash Handler preempts the requist (
Zone) (Algorithm. 10, line. 7), and therR, restarts a request of an alternative zone.
If the Crash Handler does not find an alternative chunk, then an exception is re-
turned. (Algorithm 10, line. 9).

— If Zone does not intersect wit@ong then, the wait-for grapibag,,; is updated,
and a vertex®) is removed with its edges, for robd®& such thaZone intersects
with Zong. Then,R continues the execution of the protocol.

Therefore, if a roboR, is a correct robotRR requestZong = ¢ (R ownsZone or Excep-
tion), with the additional assumption that robots are provided withfailure detector.

TheLivenesgproperty does not hold if robots are provided witls failure detector, because
the EVENTUAL WEAK ACCURACY property implies that, there is a time after whisbme
correct robot is never suspected by any correct robot. So, t®URACY property does not
hold for all correct robots, and a correct robot might be suspected by correct rabots.

Lemma 6 The possible deadlock situations are the same deadlock situations presented in Bemma.
(failure-free protocol) with the additional deadlock situation, that occurs if a requested zone in-
tersects with a “blocked” zone.

Proof. If a requested zon&one intersects with a blocked zor#ong, then this situation is

a deadlock situation. Because, the roRptis suspectedis a crashed robot, and it is, deter-
ministically impossible to distinguish a crashed robot from a very slow one, in asynchronous
distributed systems prone to crash failures. Tiimg is considered as a “blocked” zone for

R;j, andZone that intersects witZong creates a deadlock situatian.
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Theorem 6 (Non triviality) An exception is raised only when a deadlock situation occurs.

Proof. An exception is raised by the Deadlock Handler algorithm (the same as for the failure-
free protocol). The Deadlock Handler returns an exception when it does not find a solution to
resolve a detected deadlock situation.

Additionally, the fault-tolerant protocol raises an exception when the Crash Handler module
does not find a solution for the deadlock situation presented in LerGnvehere a requested
zone intersects with a “blocked” zone. (Algorithf®, line. 9).

Consequently, an exception is raised only when a deadlock situation oocurs.

5.3.3 A non-preemptive fault-tolerant collision prevention protocol

The non-preemptive fault-tolerant collision prevention protocol is based on the following idea.
If a robotR, waits directly for a robotR; (Zone intersects withizong), andR; suspects thag,

has crashed, thé® cancels the requed®( Zong) and requests an alternative zone that does not
intersect withZong. The difference with the previous fault-tolerant protocol is that, the request
of a robotR; can not be preempted due to the vote of other robots in the system, hd#ever
cancels its request @fone (due to a decision dR) whenR, suspects the rob®;.

Proof of correctness for the non-preemptive protocol

We prove that the non-preemptive fault-tolerant protocol satisfies the propsediesjproperty
(Mutual Exclusion), the Liveness property, and the Non-Triviality property.

Theorem 7 ( Mutual Exclusion) If a requested zone Zonef R intersects with a requested
zone Zongof R; then exclusively either;Rr R; becomes the owner of its requested zone.

(Zong N Zong # 0) = (R ownsZong) XOR (R; ownsZong)

Proof. If a robotR suspects a robd®; andZoneg intersects withZzong then, R, cancels the
request R, Zong) and then the Alternative Handler algorithm proposes an alternative chunk
for R that does not intersect withong.

Therefore, the non-preemptive collision prevention protocol satisfies the safety property of
the system, that no collision can occur between robots.

(Zong N Zong # 0) = (R ownsZong) XOR (R; ownsZong). O

Theorem 8 (Liveness)R; is a correct robot, Rrequests Zondhen eventually (Rowns Zong
or an exception is returned).

R requestZong = ¢ (R ownsZong or Exception).
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Algorithm 12 Non-preemptive fault tolerant collision prevention protocol (Code for rétot
1: Initialisation:
2:  Previous(RelZong) := 1; Dag,,; := L; DELIVERED := 0;

3: procedure Requesong)
4: TO-broadcasfREQUEST, Zong, RELEASE, PREVIOUS(RelZong)]

5:  whenTO-Deliver[REQUEST, Zong, RELEASE, PREVIOUS(RelZong)]

6: DELIVERED := DELIVERED U (REQUEST, Zong, RELEASE, PREVIOUS(RelZong))
7 Dag,piter := Arbiter(DELIVERED)

8 Dag, it := Append-Graphd&§ag, i, Dag,piter» DELIVERED)

9: if SusPECTR;) andZone intersects witfZong then
10: Cancel requesR(, Zong)
11: end if
12: AlternativeR;, Zong)
13: whenthe vertex representirig in Dag,,;; becomes ainkvertex
14: return
15: end when

16: end when
17: end RequesZong)

18: procedure Reservefong)

19: R reserveZong {R owns Zong
20: whenR; reaches thpost-motiorzonepos{Zong)
21: PREVIOUS(RelZong) := Zong except the place th& may possibly occupy.

22: end when
23: end ReserveZong)

Algorithm 13 Cancel-Request algorithm
1: procedure Cancel RequesR, Zoneg)

2.  TO-BroadcadiCANCEL, R, Zong) {The request (RZong) is canceled
3 when TO-Delivel(CANCEL, R;, Zong)

4: update the wait-for grapbag,,;; by removing vertex®) and its related edges

5. endwhen

6: end

Algorithm 14 Alternative Handler algorithm

1: function Alternative;, Zong)

2: if no possible alternative churtken

3: throw Exception {There is no solutioh

4 return Exception

5: endif

6: Zone := Zong?tternative {The Alternative Handler proposes an alternative chunk fgr R
7:  Request{ong)

8: end
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Proof. If arobotR requestZong andR waits for some roboR; then:

e If the failure detectoD; of R suspects thaR; has crashed andong intersects with
Zong then, R cancels its requesR(, Zoneg) and requests an alternative zone. If there
is no available alternative chunk, then an exception is raised by the Alternative Handler
algorithm. (Algorithm.14, line. 3).

o If the failure detectoF D; trustsR; then,R; waits forR; until R; releasegonsg.

A request R, Zong) cannot be preempted neither by a roBphor by a vote of other robots in
the system. The rob®& cancels the requedR( Zong).

Robots are provided with&s failure detector ($RONG COMPLETENESSand BVENTUAL
STRONG ACCURACY). The STRONG COMPLETENESSproperty of the failure detector, implies
that there is a time after which every faulty robot is permanently suspected by all correct robots.
Therefore, eventuallfg (correct robot) suspects permanently a faulty rdRodnd cancels the
requestiR, Zoneg).

Consequently, if a correct rob®& requestsZong then eventually R ownsZoneg or an
exception is returnedp

Lemma 7 The possible deadlock situations are the same deadlock situations presented in Bemma.
(failure-free model) with the additional deadlock situation, that occurs if a rohastuRpects a
robot R and Zoneintersects with Zone

Proof. IfarobotR suspects that a robBt has crashed ar€bne intersects wittZong then, a
possible deadlock situation may occurs, if the rdRdteeps waiting foR;. BecauseR cannot
determine whetheR; has crashed or not

Theorem 9 (Non triviality) An exception is raised only when a deadlock situation occurs.

Proof. In addition to exceptions raised by the Deadlock Handler algorithm which are dis-
cussed in the failure-free protocol (Sectiér, Algorithm.5), an exception is raised by the non-
preemptive fault-tolerant protocol (the Alternative Handler algorithm. Algorith#nline. 3).
The Alternative Handler algorithm raises an exception when it does not find an alternative chunk
for a robotR; that suspectR; andZong intersects witlzong.

Consequently, an exception is raised only when a deadlock situation oocurs.
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5.4 Performance analysis

We study the performance of our protocol in terms of the time needed by aRobmtreach

a given destination when robots are active (robots do not sleep), in the failure-free model. We
compute the average effective speed of robots executing our collision prevention protocol. For
simplicity, we assume in this section that the physical dimensions of robots are too small such
that a robot can be considered as a point in the plane. The geometrical incertitude related to the
positioning system, translational and rotational movement are neglected.

5.4.1 Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted\ly. We calculate the average time
required for a roboR to reserve and move along a chunk of lenBth with a physical speed
Vimot-

When a robot requests a zone, it releases the previously owned zone thus, a robot waits at
most for o — 1) robots whera is the number of robots of the system. So, the average number
of robots thalR, waits on is:

=

n_

Navg = (5.1)

N ‘

Communication delays. The average communication delays in the system is dendted:

When all the robots are active running the protocol (robots do not sleep), then the time needed
to reserve and move along a chunk denokgds computed as the sum of the time needed by
each of the following steps:

1. The delay of the Total Order Broadcast algorithm denotedlhy: We assume that the
delay of the total order broadcast algorithmTsn

2. The time needed for local computations by robots (to buildwhé-for graph) is ne-
glected.

3. The time to receive the release messages figgrobots each of which has owned its
zone for\E’Tczt time units is:Nayg(Teom + o).

Vm ot

4. The time needed by to move along a chunk Q%“t

Therefore, the time needed to reserve and move along a Ghyik

D D
Tch = Tn + navg(Tcom + _Ch) + ch (5.2)
Vmot Vmot
=0 1 1.D
n-— n+
Ten=Tn+ ——Teom+ (T)Vn::t (5.3)
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5.4.2 Average effective speed

In this subsection, we compute the average effective sgeafth robotR; as a function of the
chunk lengtlD., and of the number of robotsin the system. A robd® makes on averag%:Tp
steps to move along a path of lend;,. The time to progress a distanbDgp, is:

Dy n-1 n+1 D
Tiip = B TN+ =5 Teom + (5 7)) (5.4)
The speed/ is 2:_.? Thus, the average effective speédks:
D
V= ch (5.5)

n-1 n+1
Tn+ == Teom+ (m)Dch

The previous relation shows that the effective speed is a function of the chunk length and the
number of robot$ , also the effective speed depends on some system-based fixed parameters
such as the communication delalg, and the physical speed of robdfs.. The effective
speed depends also on the performance of the Total Order Broadcast algorithm.

5.4.3 Average effective speed vs Chunk length

In this Subsection, we focus on the relation between the average effective speed and the chunk
length for a given number of robots
The first derivative of the function effective speed with respect to the chunk length is:

dV Tn + %Tcom

dDCh - [Tn+ n;lecom"‘ (zn\/;mlm)Dch]2

(5.6)

The derivative of the effective speed with respect to the chunk length is always positive. So,
the effective speed increases as the chunk length increases.

The explanation is that a rob& waits at most fom — 1 robots (in a static group of
robots) to move along each chunk of its pa®&needs to do a certain number of steps to reach
a destination, and the number of steps is a function of the chunk length. When the chunk length
increases, the number of steps decreases. Therefore, the average effectivé¢ speedses
with the chunk lengttDgp,.

