
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automatic translation from name-based pointcuts

to analysis-based pointcuts for robust aspects

Author(s) 王, 林

Citation

Issue Date 2011-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9932

Rights

Description
Supervisor: Professor Koichiro Ochimizu,

Information Science, Master



Automatic translation from name-based pointcuts to
analysis-based pointcuts for robust aspects

Wang, Lin (0910216)

School of Information Science,
Japan Advanced Institute of Science and Technology

August 10, 2011

Keywords: Aspect-Oriented Programming, analysis-based pointcuts,
name-based pointcuts, fragile pointcut problem.

Modern software projects are of large scale, often involving tens of thou-
sands of days of work efforts, and millions of lines of code. Moreover our
limited minds cannot possibly consider everything and solve everything at
once. Therefore, the software is too complex to design merely in a single
view, and it is necessary to separate the different concerns in a large piece
of software to decompose it into smaller, more manageable units. Sepa-
ration of concerns(SoC) is an important principle in software engineering,
and it has the ability to separate program into distinct features. Without it
large software system simply could not be realized. Effective separation of
concerns makes a program easier to understand, change and debug. Con-
cerns are used to organize and decompose software into manageable and
comprehensible parts. Modularity of programming is a traditional way of
achieving separation of concerns. Object-oriented programming (OOP) is
a way of modularizing common concerns, classes in object-oriented model
perform a single specific function. In many case, we find that many parts
of our system have code fragments for logging, persistence, debugging, au-
thorization, tracing, exception handling, and other such tasks. As a result,
they have to be coordinated with other functional unites and code scattered
usually throughout several functional units exist in their concerns. Thus,

Copyright c© 2011 by Wang, Lin

1



OOP does not do as a good job in these situations. Aspect-Oriented pro-
gramming (AOP) fills this void. Aspect-Oriented programming provides a
solution to the crosscutting problem by supporting the modularization of
crosscutting concerns in aspects. In contrast with OOP, AOP is a way of
modularizing crosscutting concerns. Crosscutting concern is concern that
affect several classes or modules, and the code fragments which implement
crosscutting concerns are spread across many units. The modules for the
crosscutting concerns are called aspects, aspects encapsulate behaviors that
affect multiple classes into reusable modules. AspectJ is the most preva-
lent and studied in mainstream aspect languages. It is an aspect-oriented
programming extension of Java. AspectJ introduces a new concept, join
points, and a few new programming constructs, such as pointcuts and ad-
vice. A join point is a point in the execution of a program whose behavior
can be affected by advice. A pointcut is a construct designed to identify
and select join points. Advice defines code to be executed when a join
point is reached. Pointcuts match joinpoints, which are well defined points
in the execution of a program, so it is a key element in aspect-oriented
languages.

Using names and wildcards to capture join points over programs is the
most basic way to define the pointcuts. As the program evolves, changes in
the structure or naming conventions can make advice accidentally execute
an unwanted advices or miss execute some required ones. In other words,
there is tight coupling between traditional pointcuts and structure of base
code. In this case, when the program evolved, as even a small modification
to the program, the pointcut itself have to evolve along with the base-code.
This problem is called fragile pointcut problem. Hence it is important to
define pointcut in a robust way against program evolution. Robustness
means the pointcuts are able to continue to capture the correct set of join
points without alters its form in future version of the base-code.

There are many approaches such as Josh, Alpha, Model-based pointcut,
Pointcut Rejuvenation etc. that attempt to overcome pointcuts’ fragility.
These approaches either propose several new pointcut language constructs
to improve pointcuts’ expressiveness or provide developer some additional
information by program analysis. There is, however, no automatic way to
translate name-based pointcuts into robust ones, and hence programmers

2



have to rewrite the existing pointcuts manually. Unfortunately, this is
often difficult because new constructs are very different from the original
languages. For example, Alpha uses a logic programming language for
the specification of pointcuts, it is very different from the name-based
pointcuts.

In this dissertation we propose a framework called Nataly, which trans-
lates name-based pointcuts into analysis-based pointcuts automatically.
Our approach can not only alleviate fragile pointcut problem but also
bridge a gap between original name-based pointcut and other robust one.
Name-based pointcuts directly use class and method names; they merely
check that a called/executed method has the specified name/type. Analysis-
based pointcuts are proposed as an approach to overcome the fragility.
They use static program analysis rather than names, and match the join
points that satisfy the match strategy checked by the analysis. There are
three significant components in our framework, namely, relation analyzer,
pattern generator and code generator. Given base-code aspects, it first
analyzes the program to extract relation maps that represent relationships
among fields, methods, classes and interfaces. These relation maps are sep-
arated in two types, namely adjacent relation maps and opposite relation
maps, respectively. Pattern generator creates relationship trees by using
relation maps and join point shadows which correspond to a given pointcut.
The roots of the relationship trees are the java elements which associated
with join point shadows. Relationship trees represent the behavior of the
associated join point shadows which matched by a given pointcut. Inten-
tion patterns are extracted from relationship trees and persisted to Tregex
format. The purpose of intention pattern is to approximate the essence of
the developer’s intentions behind the original pointcut. Finally code gen-
erators generate code of analysis-based pointcuts by using StringTemplate
in our implementation. We implement the Nataly framework for AspectJ
in Java.

We also illustrate a case study that evaluates robustness of name-based
pointcuts and analysis-based pointcuts in face of seven possible change
scenarios to the classic Figure Editor System. It shows that the gen-
erated analysis-based pointcuts are more robust than their name-based
counterparts against seven program changes, however they still break if

3



the program changes get complicated. Frankly, we have to declare that
our approach can alleviate the problem of fragility, but it cannot solve all
the possible instances of fragile pointcut problems currently.

Our approach has several contributions:

• It bridges the gap between traditional name-based pointcut and other
robust pointcut language. Our approach is the first one that attempt
to translate name-based pointcuts into robust analysis-based point-
cuts. The new pointcut languages are very different from the original
language, so they are difficult to be written by a programmer who is
not familiar with the new pointcut language. Therefore we implement
a framework to generate analysis-based pointcut automatically.

• It alleviates fragile pointcut problem by using analysis-bases point-
cut. Evaluations of our approach in seven different change scenarios
represents that analysis-based points generated by our framework are
more robust than its counterpart name-based pointcuts. To five of
seven considered scenarios name-based pointcuts are not robust. On
the other hand, the solutions based on analysis-based pointcuts are
not robust to only one change scenario.

• Our implementation of framework is excellent integration with As-
pectJ. Analysis-based pointcut in our approach merely relies on ex-
isting AOP constructs such as conditional pointcuts. Moreover, the
advanced compiler SCoPE can support our analysis-based pointcut.

4