Equation.5.5implies that the average effective speed approaches toward the%’ﬁl&ms
the chunk length tends to infinity.

im V=
Dch—o0 n+ 1

Figure.5.4 represents the relationship between the speed and the chunk length for different

Vinot (5.7)

values of number of robots. The average effective speed of robots increases as the chunk length
increases for a given number of robots, and there is an optimal value of the chunk length that
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Figure 5.4: Average effective speed vs chunk length.

maximize the average effective speed for a given number of robots. That optimal value of the
average effective speed, remains constant as the chunk length getting larger than the optimal
value of the chunk length. The average effective speed has a horizontal asymp¥ete at

Numerical values. The values of the fixed system parameters &g, = 10[m4g, the physical
speedVnot = 1[m/s]. We consider that the time required by the Total Order Broadcast algorithm

is: T nwhereT = 50[ms]. The values of the number of robots from one robot until 60 robots,
and the chunk length varies from zero to 3 meters. The effective speed increases as the chunk
length increases until it reaches a maximal value. Figureshows that, in a case of a system
composed of 3 robots for example, the maximal average effective speetB[e0s] which
corresponds to optimal chunk leng#2[m).

5.4.4 Average effective speed vs number of robots

In this Subsection, we focus on the relation between the average effective\épetorespect

to the total number of robotsin the system for a given value of the chunk length. The relation
average effective speed vs number of robots is presented in Equatoithe effective speed
decreases as the number of robots increases for a given chunk length, becaus&amoisot
wait for more robots.
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Figure 5.5: Average effective speed vs number of robots.

The derivative of the effective speed with respect to the number of robots is:

dv ~Digp(T + 1o 4 Deny
B c 2 T Vo (5.8)

dn [T+ Bl Teom+ (22)Deyl2

Figure5.5shows the variation of the average effective speed with respect to the number of
robots for different values of the chunk length.

Numerical values. The values of the fixed system parameters &g, = 10[m4g, the physical
speedVpot = 1[m/g], T = 50[mg. The values of the number of robots varies starting from a
system with a single robot to a system with 10 robots, for different values of chunk length from
1[cm]| to 10 meters. (Figures.5).

The set of curves in Figur&.5 have an envelop curve, given by the following equation:

— 2Vmot
V= n+1

e The envelop curve corresponds to the average effective speed for very high values of the
chunk length (tends to infinity), since the average effective speed approaches to a constant
value for a given number of robots in the system.

e All curves in Figure5.5approaches to zero, when the number of robots tends to infinity.
(horizontal asymptote at effective speed = 0).
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5.5 Conclusion

In this chapter, we presented a fail-safe mobility management and achieved a collision preven-
tion platform for asynchronous cooperative mobile robots in a closed group model.

Our fail-safe platform consists of a time-free collision prevention protocols, which guarantee
that no collision can occur between robots. The collision prevention protocols are based on a
distributed path reservation system. Each robot in the system knows the composition of the
group, and can communicate with all robots of the group.

We have analyzed the performance of the protocol in terms of average effective speed of
robots as a function of the chunk length and the number of robots. The effective speed depends
also on some system parameters such as the average communication delays and the physical
speed of robots. The performance analysis show that the average effective speed of robots
increases with the chunk length for a given number of robots, and there is an optimal value of
the chunk length that maximizes the average effective speed for a given number of robots. The
performance analysis show also that the maximal value of the effective speed, remains constant
while the chunk length is getting larger than the optimal value. The average effective speed
decreases as the number of robots increases for a given chunk length. The effective speed of
robots approaches to zero as the number of robots becomes very large.

This chapter presented collision prevention protocols for a closed group of mobile robots,
and proved the correctness of the protocols and that they satisfy the properties of the collision
prevention problem presented in Chapter The first protocol does not consider the crash of
robots, while the two other protocols are fault-tolerant protocols designed for robotic systems
prone to robot crashes.

The two fault-tolerant collision prevention protocols rely®8 failure detector and tolerate
the failures of half of the robots. One of the fault-tolerant collision prevention protocols is
preemptive in the sense that a request of a robot can be preempted due to a decision voted by
the other robots of the group, if the robot is suspected as a crashed robot. The second protocol
is non-preemptive, so a robBf cancels its own request when it suspects a répass a crashed
robot, if R waits forR;.

Both protocols tolerate the failures of half of the robots. The preemptive protocol reduces
the negative drawback of wrong suspicions, since a robot is considered as a crashed robot if it is
suspected by the majority of robots, while the non-preemptive protocol has the potential to do
more wrong suspicions than the preemptive protocol, since a Rylitonsidered as a crashed
robot based on the suspicion of a roBpindividually, but the reaction against suspicion affects
the robotR if it has wrongly suspectef;j, soR; cancels its request and restarts a new request of
an alternative zone. On the other hand, the decision of suspecting eRjpbothe preemptive
protocol, affects the robdg;, if it has not owned its requested zoAeng, soR; is obliged
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to retry again and restarts its request of the same Zamg. The preemptive and the non-
preemptive protocols exhibit the same behavior if a suspected Ryltats owned its requested
zoneZong, so a robotR that waits forR; and Zong intersects withZong, must cancel its
request and restarts a new request of an alternative zone Zgingds considered as a blocked
zone until eventuallyong is released iR; has not really crashed.

Both protocols ensure theafetyproperty that no collision between robots can occur, based
on a ¢S failure detector with the majority of correct robots. However, the liveness property
is ensured by the non-premtive protocol, while the preemptive protocol requPeiailure
detector in order to ensure the liveness property.

On the other hand, the non-preemptive protocol requires more trials to request an alternative
zone by aroboR, if it suspectRR;, thus more exceptions are raised, while in the preemptive pro-
tocol, a robotR; requests an alternative zone when it conflicts with a rédhat is suspected
by the majority of robots and only R; has owned its requested zahens.
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Chapter 6

Locality-preserving collision prevention
protocol for a dynamic group model

6.1 Dynamic group model

We consider a dynamic system of mobile robots $R7} in which each robot has a unique
identifier. The total composition of the system, of which robots have only a partial knowledge,
can change dynamically. Robots have access to a global positioning device that, when queried
by a robotR;, returnsR’s position with a bounded errey,s. The robots communicate using
wireless communication with a limited ran@g. If the distance between two robdgsandR,;

is less tharby,, then the two robots can communicate with each other. Communications assume
retransmissions mechanisms such that communication channels are reliable. The system is
asynchronous in the sense that there is no bound on communication delays, processing speed
and on robots speed movement. Each robot has an access to a neighborhood discovery primitive
named\Discovet

Neighborhood discovery NDiscove)

Characteristics. The neighborhood discovery primitive call®&Discoveris a function
that enables a robot to detect its local neighbors. These neighbors are within one communication
hop and satisfy a certain known predefined condition.

Implementation. NDiscovercan be implemented as the traditional neighborhood discov-
ery primitive of mobile ad hoc networks. An implementationNiDiscoverprimitive can be
performed by Geocastihga ping message in a geographical region centered on the robot at
the time of callingNDiscoverwith a radius within the transmission range. All the robots that

1Geocast is defined by the transmission of a message to a predefined geographical region
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Figure 6.1: The reservation range is within half of the transmission range. Rlsannot
communicate with robdR;, andZone does not intersect witdonsg.

receive the message and satisfy the predefined condition acknowledge the ddlésadver?

Reservation range Robots have a limited wireless transmission range. It follows that a re-
served zone by a robot must be entirely within a circle centered on the robot with a radius within
half of the transmission range. The motivation behind this maximal value is that each robot can
communicate with all the robots that it might collide with. Figéréillustrates the reservation
range property.

The collision prevention protocol provides a parameter naraedrvation rangeand de-
notedDy,, that is within half of the transmission rang®f, < 2), such that a reserved zone by

2
a robot is entirely within a circle centered on the robot with a radius equals teskevation

range

6.2 Collision Prevention: locality-preserving protocol

All robots run the same distributed algorithm which is based on the following idea. When a
robotR requests a zonZong, R must determine all the robog; that conflict withR;,. The
robotsR; are located within one communication hop with respe®® tdecause the reservation

2An implementation oNDiscoverrequires timing property for transmitting and processing the ping messages.
This timely behavior can be particularly achieved, sitN@iscoverrelies on very lightweight ping messages
carrying only the position coordinates of the caller.

61



range of the robots must be within half of the transmission range. The Neighborhood Discovery
primitive returns the set of neighboleighbor within one communication hop with respect

to R. Therefore,R can determine the set of robd® that conflict withR,. R multicasts

Zone to the list of neighbordNeighboy, then R waits until receive the response messages.
ConsequentlyR; determines the set of robots that it conflicts with. Intuitivdyperforms a
pair-wise negotiation with each of the robots tRatonflicts with. ThereforelR; and each robot

R; decide consistently about the scheduling of their requests. So, a dynamic scheduling for
the conflicting requests takes place. WHereceives a release message from all the robots
that R waits for, it reservegone and becomes the owner @bng. After R has reached the
post-motioreone,R, releaseZong except for the area occupied By

6.2.1 Variables

We present the variables used in the protocol.
e Zoneg is the zone currently requested or owned by rdRot

¢ Neighbor represents the set of robots that may possibly conflict with r&béte., the
output of the neighborhood discovery primiti®iscovey).

e G is a set of{(R;, Zong)} such thaR; belongs tdNeighboy, andZong is the requested
or the owned zone d&; such thaZong intersects witfZone.

e WLATfter is the list of robots waiting foR; until it releases its zone.
e WLBeforeis the list of robots thaR waits for.

e Depengis thedependencget. If a robotR requestZong then it conflicts with a set of
robots each of which conflicts with another set of robots and so ond&pendencget
is the union ofG, for each roboRy related toR, by thetransitive closureof the relation
conflict

e Dag is await-for graph such that the vertices represent robots and a directed edge from
R to R; represent tha® waits forR; to releas&Zong.

e msgdenotes a message exchanged during the run of the protocol. nEsgpimessage
consists of three fields, the first is the type of the message which belongs to the set
{REQUEST, RELEASE, WAITFORME}, the second field is the identifier of the robot
sending the message, and the third field is the body of the message which consists of
the specifications and the parameters of the requested (or owned) zone. Theetype R
QUEST denotes a request messag&LRASE denotes a release message, and the type
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WAITFORME means that the receiver of the message must wait for the sender. (This
wait-for relation is called ammposed wait-forelation).

6.2.2 Protocol description

We explain the phases of the protocol with respect to a rBpothe robotR, is located in the
pre-motionzonepre(Zong). When robofR requests a new zor#oneg, it proceeds as follows.

1. Discovery phaseR calls the neighborhood discovery primitidDiscover, to determine
the setNeighboy. This set consists of roboE;, thatmaypossibly come in conflict with
R for Zone, sinceZong intersects with the circle centered Bywith radius equals to the
reservation range

2. Negotiation phase: The Negotiation phaserpbtarts by the determination of the set
G;i which consists of the robots deighbor that conflict with R;. The output of the
Negotiation phase is theait-for graph,Dag,,;;. Thus,R determines the set of robots
that it waits for. IfR; receives a request from a roldt (Zong intersects wittZzong) and
R« does not belong t&;, thenR, must wait forR. The Negotiation phase proceeds as
follows.

e R multicasts a messagasg = (REQUEST, I, Zong) indicating thatR requests
Zong to all the members dleighboy carrying the parameters @bneg. This mul-
ticast does not require any routing because the neighbors are located within one
communication hop with respect R).

¢ R waits until it receives a response messapg from each membédr; € Neighboy.

o After R has received the messagesg, R determines the set of robd® thatcon-
flict with R.. (G; is obtained from the received messagesy after discarding the
release messagessq = (RELEASE, j, Zong), and discarding also the request mes-
sageansg = (REQUEST, j,Zong) such thaZong does not intersect witdong).
The setG; contains two disjoint subsets of robots: the first subset den@#yl is
composed of robot®; such thatR does not belong t&; (i.e., R must wait for
R;, Rj has sent the messagesg = (WAITFORME, j, Zong)). The second is the
complementary subset denotéslj;, which is composed of robof; such thatR,
belongs toG;. ThusR must wait for all the robots ofG1);, in addition to some
robots of G2),. (These robots would be determined later).

e R determines theependencgetDepeng by applying anEchoalgorithm inspired
from [28]. The Echoalgorithm is explained as followdz, multicasts a token mes-
sage to each robot that belongsGp Upon receipt of the first messageRfby a
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robotR, from R; (R; is called thefatherof Ry), it multicasts the message Bfto all

the robots ofGy except itsfather R. When a roboR, has received the token mes-
sage ofR, from all the robots o5y, R adds the contents @y to the token message
and sends itgchq to thefather R. WhenR; has received the token message from
all the robots ofG;, it obtains thedependencget. The motivation for building the
dependency set is to enable the conflicting robots to buileveiefor graphDag,,;;

in a consistent manner and so to avoid cyclic wait-for relations.

¢ R uses the dependency $&pengto construcDag,,;. The vertices represent the
robots of the seDepengand a directed edge froR to R; means thaR waits for
R;. Dag,,; is built as follows. R starts by establishing thenposed wait-forela-
tions (Subsectiort.2.3, and then it breaks ties for the remainder of the conflicting
robots by applying a specified conflict resolutipalicy. At first, R builds a graph
named WAITFORME graph and denoteDag,,,, This graph corresponds to the re-
lation betweerR andR; from the set G1),. (Subsectior6.2.3. The next stepR,
builds a graph nameDag,, by adding the directed edges imposed bydbkadlock
risk situations. (Subsectiof.2.3. After having established thenposed wait-for
relations,R, adds the directed edges that result from resolving the conflicts accord-
ing to a specified policy. (Subsecti@n?.4. R and the conflicting robots build the
same directed acyclic grajfibag,,; in a consistent manner.

e According to the grapiDag,,;, R determinesWLBefore the set of robots that
R waits for. (WLBefore = (G1); and some robots 0i32);). R updates the set
WLAfter of robots that wait forlR,, due to the grapibag,.;- R dynamically up-
dates the seéiVLAfter by adding robotsx, that does not belong t@; and whose
requested zonZong intersects withZong. (R sends toR, the messagensg =
(WAITFORME, i, Zong)). R keeps updating the s®¥YLAfter until R releases the
zone.

¢ R waits until receives a release message from each robot in tNéld&tfore

3. Reservation phase: Whéh has received a release message from all the robots of the
setWLBeforg, or (when the sétVLBeforeis empty),R reserveZong and becomes the
owner ofZone.

4. Release phase: Wh&hreaches th@ost-motiorzonepos(Zong), it releaseZong ex-
cept the place thaR occupies. R multicasts a release message to all the robots that
belong to the setVLAfter and to robotdR, such thaR, € Neighbor, (due toNDiscovep

3Thedependencget is not computed each tifRerequests a zone. It can be “piggybacked” with the messages
of type WAIT FORME.
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primitive) and the request messagesg, = (REQUEST, a, Zong) of R, is not received
yet byR. WhenR reaches th@ost-motiorzone, the robots of the s@{LAfter and the
robotsR, are within one communication hop with respecRohence the robots of the
setWLAfter and the robot&, can receive the release messag®Rof

6.2.3 Imposed wait-for relations

If a robot R, conflicts with robotR;, then the Conflict Resolver determines thait-for rela-
tion by breaking ties betwedR andR;, according to a specifiedolicy. However, there are
situations where thevait-for relation is imposed. The situations where Wait-for relation is
imposed are discussed in theaWFoORME Handler and the Deadlock detector.

WAIT FORME Handler The input of the WITFORM E Handler is the dependency ¢ pendg,
and the output is the directed acyclic grdpag,,. This handler generat&ag,,,, by establish-
ing the imposeadvait-for directed edges that correspond to the situation wReneust wait for
R; becausdy; is a member of the seG(l);. (Subsection6.2.2). The relation VMIT FORME is
transitive, so if a roboR must wait forR; and the roboR; must wait forRy, thenR, must wait
for R«. Therefore, no cycles can be created in the giaay,,,,.

Deadlock detector There are specified intersection situations betwsamg andZong, such
that neithelR nor R; can move, becausel is grantedZong and eventually releasdégelZone
beforeR; is grantedZong then, a collision may occur betwe&iandR;. Also, if R; is granted
Zong and eventually releasd®lelZong beforeR; is grantedZong then, a collision may occur
betweerR, andR;. We say thaR andR; are in a deadlock situation because none of the robots
can own its requested zone. The deadlock situations are discussed in details in Ghapter

Thedeadlock risksituation imposewvait-for relations between two conflicting robots.Rf
is in deadlock risk. situation withR;, thenR; must wait forR;. So thatR; releasepre(Zong)
beforeR ownsZone. If R is in deadlock risk,: situation withR;, thenR; must wait forR.

The deadlock detector establisheswrat-for relations between the conflicting robots of the
dependency sddepengaccording to theleadlock risksituations. The deadlock detector adds
the directed edges imposed by tteadlock risksituations, to the grapbag,,,, generated by the
WAITFORME Handler. If a cycle is created by adding a directed edge to the dvagl, then
the deadlock detector calls the Deadlock Handler. A cyclBag,, results from the following
situation. A roboR must wait for a roboR; (WAIT FORME relation) andZong intersects with
pos(Zong). Thus, the deadlock detector generates the directed acyclic Deghor calls the
Deadlock Handler in case of detecting a deadlock situation or a cycle.
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Al

gorithm 15 Collision prevention protocol (Code for robBy)

1: Initialization: G; := 0; WLBefore := 0; WLAfter := 0;

2: procedure Request(Zone)

3:
4.

9:
10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

27

28

29:

30

31:
32:
33:
34:

35:
36:

37

Phase 1:
NDiscover = Neighbor {Neighborhood discovely
task Reply
whenreception of a messagesg = (REQUEST, k, Zong)
if R ¢ Neighbor andZong intersects witfZzong then
Send(nsg = (WAITFORME, i, Zong)) to R« {The taskReplyruns in parallel with the next phases,
until R, releases the zone
WLAfter:= WLAfter U {R¢} {R keeps updating the set WLAftentil R releases the zonje
end if
end when
end
Phase 2:
multicast (nsg = (REQUEST, i, Zong)) to Neighboy {Negotiatior}

wait until receive response msffom all R; € Neighboy
build the seG; = (R;, Zong) such thaR; € Neighboy andZong intersects wittZone.
determine theependencgetDe peng
Dag,, := WAIT FORME HandlerDe peng)
Dag,, := Deadlock DetectoE§ag,,,, Depeng)
Dag,.i: := Conflict Resolvemag,,, Depeng, policy)
build the sewWLBefore and update the s&V/LAfter according to the directed acyclic graplag,,;:
if WLBefore# 0 then
while reception of a release message frBjre WLBeforg do
G =G\ {R;, Zong} {R removes the entry ofjRrom the set G
end while {receive the release message from glbiRthe set WLBeforg
end if
: end Request

: Phase 3:
reserveg, Zong) {R reserves the zone Zane

: procedure Release(Zone)
Phase 4:
when R, reaches theost-motiorzonepos{Zoneg)
if WLAfter # 0 then
multicastRelZong) to WLAfter {release(R RelZong}
{R multicasts a release message to gjldRthe set WLAfte}
end if
end when
: endRelease
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Algorithm 16 WaitForMe Handler algorithm

function WaitForMe-Handler De pengl)
for all (Ry, Ry) € Depengdo
if Ry must wait forR, (WAIT FORME) then

Dag,, := Dag,, U DirEdgeRy, R)) {R« must wait for R, because Re Gy but R, ¢ G}

if DirEdgeRy, Ry) and DirEdgeRy, R;) then

1:
2
3
4:
5: end if
6
7
8

Dag,, := Dag,, Y DirEdgeR«, R, {The relationWaITFORME is transitive:

end if
9: end for
10:  return Dag,,

11: end

Algorithm 17 Deadlock detector algorithm

1: function Deadlock-Detector¥ag,,,, De peng)
2: Dagy :=Dag,n
3: for all (Ry, R)) € Depengdo

4 Deadlock situation 1:=
[Zong N pre(Zong) # 0] and [Zong N pre(Zong) # 0] and [pos{Zong) N
pos(Zong) = 0]

5: Deadlock situation 2:=
[Zong N pos(Zong) # 0] and [Zong N pos(Zong) # 0] and [pos(Zong) N
pos(Zong) = 0]

6: Deadlock situation 3:=
[Zong N pre(Zong) # 0] and [Zong N pos(Zong) # 0] and [pos{Zong) N
pos(Zong) = 0]

7 Deadlock situation 4:=
pos(Zong) N pos(Zong) # 0

8: if Deadlock situation 1 or Deadlock situation 2 or Deadlock situation 3 or Deadlock sit-
uation 4then

9: Deadlock Handler(Deadlock situation)

10: end if

11: if deadlock risk(Ry, Ry) or deadlock risk.s(Ry, Ry) then

12: Dag,, := Dag,, U DirEdgeRy, R)) {Ry waits-for R}

13: end if

14: if deadlock risk.s{Rx, Ry) or deadlock risk(R,, Ry) then

15: Dag,, := Dag,, U DirEdgeRy, Ry) {R, waits-for R}

16: end if

17: if DetectCyclehen

18: Deadlock Handler(Deadlock situation)

19: end if

20: end for

21: return Dagy,

22: end
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6.2.4 Conflict Resolver

The Conflict Resolvebreaks ties and determines thait-for relation between two conflict-

ing robots according to a conflict resolutigolicy, if there is no imposedvait-for relation
between the two robots. A conflict resolution policy can be as folld#swvaits-for R if the
number of the previous requested zonesRbys higher than that oR;. In our protocol, the
conflict resolution policy is specified by the robotic application. For example, the robot farther
to the intersection zoneaits-for the closer one, and in case of an equidistance situation, their
identifiers are used to break the symmetry. The Conflict Resolver generates thégmgh

by breaking ties between each pair of the robots of the dependen8&egpeing The graph
Dag,.;; is generated in a consistent manner, such that each robot of tbepenhg generates
thesamegraphDag,,; starting from the grapbag,, by adding the directed edges representing
the wait-for relations after resolving the conflict between each pair of the conflicting robots.
The dependency set is scanned according to the increasing order of the identifiers of robots and
the conflict resolution policy is applied. If adding a directed edge creates a cycle then the new
directed edge is reversed to break the cycle. A rébaoietermines the set of robots that it waits

for WLBefore, and updates the s@tLAfter according to the directed acyclic graplag, .-

Algorithm 18 Conflict Resolver algorithm
1: function Conflict-ResolverDagy,, Depeng, policy)
2 DagNait = Dagdr
3: for each robot’s identifiek from MINID to MAXID such thatR, € Depengdo
4: for each robot's identifiey > x to MAXID such thatR, € Depengldo
5
6
7
8

if Conflict(Ry, Ry) and no edgeRy, R)) then
DirEdgeRy, R)) := policy(Ry, R)) {apply the conflict resolution poligy
Dag,;; := Dag,,; U DirEdgeRy, R))
if DetectCyclehen

9: DirEdgeRy, R)) := DirEdgeRy, Ry) {If a cycle is detected then inverse the direction of the ¢dge
10: end if
11: end if
12: end for
13:  end for
14:  return Dag,,;
15: end

6.2.5 Deadlock Handler

The Deadlock Handler resolves a deadlock situation detected by the deadlock detector module.
The policy used by the Deadlock Handler to resolve a deadlock situation is basdegueast
Preemptionstrategy. Hence, if there is a deadlock situation between two requests (Deadlock
situation 1, Deadlock situation 2, or Deadlock situation 4) then, the request which has the larger
robot’s identifier is preempted (the 9@€ pengis scanned according to the increasing order of
robots identifiers).
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If a robot R must wait for a roboR; (WAITFORME relation) andZong intersects with
pos(Zone) then, the requesK, Zong) is preempted. This situation is denoted by “Cycle-
Situation” in Algorithm19.

If Deadlock situation 3Zone intersects with botlpre(Zong) and pos{Zong)) then, the
requestR, Zone) is preempted.

When a request is preempted, the sgteind WLAfter are updated by removing the pre-
empted request.

The Deadlock Handler proposes an alternative chunk to the Rbuwathich request was
preempted R, restarts a new request of an alternative zone. The Deadlock Handler of a robot
R« proposes an alternative chunk offered by the motion planning layer. If there is no possible
alternative chunk then, the Deadlock Handler raises an exception.

The design of the collision prevention protocol yields a flexibility to handle the exceptions
caused by deadlock situations, due to the module Deadlock Handler. The Deadlock Handler
can apply an application-based policy in order to resolve deadlock situations.

Algorithm 19 Deadlock Handler algorithm
1: function Deadlock HandlerR;, Zone, R;, Zong)

2:  Cycle-Sitaution :=Zong intersects wittpos(Zong) andR; must wait forR;

3: if Deadlock situation 3 or Cycle-Situatidhen
4: Request PreemptioR( Zong)
5. else
6: Request Preemption (the request of the higher robot’s identifier)
{Deadlock situation 1, Deadlock situation 2, or Deadlock situati¢pn 4
{Preempt the request which has the higher robot’s identifier
7:  endif
8: if no possible alternative churtken
9: throw Exception {There is no solutioh
10: return Exception
11: endif
12:  Zone:= Zong'termative
13: Request{ong {The Deadlock Handler proposes an alternative chunk
14: end
6.3 Example

Consider the following example illustrated in Fig€. A robotR requestZoneg. The neigh-
borhood discoveridDiscover returns the seileighbor = {Ra, Ry, R;, R¢} since each oZong,
Zong, Zong, Zoneg intersects with the circle centered Bnwith radiusDg.

R multicasts the parameters dbne to {R,, Ry, R;, Rc}. ThenR waits until receive the
message$msg, msg, msg, msg}.

69



-

Figure 6.2: ExampleR requestzong andNeighbor = {R,, Ry, R, R¢}.

(b) The graphDag,, (Deadlock risk
imposed wait-for relations).

@) The
graph  Dag,m
(WAITFORME

relations).

Figure 6.3: The graphag,,,, andDag,, related to the imposed wait-for relations.

70



Figure 6.4: The wait-for grapbBag, ..

R discards msgbecaus&ong does not intersect witdone.

R discards msgbecaus&€ong does not intersect witdone.

e R ¢ G,, so msg = (WAITFORME, a,Zong).

R € Gj, so msg = (REQUEST, j, Zonsg).

So,G; = {(Ra, Zong), (R, Zong)}. (G1); = {(R., Zong)}, (G2); = {(R;, Zong)}. The
dependency sd2epeng= {(R., Zong), (R;, Zong), (R«, Zong)}.

The graphDag,, related to the WiT FORME relations is presented in Figu6e3(a) Zong
intersects wittpre(Zong) hence R; must wait forR,, (Deadlock risk,.(R;, R¢), and also Dead-
lock riskyos{ R« R;)). The grapiDag,, related to the Deadlock risk imposed wait-for relations
is presented in Figuré.3(b)

The wait-for graphDag,,;; is generated by adding the directed edBg R;) to the graph
Dag,,. The Conflict Resolution policy determines the wait-for relation betw&emdR;. The
wait-for graphDag,,;; is illustrated in Figures.4.

6.4 Proof of correctness

We prove that the collision prevention protocol for a dynamic group model satisfies the fol-
lowing properties. Th&afetyproperty, thelivenessproperty and théNon Triviality property
presented in Chapter

Lemma 8 The wait-for graph Dag,,;; has no cycles.

Proof. The wait-for grapiDag,,;; is based orbag,,,, andDagy;,.

71



\ R R
R :

(a) A directed edgeR, Ry) is added. (b) The direction is reversed, so the di-

rected edge is replaced bRy R;).
Figure 6.5: Adding a directed edge to the wait-for gr&ay,,,;;-

e The grapiDag,,,is a directed acyclic graph, since theWFORME relation is transitive.
if a robotR, must wait forR, and the roboR, must wait forR,, thenR, must wait forR,.
(Algorithm 16, Line 7). Therefore, no cycles can be created in the giaag,,..

The graphDag,, is a directed acyclic graph. If a rob& must wait for a roboR;

(WAIT FORME relation) andZong intersects witlpos(Zong) then, the Deadlock detector
algorithm detects a cycle, (Algorithdz, Line 18) and consequently calls the Deadlock
Handler. Therefore, if a cycle is detected then, the Deadlock Handler breaks the cycle by
preempting the requesR( Zong). Therefore, the grapbBag,, does not contain a cycle.

We prove that the grapbag,,; is a directed acyclic graptbag,,;; is generated starting

from Dag,, which is a directed acyclic graph. If adding a directed eddedg,,,;; Creates

a cycle, then the direction is reversed. We prove that reversing the direction of the edge
does not create a cycle and hence the wait-for giad,;; is a directed acyclic graph.

For a directed acyclic graph that consists of three vert{d®s R,, R}, if adding the
directed edgeR., R,) creates a cycle then, the direction is reversed, and the &g}
obviously breaks the cycle.

For a directed acyclic graph that consists of more than three vertices, the proof proceeds
by contradiction.

Let us assume that the directed edgg &) creates a cycle. So, the vert@xparticipates

in the created cycle, thus there is a path frBgto R, via Ry. But, by assumptions the
edge R, R,) creates a cycle viR,. Consequently, there exists a cyck,(R,, R., Ry)

and the original graph is not a directed acyclic graph, which leads to a contradiction.
Therefore, reversing the direction of an edge does not create a cyo&jj;.
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Figure6.5(a)shows that the directed edge.( R,) is added tdag,,;, SO it creates the
cycle Ra, Ry, Re). Figure6.5(b)shows that the edge is replaced B4,(R.) andDag, .
is a directed acyclic graph.

Therefore, the wait-for grapbag,,,;; has no cyclesa

Lemma 9 The wait-for relations between robots related by the transitive closure of the relation
(conflict), are generated consistently, so the robots build the same wait-for graph,Dag

Proof. The setDepend consists of the union of, for each robotR, related toR by the
transitive closure of theonflictrelation, soDe pengequals taDe pend.

The robots thaR conflicts with, belong td5; or to WLAfter. We prove that the sé&; is
sufficient to build the wait-for grapbBag,,;; consistently.

Let us consider three conflicting robd®s, R, andR., such that each zone intersects with
the two other zones. The sé?s, G, are as follows. the s&, containgR,, but does not contain
R., (Rc € WLAfter)). The setG, contains bottR, andR.. When the dependency d8epend
is computedR, deduces the wait-for relation betweBpandR. and thatR, waits-forR,, since
theZong intersects wittZoneg andR; ¢ G,.

If R, receives the se&bBy, (due to the dependency seepend) beforeR, receives the re-
guest message &, then, R, deduces that a request messag&oéventually arrives, ani.
eventually belongs to the s@tL After,, sinceZong, intersects wittzone.

If R. neither belongs t&, nor to G, then,R. belongs taWLAfter, and toWLAfter, SOR;
waits forR, andR,.

We prove that the wait-for grapbag,,;; iS generated consistently. The wait-for graph
Dag,.;; iS generated by a rob®, based on the sddepeng, by applying a sequence of de-
terministic functions. The grapbag,,, is generated according to the imposed wait-for relation
WAaAITFORME. Then, the grapibag,, is generated according to the imposed wait-for relations
of the Deadlock risk. and Deadlock risks; situations (Lemmasl| 2], Chapter5). Since,
the imposed wait-for relations define deterministic functions, then the wait-for dgpagh is
generated consistently.

The Conflict Resolver defines a deterministic functipolicy) to break ties between two
conflicting robots, based on the graplag,, and the seDepengwhich is scanned according
to the increasing order of robots identifiers. Hence the wait-for gibgdy,.; IS generated
consistently, so the robots that are related by the transitive closure of the relation (conflict) build
the same wait-for grapio

Theorem 10 ( Mutual Exclusion) If a requested zone Zopef R intersects with a requested
zone Zongof R; then exclusively either;®r R; becomes the owner of its requested zone.
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(Zone N Zong # 0) = (R ownsZong) XOR (R; ownsZong)

Proof. A robotR requestZone. If Zong intersects with a zongong of a robotR;, then
R; must be within the transmission rangeRf (reservation range propert2., < half of the
transmission range), thi% andR; can communicate.

The neighborhood discovery primitidDiscoverreturnsR; € the set of neighbonseighboy,
sinceZong intersects with the reservation zoneRf (the reservation zone &, is the circle
centered ok with radiusDch). Thus,R; € G;.

e If R ¢ Gj then, R must wait forR; (WAITFORME relation). If Zone intersects with
pos(Zong) then, this situation is detected by the Deadlock detector and the Deadlock
Handler preempts the requeB;,(Zong) (Algorithm 19, Line 4).

e If R € G; and there is no deadlock situation betwetang andZong then, the wait-
for relation is determined either by the Deadlock Detector (Algorift¥nif there exists
deadlock risk;e(deadlock risk,s) imposed wait-for relation, or by the conflict resolver
(Algorithm 18) otherwise. If there is a deadlock situation betw&eng andZong then,
one of the requests is deterministically selected to be preempted.

Consequently, there is a wait-for relation betwé&grandR;. According to LemmaD the
wait-for relations between conflicting robots are generated consistenfy,awR; establish
the same wait-for relation and eitherwaits forR; or R; waits forR..

Let us consider thd®; waits forR;, soR; releasefkelZoneg, after thatR ownsZong. When
the robotR is the owner oZoneg, the robotR; is deprived from its ownership to the zoAens.
The robotR; just keeps a part gfos{Zong) under its reservatiorZong does not intersect with
the part ofpos{Zong) that is still owned byR;, because:

1. pre(Zong) N pos(Zong) = O (Proof by contradiction). Ifpre(Zong) intersects with
pos(Zong), then this situation is the Deadlock rigKR;, R)) or the Deadlock risjs(R;,
R;) situations. In both situatiorfy; must wait forR; according to Lemmas1[ 2], which
leads to a contradiction, since the assumption iskhataits forR;.

2. motior(Zong) N pos(Zong) = 0 (Proof by contradiction). If thenotionzone ofR in-
tersects with thgpost-motiorzone ofR;, then the situation is: Deadlock rigk(R, R;).
Thus,R; must wait forR; which leads to a contradiction.

3. pos(Zong) N pos(Zong) = 0 (Proof by contradiction). If thgpost-motionzones inter-
sect, then the situation is a deadlock situation (Deadlock situation 4), which leads to a
contradiction.
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Consequently, the ownership of intersecting zones satisfies the mutual exclusion property,
and theSafetyproperty holdso

Lemma 10 The possible deadlock situations are as follows. Deadlock situations that belong
to the set DS £Deadlock situation 1, Deadlock situation 2, Deadlock situation 3, Deadlock
situation 4, and a situation where a robot; Riust wait for a robot R and Zongeintersects

with pos{Zong).

Proof. The same proof as for Lemngin Chapters. O

Theorem 11 (Non triviality) An exception is raised only when a deadlock situation occurs.

Proof. An exception is raised by the Deadlock Handler (Algoriti®) Line 9) when the
Deadlock Handler does not find a solution for a deadlock situation.

The Deadlock Handler is called by the Deadlock Detector (AlgoriftinLines [, 18]).
Line 9 corresponds to a deadlock situation that belongs to th®Set Deadlock situation 1,
Deadlock situation 2, Deadlock situation 3, Deadlock situatipn Uine 18 corresponds to
the deadlock situation, where a rolRtmust wait for a roboR;, andZone intersects with
pos(Zone).

Therefore, an exception is raised only when a deadlock situation octurs.

Theorem 12 (Liveness)If a robot R requests Zondhen eventually (Rowns Zongor an ex-
ception is returned).

R requestZong = ¢ (R ownsZong or Exception)

Proof. If arobotR requests a zongong, then:
1. If Zong does not intersect with a zoZ®nsg, thenR, ownsZone.

2. If Zone intersects with a zongong, then a wait-for relation is established betwéd&n
andR; and a directed edge is added to the wait-for grfaph, ;. According to Lemma3
the graphDag,,;; has no cycles. ThereforB, eventually owngone.

3. If a deadlock situation is detected, then the Deadlock Handler is called. If the Dead-
lock Handler algorithm does not find a solution to resolve a deadlock situation, then an
exception is raised by the Deadlock Handler according to Theddem
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4. RobotR; € WLAfter eventually receives the release messag® ofvhen R, reaches
pos{Zong). BecauseR multicasts a release message to all the robots that belong to
the setWLAfter and to robotdR, such thaR € Neighbor, (due toNDiscoveg, primitive)
and the request messagesg = (REQUEST, a, Zong) of R, is not yet received byR,.
WhenR reaches th@ost-motiorzone, the robots of the s&¢LAfter and the robot&,
are within one communication hop with respecRddue to the reservation range prop-
erty, Dch < half of the transmission range). Hence the robots of th&\deifter and the
robotsR, can receive the release messagg,of

ThereforeR requestZong = ¢ (R ownsZong or Exception).o

6.5 Performance analysis

We study the performance of our protocol in terms of the time needed by aRotmteach a

given destination when robots are active (robots do not sleep). We compute the average effective
speed of robots executing our collision prevention protocol. We provide insights for a proper
dimensioning of system’s parameters in order to maximize the average effective speed of the
robots. For simplicity, we assume in this section that the physical dimensions of robots are too
small such that a robot can be considered as a point in the plane. The geometrical incertitude
related to the positioning system, translational and rotational movement are neglected.

6.5.1 Intersection probability

Consider a set of robots, each one moves along a chunk (line segment) of length equal to the
reservation rang®.. At first let us determine the regiarg around a line segmem; B; of
length Dy, such that line segments of lendily, issued from points located in the regiogeg
may possibly intersect withA;B; and line segments of leng., issued from points outside
reg can notintersect withAjB;. The regionreg is illustrated in Figure6.6(a) It represents
the region of possible collisions for a rob&tthat is located at poind; and moves along the
line segment®;B; of lengthD,. Consider the robots located in the regray each of which
moves along a line segment of lenddy,. We calculate, basing on geometrical analysis, the
probability of intersectiorPr. The probability of intersection is the proportion (on average)
between the number of robd® such that the chunk d?; canpossiblyintersect with the chunk

of R, (line segmenA B;) and the number of robots in the regioeg. The intersection between
the line segmend B; and the other line segments is a function of three variablgs4) where:
(x,y) are the coordinates of the start point of a line segmety) € regandd is the slope of the
line segment. The probability of intersecti®n equals to the proportion between the volume
generated by the tuplek,y, #) (such that the line segment whose start pointxig/Y and of
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DCh A. Symmetric axis

(b) Intersection probability.

(a) The regionreg) for the line segmen; B;.
Figure 6.6: Segments intersection.

sloped intersects withA B;) and the global volume generated by, 6) (such that (X, y) scans
the regiorreg andd rotates from 0 to 2). The probabilityPr is given by the following relation:

_ {(X’ y’ 9) | Segmef(b(, y’ 9) N AlBI * 0}
- {(xy.0) | (xy) € reg}

The regionregis symmetric with respect to the symmetry axis that is collinear Wit (Fig-

Pr

(6.1)

ure.6.6(b), so we study the intersection from one side of the symmetry axis. A line segment of
sloped, of lengthD., and intersects with; B; must be included in the parallelogram (rhombus)
formed by the line segmeB; and the two parallel line segmemgC; and B;D; of length

D¢ and of slop&. The parallelogram is illustrated in Figui®6(b) The area of this parallel-
ogram (rhombus) isS;ne(6) = DZ,sing, and the area of the regioeg is S;eq = D3,(7 + 2).
Consequently, the probability of intersectiBnis:

o _ 2l Smo®3d0 2
I S ()

(~ 12%) (6.2)

6.5.2 Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted\llys. We calculate the average time
required for a roboR to reserve and move along a chunk of lenBth with a physical speed
Vmot-

Number of robots to wait on. A robot R must wait on robots that are present in the region

regwhere collisions may occur. Thus, on aver&yelust wait on half the robots existing in the
regionreg, each of which waits also on other robots and so on. Consequently the total number
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of robotsn,,g thatR must wait on to reserve a chunk is:

- Pr-n
Navg = Z(Treg)k (6-3)
k=1

wherePr is the probability of collision (Subsectiof.5.1) andn.q is the number of robots
in the regionreg.

In order to minimize the time needed to reserve a chunk, the total number of mpts
thatR, waits on must be minimal, (we can reduce the value of the reservation range). Thus, the
geometric series must be convergent. g¢§—9 < 1, which implies thatyey < 7(7 + 2). The
number of robots in the regiaeg must be at most(r + 2) ~ 16 robots, in order to minimize
the time to reserve a chunk.

The total number of robots,, thatR, waits on to reserve a chunk is:

1

Nre
1- ﬂ(ﬂ+92)

Navg = -1, Nreg < (1 + 2) (6.4)

Communication delays. The average communication delays in the system is dendtgd:

When all the robots are active running the protocol (robots do not sleep), then the time needed
to reserve and move along a chunk dencdfgds computed as the sum of the time needed by
each of the following steps:

1. The delayT,q of the primitiveNDiscover

2. The time elapses unt®® builds thewait-for graph, (the local computation time is ne-
glected).R needs Z,,time units to multicasZone to the neighbors and to receive their
requested zones. After thBt needs 24ayg — 1)Tcom time units on average, to determine
thedependencget. (defined in Subsectiofi.2.1). Therefore, the time needed to build
thewait-for graph is: 2aygTcom.

3. The time to receive the release messages figgrobots each of which has owned its

Do 4 o Dch
zone forg time units is:Navg(Teom + 722)-

4. The time needed by to move along a chunk Q%“t

Therefore, the time needed to reserve and move along a dhyk

D D
Teh = Thd + 2NavgTcom + Navg(Teom + V_Ch) + v o (6.5)
mot mot
D D

Teh = Thd + Navg(3Teom + _Ch) + (6.6)

Vimot" Vot

1 D D
Tch = Tnd + ( Neg 1)(3Tcom+ _Ch) + h > Nreg < 77(7T + 2) (6-7)
- Vinot"  Vimot

m(m+2)
The optimal timeT,, for a robotR; is when it is alone, so there are no robots in the regemn

Dch
Vot ”

In this case, the tim&g, is: Tep(along = Tyg +
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6.5.3 Optimal reservation range

In this subsection, we compute the average effective speetla robotR as a function of

the reservation range and the density of robots, then we determine an optimal value of the
reservation range that maximizes the effective spedd &r a given value of the density of
robots. In our protocol the reservation range is a constant parameter given by the system. The
density of robots in the system, denoted BBy:(s = g‘—egg) A robot R makes on averag%"ci—:

steps to move along a path of len@ah,. The number of robots th& has to wait on to reserve

a chunk depends on the value of the reservation range and the density of robots. The time to
progress a distand®y;p, is:

Dch Dch
- 1)@BTeom+ —) +
)(3Tcom Vmot) Ve,

D .
Tuip = DL':[TM T . Meg<na(r+2)  (6.8)
¢ T a(r+2)

The speed is %”s andnyeg = S(r + 2)DZ.. Thus, the average effective speéds:

V= ~SDG + 7Dan Dy, < V7 (6.9)
- ) C .
(3Teom— Tnd)SDgh + ﬁchh +mThg Vs

The previous relation shows that the effective speed is a function of the reservation range and
the density of robots, also the effective speed depends on some system-based fixed parameters
such as the communication delays and the physical speed of robots. Egupeesents the
relationship between the speed and the reservation range for different densities. The values of
density start from zerdR is alone) until 3fobots/n¥].

Numerical values. The values of the fixed system parameters &gy, = 10[md, Tq = 1[9],
the physical speed.,o = 1[m/9].

Speed optimization for a given density. The first derivative of the function effective speed
with respect to the reservation range is:

dv _ (Tnd B BTCOm)SZDéh - %OISDzh - ﬂ(?’TCOm + 2Tnd)SD(2:h + 7T2Tnd
dDen [(BTcom— Tnd)SDgh + VLDch + 7 Thg]?

mot

, Dch < % (6.10)

The denominator of Equatid10is always positive sincB¢, < % the speed is maximal when

the numerator of Equatiof.10becomes zero. Figuré.7 shows the optimal reservation range

for a given density, the value of the optimal reservation range maximizes the effective speed of
a robot. The curve that corresponds to the density zero (when robot is alone), in Bigure.
shows that the effective speed always increases as the reservation range increases, until the
effective speed approaches to the physical spagg@: when the value of the reservation range
becomes very large. The curve has a horizontal asymptdte-a¥/,,o: = 1[m/s]. The effective
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Figure 6.7: Average effective speed vs reservation range.

speed oR depends on the reservation range, even in the case Wl®alone, because it needs

to do a certain number of steps to reach a destination, and the number of steps is a function of
the reservation range. When the reservation range increases, the number of steps decreases.
The relation between the effective speed and the reservation range Rvisalone), is the

following: V = D—C:‘D—ih'l" In each stepR; needsTl 4 time units to discover that it is alone. I,
approaches to infinity, thev approaches tWio.

Numerical values. For a densitys = 0.3[robot/n¥], the optimal reservation range is
1.53 [m] which gives a maximal speed0.51 [m/s].

6.5.4 Speed vs density of robots

In this subsection, we focus on the relation between the effective speed of aRaoad the
density of robots for a given reservation range. The relationship between the effective speed

and the density is presented in Equatfl The derivative of the effective speed with respect
to the density of robots is:

dav _(ﬁngh + 37TTcongh) T
Ao n 2’ S< Y
ds [(3Teom— Tnd)SDgh + V_Dch + 7 Thd] Dch

mot

(6.11)

Equation6.11 shows that the effective speed always decreases when the density of robots in-
creases for a given reservation range, as the derivative of the effective speed with respect to
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Figure 6.8: Average effective speed vs density of robots.

the density is always negative. Figue8 presents the relationship between the effective speed
and the density for different values of the reservation range, (fr@fmpto 2[m]). The curve

that represents the maximal speed as a function of the density, envelops the set of curves in
Figure.6.8. A point that belongs to the envelop corresponds to the optimal reservation range
for the given density.

6.6 Conclusion

In this chapter, we presented a fail-safe mobility management and achieved a collision preven-
tion platform for asynchronous cooperative mobile robots, in a dynamic group model.

The collision prevention protocol for the dynamic group model, requires neither initial nor
complete knowledge of the composition of the group, it relies on a neighborhood discovery
primitive which is readily available through most of wireless communication devices. The
protocol is based on a locality-preserving distributed path reservation system that takes advan-
tage of the inherent locality of the problem, in order to reduce communication. In the dy-
namic group model, the design of the collision prevention protocol yields a scalability due to
its locality-preserving property. Therefore, the protocol can handle large sized dynamic group
of cooperative mobile robots, provided with limited energy resources and limited transmission
range.

The dynamic group model is motivated by robotic applications with wide area and large
number of robots, where some robots might be out of the transmission range of other robots.

A performance analysis provides insights for a proper dimensioning of system’s parameters
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in order to maximize the average effective speed of the robots.

The collision prevention platform tolerates the crash of a certain number of robots such that
the system of robots keeps in progress towards its final goal, in presence of the crash of a certain
number of robots.

The failure of a robot by crash hassaowballeffect, because the robots that are waiting for
the crashed robot are blocked and the robots that wait for the blocked robots are consequently
blocked.

The collision prevention platform for a dynamic group of mobile robots can reach a certain
degree of fault-tolerance in a large scale system, due to the locality-preserving property. If a
robot crashes then, the local neighbors that are located within one communication hop with
respect to the crashed robot at the time of the crash, are blocked waiting on the crashed robot.
The two-hop and farther neighbors that do oonflictwith any of the blocked robots, are not
affected at the time of the crash. Therefore, the impact of a crash is limited in space and affects
only a part of the system for a period of time, however,3mewballeffect takes place with the
progress of time.

For the dynamic group model, a non-preemptive fault-tolerant protocol relies on a failure
detector of clas>S with the majority of correct robots. If a robot waits for another robot
and suspects that the robot has crashed then, the waiting robot cancels its request. In order to
cancel a request, a robot executes a Reliable Broadcast of a message, indicating that its request
is canceled. The destination of the broadcasted message is the set of robots that conflict with the
robot sender. (the zones are intersecting). Reliable Broadcast guarantees that either the message
is delivered by all correct robots or none.

82



Chapter 7

Fault-tolerant group membership
protocols using physical robot messengers

In this Chapter, we consider a distributed system that consists of a group of teams of worker
robots that rely on physical robot messengers for the communication between the teams. Unlike
traditional distributed systems, there is a finite amount of messengers in the system, and thus a
team can send messages to other teams only when some messenger robot is available locally.
It follows that a careful management of the messengers is necessary to avoid the starvation of
some teams.

Concretely, this Chapter proposes algorithms to provide group membership and view syn-
chrony among robot teams. We look at the problem in the face of failures, in particular when a
certain number of messenger robots can possibly crash.

Consider a robotic mining system composed of mobile robots (worker robots) that cooperate
in order to excavate minerals. As there are several excavation sites in the mine, the worker robots
are organized into teams, one team working at each site. Teams must coordinate their actions
but communication between teams is made difficult by the geography of the mine. For instance,
teams are unable to communicate using radio transmission @)gbelcause of propagation
problems. Using sound waves for transmission is hard in the presence of echos, and even
potentially hazardous in unstable environments. Infrared transmission {&]yis[impossible
without a direct line-of-sight. Wired communication requires a costly infrastructure that may
be difficult to deploy in such environment. Thus, to overcome these problems, communication
between the teams relies on messenger robots that physically carry messages from one team to
the next.

The distributed system modeled in this Chapter consists of robot teams that communicate by
exchanging messages carried by physical messengers. Each team has a pool of robot messen-
gers that it can use to carry messages to other teams. When a team has no messenger left in its
pool, it is unable to send messages. Conversely, when a messenger coming from another team
delivers a message, the number of messengers available in the pool increases by one. Initially,
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each team has a given number of messenger in its pool but, in the models we consider, a subset
of the messengers can possibly crash during the execution of the system.

This model differs from conventional distributed systems in several aspects. For instance,
since a team is unable to communicate when no messenger remain in its pool, a distributed
algorithm must adequately balance the use of messengers to avoid deadlock situations wherein
the system waits for messages from a team that has become unable to communicate.

We look at two important building blocks of group communication, namely group mem-
bership and view synchrong]. Group membershiprovides a mechanism to allow teams to
dynamically join or leave the system during an execution. Membership changes are done con-
sistently by all teams, through the installment of group membership views. A view consists of a
view sequence number and the list of teams that belong to the group. As all teams must agree on
every view installed, they also agree on the composition of the group for any given\iew.
synchronyrelates to broadcast communication among the group members. In short, it ensures
that a message broadcasted within a view is received by all teams before they install the next
view, thus providing a form of “all-or-nothing” semantics in the face of failures.

Related work There exist many definitions of group membership and view synchrony, dis-
cussed extensively by Chockler et &].[Correspondingly, there are many systems supporting
some form of group membership and view synchrony in conventional distributed systems, such
as lIsis B], Transis [L2], Totem [24], Moshe [L9], and many others (e.g.18, 1]). In mobile
robotics, Schemmer et al2]] present two membership protocols for robots communicating
through wireless network protocols such as 802.11. However, none of these group member-
ship protocols consider a system where communication uses physical messengers, and they are
hence not adapted to such environments.

In contrast, mobile agent systems consider mobile entities that can carry information. There
is however a very fundamental difference between mobile agents and robot messengers. While
the former are software entities that can be easily replicated or regenerated programmatically,
the latter are physical and cannot be easily recovered after a failure. Thus, protocols developed
for mobile agents cannot easily be adapted to our system model.

This Chapter identifies the importance of a distributed systems relying on physical messen-
gers, and to provide a group membership and view synchrony protocol for such systems. This
Chapter presents in fact two protocols, where the first one tolerates the failure of a bounded
number of messengers, while the second one additionally tolerates the failure of entire teams.
We present the protocols, provide arguments to support their correctness, and discuss their com-
plexity in terms of time and energy consumption.

This Chapter is organized as follows. Sectibf presents the system model and basic def-
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Figure 7.1: System model.

initions. Section7.2 describes two failure models; one in which messengers can fail, and a
second one in which teams can also fail. Secti@presents and discusses two group member-
ship algorithms, one for each failure model. Finally, Secfiahconcludes this Chapter.

7.1 System model & definitions

7.1.1 System model

We model a distributed system as a set of teams of autonomous mobile $obdiE,, ..., Ty}

and a set om messengers, whera > 1. Every team has an identifier, a set of robots named

“workers” responsible for executing the required tasks, and a pool of robot messengers.
Communication between teams is done by sending a messenger from the pool to convey

messages. Messengers travel from a team to another by following a “communication route.”

We assume that a direct route exists between any pair of teams, although this assumption is

in fact not restrictive since two routes can physically share the same path. When a messenger

delivers its last message at a te@imthe messenger joins the pool of tedm The capacity of

a messenger is assumed to be large enough to accommodate any finite number of messages.
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The system is purely asynchronous in the sense that timing assumptions are made neither
on processing speed nor on the time it takes for a messenger to carry a message from a team to
another.

Figure7.1

7.1.2 Energy complexity

In addition to the complexity metrics used in traditional distributed systems, we consider an
additional complexity metric that we cahergy complexity

Energy complexity counts the total number “biops” traveled by messengers during a
single execution of the algorithm. A hop is the journey of one messenger from one team to
another. Roughly speaking, the energy complexity of an algorithm corresponds to the energy
spent by the algorithm during a single run.

7.1.3 Group membership & view synchrony

The membership service maintains a list of currently active teams, in failure-prone distributed
systems, and delivers this information to the application whenever its composition changes. The
reliable multicast services deliver messages to the current view members. For more information
on the subject, we refer to the survey of Chockler et &|l. [A group membership can also

be combined with failure detection, and then it can be seen as a high-level failure detection
mechanism that provides consistent information about suspicions and fa80ré&s3][ In short,

a group membership keeps a track of what teams belong to the distributed computation and what
team does not.

In our model, a group membership service provides a list of non-crashed teams that currently
belong to the system, and satisfies three proper8psvglidity, agreement and termination.
Validity is explained as follows: let; andv;,; be two consecutive views, if a teafe v; \ vi;;
then some team has executedve(T) and if a teanT; € vi;; \ v; then some team has executed
join(T;). The agreement property ensures that the same view would be installed by all the teams
of the group (agreement on the view) since agreement on uniquely identified views is necessary
for synchronizing communications. Termination means that if t&agxecutes joir[g), then
unlessT; crashes, eventually a viewis installed such that eithdi, € v or T, ¢ v'. We present
the following notations used in this Chapter:

e |Ti| is the number of messengers exist in the pool of tdam

e initiator is the team which proposes (join) or a (leave) operation, and consequently initi-
ates a procedure of creating a new view.
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logical ring is a logical circular list of teams identifiers.

Vini IS the initial view of the system.

Vact IS the current view of the system.

Viin IS the resulting view of the system.

7.2 Failure Models

We consider that a messenger and a team can fail by crashing and that crashes are permanent.
We look at two slightly different failure models. In Model A, we consider the crash of mes-
sengers only, but assume that all teams are correct. We then look at a more general model
(Model B), in which both teams and messengers can possibly crash.

7.2.1 Model A: Messengers failures

In Model A, we consider the failure of messengers only, so a robot messenger may crash, for
instance while it travels from one team to another. However, it is assumed that team do not
crash.

We assume that the total number of faulty messengers is bounded, and denote this upper
bound byM.

In this model, we have the following properties:

e property A1 A messenger can fail by crashing, and when it crashes, the crash is perma-
nent.

e property A2 Teams never fail.

e property A3 There is at least one correct messenger in the systenV sorf).

7.2.2 Model B: Teams/messengers failures

In Model B, we extend Model A by also considering that teams may fail. We assume that the
number of faulty teams and faulty messengers is bounded, and we denote the maximal number
of faulty teams, respectively messengersThyespectivelyM.

In this model, we have the following properties:

e Property B1 A whole team(s) may fail by crashing, and when a crash occurs, it is per-
manent.
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e Property B2 Correct messengers never crash. Nevertheless, a correct messenger can be
rendered nonfunctional, as covered by Property B3.

e Property B3 When a team crashes, none of the messengers that were in its pool at the
instant of the crash can move. The rationale is that, without a proper source of energy
provided by the pool, the messengers are unable to travel to other teams. This affects all
messengers in the pool, regardless whether they are faulty or correct. However, messen-
gers that were in transit at the moment of the crash are not affected.

e Property B4 There is at least one correct team in the system, and at least one correct robot
messenger in the system, we can express this condition as follows1 andM < m.

e Property B5 Any set composed of teams, should contain at mast— M — 1 robot
messengers in total, at any instant.

The motivation behind Property B5 is to guarantee the existence of at least one correct robot
messenger in the system, evef isimultaneous crashes occur.

7.3 Group Membership and View Synchrony algorithms

In this section, we study the problem of group membership and view synchrony in our system
model, considering the two precedent failure models.

For each failure model, we give a brief explanation and illustrate our algorithm by an ex-
ample, then we give arguments showing its correctness, and finally we evaluate the energy and
time required to run the algorithm.

We represent the system as a logical ring of nodes sorted by increasing order of teams
identifiers, each node in the list represents a team of robots, the initial view contains all the
teams in the system.

7.3.1 Group membership & messengers failures (Model A)

We study the group membership and view synchrony in our system model, in presence of mes-
sengers failures.

Description of the algorithm (Model A)
e Condition The team initiator has initially at leastA + 1) messengers in its pool.

In Model A, the team initiator executes the propose and commit rounds by sending a set of
messengers which has at least one correct. We illustrate the algorithm by the following simple
example:
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Consider a system composed of three teams, we construct a logical ring of fedBs T3} .
The initial view is: {T1, T,, T3}. We suppose that the tearfi,] starts to propose a new view
(team initiator), and it invoke®in(T,) operation, the tearili; invokes aleave(T) operation,
andT, does not execute any operation. The télgrstarts the propose round by sending a set of
(M + 1) messengers {3, such that each messenger carries the same message which proposes
the view: Vi = {T1, T2, T3, Tp).

When the teanT; receives this set of messengers (or at least one), it behaves as follows:

1. unifies all the identical messages received fiilgm

2. generates its own messagegleaveTs).

3. mergesnsg, andmsg,, then proposes the viev'gt3 ={T1, To, Ty}

4. sends the set of messengers that it has received tith the new view, .

WhenT, receives the set of messengers frogit does not change the view, acknowledges
the current proposed view, and sends the messengé&gswaich terminates the propose round
and starts the commit round when it receives at least one messenger from} starts the
commit round by sending the same set of messengers with the message{T,, T,, T,} to
Ts which acknowledges the current vieivand sends the set .

The algorithm terminates whel, receives back at least one messenger of this set carry-
ing the commit message that it has sent, and the group membership algorithm is successfully
terminated, such that the tealy has joined the group arit; has left it, and the new view is

V= {Tl9 T27 Tp}

Correctness arguments (Model A)

The conditionjinitiator| > (M + 1) guarantees that the team initiator has at least correct
messenger, we show that this condition ensures the correct termination of the algorithm.

In the Model A, we need to sen®(+ 1) messengers from the initiator to the next team, in
order to guarantee the correct reception of messages by the next'teapposing that all the
teams are correct. (assumptions of this failure model)

The cardinality of this set remains larger than 1 and smaller or equaMte {) because
some messengers may crash before reaching their destinations, and this set of messengers is
responsible for all the communications between the teams until return back to the initiator.
(propose and commit rounds).

The set of messengers moving between teams may become smaller after each step of the algorithm, but this
set is never empty.
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The algorithm guarantees that the same new view is acknowledged by all the teams in the
system, since there is no team crash in this model.

The properties: Validity, Agreement, and Termination are discussed exactly as in the failure-
free model presented in our research rep®8}. [

Behavior Evaluation (Model A)

The initiator sends a set of{+ 1) messengers, and this same set perfomr=s between the
teams in order to define a new view, so the energy consumed is in the or@(® + 1)n).
But the time required i©(2n) because the robots move simultaneously.

7.3.2 Group membership & teams and messengers failures (Model B)

We study the algorithm of group membership in presence of both teams and messengers failures.

Description of the algorithm (Model B)
e Condition 1 The team initiator is a correct team.
e Condition 2 The team initiator has initially at leasti( + 1) messengers in its pool.

We illustrate the group membership algorithm by the following simple example:

Consider a system composed of four teams, we construct a logical ring of{Ted€s T3, T4}.
The initial view isvi, = {T1, T,, T3, T4}. We suppose that the teafa starts to propose a new
view (team initiator), and it invokes thiein(T,) operation. For simplicity, we suppose that
other teams do not execute any operation, and the t&amusd T3 are faulty.

propose round The teamiT, starts the propose round by sending a set composed ef {)
messengers b3, such that each messenger in the set carries the same message which proposes
the viewv‘T2 = {T1, T2, T3, Ta, Tp}. When this set of messengers arrives to the sité&sofit
performs a crash detection protocol based on hand-shaking with all the workeys Dhere

are two cases:

e T3 has crashedthe set of messengers returns bacK4andicating the crash of3, then
the initiator changes the current view by removihgfrom the group (forced leave) and
sends this set of messenger3ipcarrying the newly proposed viexds/2 ={T1, T2, Ta, Ty

e T3is alive it unifies the identical messages, and sends the set of messenggrasdn
Model A.

The propose round terminates when the team initiator receives back its set of messengers (or
part of it).
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commitround T, starts the commit round by sending the set of messengers with the message
commi{Ty, Tp, Tg, Tp} to T4, which acknowledges the current vietvand sends the set .
When the messengers arrive to the sit@ pthey can face two cases:

e T, has crashedthe set of messengers returns bacK4andicating the crash of, then
the initiator changes the current view by removihgfrom the group (forced leave) and
restarts the commit round by sending this set of messengdisdgain, provided with
the current commit view‘T2 = {T2, T4, Tp}. ThenT, acknowledges the commit view and
sends the messengerslig

e T, is alive it unifies the identical messages, and sends the set of messengjgrasan
Model A.

The algorithm terminates whéli receives back at least one messenger belongs to the set it has
sent, provided with the commit message, and the group membership algorithm is successfully
terminated, such that the tealy has joined the group and{, Ts) have left it because of their
crashes, and the new viewvis= {T,, T4, Tp}.

Correctness arguments (Model B)

In this model, we have team failures in addition to messenger failures, so we need extra speci-
fications concerning a team correctness.

We show that the two previous conditions guarantee that the algorithm terminates correctly.
In our model a messenger can perform at most two hops, so when a messenger moves to a
crashed team, the next hop should be to a correct one, else the messenger would be idle. The
messenger returns to the team initiator after detecting a crashed team, and the initiator is a cor-
rect team according to (Condition 1), while (Condition 2) guarantees that the set of messengers
sent by the initiator, has at least one correct messenger. This set performs all the hops between
the teams as we discussed for Model A.

In this model, we provide the system with a perfect failure detector, because the detection of
a crashed team is carried out by a local hand-shaking mechanism, between at least one correct
messenger and all the workers of the team. After detecting a crashed team by a messenger,
this messenger moves to the team initiator (correct team), and proclaims the crashed team,
consequently, the crash is detected correctly and deterministically.

The commit round, permits to provide each non-crashed-team with the most recent view, be-
cause the initiator restarts the commit round whenever it detects a crashed team, so the commit
round terminates correctly by delivering the same wewto all non-crashed teams.

The properties: Validity, Agreement, and Termination are discussed exactly as in the failure-
free model presented in our research rep®8t.[
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Behavior Evaluation (Model B)

The set of M + 1) messengers may perform additional hops because of teams failures, so this
set needs to go backward to the initiator whenever it detects a crashed team. (additional
hops in the propose round, andT hops during the commit round). The energy consumed by
messengers is calculated as follows:

Propose round(worst case){ T)(M + 1).

Commit round(worst case¢ T)(M + 1).

The total energy consumption iSI(+ 1)(T + 1) - n+ T(M + 1).

The behavior evaluation in terms of energy can be written@@:- n + 3).

The behavior in terms of time iF(+ 1) - n+ T, also it can be expressed &1 - n + w).

Discussion The required energy and time to run the algorithm increase when fault-tolerance
requirements become harder. In the failure-free mao8@lthe algorithm requires energy and
time proportional to (8), wheren is the size of the system (group of teams). In Model A the
energy becomes more significant, itNstimes greater, which is justified by the cost required

to tolerate the messengers failures, but the execution time is equivalent to that in failure-free
model B3]. When the system is prone to teams failures in addition to messengers failures in
Model B, the required energy i$/A - T) times greater than that in the failure-free modig]|

while the execution time is only times greater.

7.4 Conclusion

We have introduced a distributed asynchronous system model composed of a group of teams of
cooperative mobile robots. The teams in our model communicate by physical robot messengers.
We have presented a group membership algorithm, discussed its correctness, and evaluated
its behavior in terms of energy and time, in two possible failure models: one in which only
messengers fail, and one in which entire teams can also fail.

We have shown the conditions that should be satisfied to solve the problem of group mem-
bership in our system model in each different failure model. This technique of communications
between teams of robots permits to implement a perfect failure detector since the detection of
a crashed team takes place locally on its site. This property permits to solve many agreement
problems in asynchronous distributed systems composed of a group of teams of robots.

Furthermore, in this model faulty robot messengers can be mapped to lossy channels in
classical distributed systems. We guaranteed reliable communications by using one set of mes-
sengers that has at least a correct messenger, this set circulates the messages and supports all
the communications between the teams of the system.
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Algorithm 20 Algorithm(A) Group membership: messengers failures (code for TEam

1: Initialisation:

2: S<—{T1,T2,...,Tn}

3: Vini < {Ti,i € [1..n]}

4 Vact < Vini

5: old_view « vy

6: msg« 0

7. operation ={join(hew.team), leave(tean)

8: if (operation = join (newteam))then

9.  T;.proposeVact < VactlJ {newteant)

10: end if

11: if (operation = leave(teamien

12:  T;.proposeVact < Vact \ {teany)

13: end if

14: if (T, = initiator) and (initiator| > (M + 1)) then
15: msginitiator « initiator(1D)

16:  msg— msg{Vact

17:  send set ofNl + 1) messengers provided with (msg) to n&xk(
18: wait until reception of the messengers sent
19: whenreception of messengers sent

20: begin-commit-round()
21: endwhen
22: end if

23: if (T; # initiator) then

24:  unify all the identical propose messages received from previgus{o one message (msg)
25:  msg«— msgJ{Vact}

26: sendhe set of messengers receivdtbm previous(;) provided with (msg) to nexTj)

27: end if

28: procedure begin-commit-round

29: if (T; = initiator) then

30: Vfin <= Vact

31: msg«— commifvsin)

32: sendhe set of messengeneceived from previoud{) provided with (msg) to nexif)
33: wait until reception of the messengers sent

34: whenreception of messengers sent

35: terminate-commit-round()

36: end when

37 else

38: unify all the identical commit messages received from previgQus{to one message (msg)
39: sendhe set of messengeneceived from previous() provided with (msg) to nexij)
40: end if

41: newview « Vi
42: endbegin-commit-round
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Al

gorithm 21 Algorithm(B) Group membership: Teams and messengers failures (code for

TeamT;)

1: Initialisation:

2: S(—{Tl,Tg,...,Tn}
3: Vini < {Ti,i S [1”]}
4. Vact < Vini
5:  old_view « Vi
6: msg« 0
7:  operation join(new team), leave(tean))
8: if (operation = join (newteam))then
9:  Ti.propose act <« Vact U {(newteamnt)
10: end if
11: if (operation = leave(teamifen
12:  T;.proposeVact < Vact \ {teany)
13: end if
14: if (T; = initiator) and (initiator| > (M + 1)) then
15: msginitiator « initiator(ID)
16: msg<— msg J{Vact}
17:  send set ofNl + 1) messengers provided with (msg) to n&xk(
18: whenreception of messengers carrying the failure detection message
19: Vact < Vact \ {Tk} {Propose roungl
{Tk has crashed and the current message is (fhsg)
20: msg«— msg {Vact}
21: if (nex(Ty) # initiator) then
22: sendhe received set of messengeczarrying (msg) to nexi)
23: else
24: begin-commit-round()
25: end if
26: endwhen
27:  wait until reception of messengers sent.
28: whenreception of messengers carrying a “non failure-detection message”
29: begin-commit-round()
30: endwhen
31: end if
32: if (T; # initiator) then
33:  unify all the received identical propose messages into one message (msg).
34:  msge— msgJ{Vact}
35: sendhe received set of messengetzarrying (msg) to next(;)
36: end if
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Algorithm 22 begin-commit-round (code for Teaii)

1
2
3:
4
5

11:
12:

13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

24:

procedure begin-commit-round()
if (T; = initiator) then

Vtin <= Vact
msg«— commifvsin)
list « list \ {detectedcrashedteam$ {vyi, is identical to the updated logical ring of teams identifiers,
so when a team receives the commit message, it discovers the next teamjto send.
if (the number of detected crashed teams 1) then
sendhe received set of messengecsirrying (msg) to next(initiator) in the new logical ring.
else
terminate-commit-round() {the number of detected crashed teams = n-1, i.e. the initiator is the only
correct team in the systém
end if

whenreception of messengers carrying the failure detection message
Vact < Vact \ {Tk} {Commit round
{T« has crashed and the current message is (fsg)
msg« mMSg{Vact}
begin-commit-round {restart from the beginning
end when

wait until reception of messengers sent

when reception of messengers carrying a “non failure-detection message”
terminate-commit-round()

end when

else

unify all the received identical commit messages into one message (msg)
sendhe received set of messengerarrying (msg) to nexi(;) in the new logical ring.

end if
NEeW.View « Viin

25: end begin-commit-round

Algorithm 23 Messenger (code for messenger)

1. if detectcrash(messengé€ly) then

2:  move to the team initiator. {if a messenger detects that a team has crashed then, the messenger returns to
the team initiatof
3: end if

95



The model presented in this Chapter was motivated by a mining application in which teams
of worker robots cooperate to excavate minerals. The model is however by no means limited
to this application. In fact, a similar model applies to robot applications in underwater environ-
ment, deep space exploration, nano-scale robotic devices, or more generally in environments
where there are no established communication infrastructures.
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Chapter 8

Conclusion

In this dissertation, we presented a fail-safe mobility management and achieved a collision
prevention platform for asynchronous cooperative mobile robots.

This platform consists of time-free collision prevention protocols, that ensure the safety
property of the system and guarantee that no collision can occur between mobile robots, what-
ever the temporal guarantees offered by the communications system.

We have presented collision prevention protocols for a closed group of mobile robots and
for a dynamic group. The closed group model of mobile robots is motivated by robotic appli-
cations with low number of robots in a limited space, in which mobile robots are always within
the transmission range of each other, and each robot knows the total composition of the group.
However, in wide area mobile robotic applications with large number of robots, the commu-
nication connectivity between mobile robots is not guaranteed. In such applications, mobile
robots can rely on the collision prevention platform for a dynamic group model.

The collision prevention protocol for the dynamic group model, requires neither initial nor
complete knowledge of the composition of the group, it relies on a neighborhood discovery
primitive which is readily available through most of wireless communication devices. The pro-
tocol is based on a locality-preserving distributed path reservation system that takes advantage
of the inherent locality of the problem, in order to reduce communication. Therefore, the proto-
col for a dynamic group model is scalable by design, while the scalability of the protocol for a
closed group model is low. The collision prevention protocol for a closed group invokes all the
robots in the system.

The collision prevention protocol for a closed group is robust with respect to time, while the
vulnerability to time resides only in the neighborhood discovery primitive used by the collision
prevention protocol for a dynamic group of robots. On the other hand, the closed group model
requires a total communication connectivity between mobile robots and also each robot must
know the total composition of the group.

In the dynamic group model, the design of the collision prevention protocol yields a scal-
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ability due to its locality-preserving property. Therefore, the protocol can handle large sized
dynamic group of cooperative mobile robots, provided with limited energy resources and lim-
ited transmission range.

A performance analysis provides insights for a proper dimensioning of system'’s parameters
in order to maximize the average effective speed of the robots.

The collision prevention platform tolerates the crash of a certain number of robots such that
the system of robots keeps in progress towards its final goal, in presence of the crash of a certain
number of robots.

The failure of a robot by crash hassaowballeffect, because the robots that are waiting for
the crashed robot are blocked and the robots that wait for the blocked robots are consequently
blocked.

The collision prevention platform for a dynamic group of mobile robots can reach a certain
degree of fault-tolerance in a large scale system, due to the locality-preserving property. If a
robot crashes then, the local neighbors that are located within one communication hop with
respect to the crashed robot at the time of the crash, are blocked waiting on the crashed robot.
The two-hop and farther neighbors that do oonflictwith any of the blocked robots, are not
affected at the time of the crash. Therefore, the impact of a crash is limited in space and affects
only a part of the system for a period of time, however,3newballeffect takes place with the
progress of time.

Chapter5 presented two fault-tolerant collision prevention protocols rely&hfailure de-
tector and tolerate the failures of half of the robots. One of the fault-tolerant collision prevention
protocols is preemptive in the sense that a request of a robot can be preempted due to a decision
voted by the other robots of the group, if the robot is suspected as a crashed robot. The second
protocol is non-preemptive, so a roligtcancels its own request when it suspects another robot
R; as a crashed robot, R waits forR;.

Therefore, if a roboR suspects that a robB; has crashed, argébng intersects witlZzong
then,R, cancels the requed®( Zong) and restarts a request of an alternative zone. Other robots
that wait forR, continue the execution of the protocol. This technique is applied for both group
models, the closed group model as well as the dynamic group model.

For the dynamic group model, a non-preemptive fault-tolerant protocol relies on a failure
detector of clas®S with the majority of correct robots. If a robot cancels its request then, it
executes a Reliable Broadcast of a message indicating that its request is canceled. The desti-
nation of the broadcasted message is the set of robots that conflict with the robot sender. (the
zones are intersecting). Reliable Broadcast guarantees that either the message is delivered by
all correct robots or none.

This dissertation also provides group membership and view synchrony protocols among
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robot teams, in a distributed system model composed of a group of teams of worker robots that
rely on physical robot messengers for the communication between the teams. The protocols
tolerate the crash of a certain number of messengers robots and the crash of a certain number
of teams. Unlike traditional distributed systems, there is a finite amount of messengers in the
system, and thus a team can send messages to other teams only when some messenger robot is
available locally.

Chapter7 presents a group member a group membership algorithm, discussed its correct-
ness, and evaluated its behavior in terms of energy and time, in two possible failure models:
one in which only messengers fail, and one in which entire teams can also fail.

In Chapter7, we have shown the conditions that should be satisfied to solve the problem
of group membership in our system model in each different failure model. This technique of
communications between teams of robots permits to implement a perfect failure detector since
the detection of a crashed team takes place locally on its site. This property permits to solve
many agreement problems in asynchronous distributed systems composed of a group of teams
of robots.

Furthermore, in this model faulty robot messengers can be mapped to lossy channels in
classical distributed systems. We guaranteed reliable communications by using one set of mes-
sengers that has at least a correct messenger, this set circulates the messages and supports all
the communications between the teams of the system.

The model presented in Chapi&mwas motivated by a mining application in which teams of
worker robots cooperate to excavate minerals. The model is however by no means limited to this
application. In fact, a similar model applies to robot applications in underwater environment,
deep space exploration, nano-scale robotic devices, or more generally in environments where
there are no established communication infrastructures.
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