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Chapter 1

Introduction

1.1 Overview

The cerebellum is a small region of the brain that plays a central role in motor control [1].
It integrates inputs from sensory systems and other parts of the brain to fine tune motor
activities. The cerebellum enables animals and humans to move objects accurately and
smoothly even at a high speed and without visual feedback as results of learning [2].
Several decades of both anatomical and theoretical works have resulted in deep knowledge
about models of the cerebellum [3], [4] which derive from early studies formulated by David
Marr and James Albus [5], [6]. It is widely accepted that the cerebellar learning takes
place at Purkinje cells since they are only outputs of cerebellar cortex. Purkinje cells
(PC) receive two types of input: about 200,000 parallel fibers from Granule cells and a
sole but powerful climbing fiber from inferior olive (IO). Climbing fiber will cause long-
term depression that reduces the efficacy of Purkinje cell synapses in hours or even longer,
and it has been shown to be very important for cerebellar learning.

Although the anatomy and physiology of main elements involved in cerebellar learning,
such as Purkinje cell, has been clearly described, there are some unclear aspects in cere-
bellar learning has more to be explored. One of these problems is the error transmission
from Inferior olive. It is clear that inferior olive transmits error signals to correct motor
commands produced by Purkinje cells, but how the inferior olive transmits these signals
with high temporal resolution despite its low firing rate?

To overcome this problem, Schweighofer et al. proposed a hypothesis of chaotic reso-
nance in which IO cells are coupled via gap junctions to induce irregular and anti-phase
spiking activities of IO neurons [7]. It suggested that an intermediate coupling between
IO cells may enhance error transmission from IO, thus as to enhance cerebellar learn-
ing. Recently, Tokuda et al. proposed a computational model of inferior olive neurons
implemented chaotic resonance hypothesis to accelerate motor learning for multi-joint
arm control [8]. However, these both studies have no consideration on how to realize
such a coupling mechanism in real IOs. The difficulties of resolution for this issue are
because a huge amount of neurons and complicated organization on several anatomical
levels are observed in the cerebellum [9]. Moreover, recent studies has been shown that
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there are more than one plasticity mode involved in the cerebellar learning [1], [9]. These
modes make tremendous flexibility of the cerebello-olivary neuronal networks. Therefore,
modeling cerebellar learning is really a big challenge for researchers in neuroscience.

As the first step towards resolving the above challenge, the thesis implements a novel
idea firstly hypothesized by Kawato et al. [10]. This hypothesis integrates previous hy-
potheses with both experimental and anatomical evidences in order to optimally control
the coupling in two phases of learning: in the early stage of learning, synchronously firing
activities of IO cells and its innervated PCs could correct motor commands quickly for fast
learning; while in the late stage of learning, weak or no synchronization of IOs could real-
ize sophisticated learning in the cerebellum. If this approach catches some enhancements,
we could find a promising framework for extended models of cerebellar learning.

1.2 Thesis goal

As a further study of [8], this research concentrates on investigating effects of adaptive
couplings on cerebellar learning. Then, the thesis proposes a computational model that
physiologically controls the coupling between IO neurons based on hypothesis of two-
stage learning. The main purpose of the thesis is to show advantages of adaptive coupling
on cerebellar learning towards constructing a framework of microzone, which consist of
Purkinje cell-cerebellar nucleus-Inferior olive, for modeling cerebellar networks.

1.3 Outline of thesis

Coming after this introduction, the thesis is organized by other five chapters as follows:

• In Chapter 2, backgrounds of cerebellar learning, especially the role of error trans-
mission from inferior olive in learning, are described. This thesis then emphasizes
what are problems of controlling coupling between IO neurons and also suggests a
plausible approach for this challenge.

• The hypothesis of two-stage learning suggested by Kawato et al. is demonstrated
in Chapter 3. This hypothesis provides a novel solution for modeling cerebellar
learning. In this chapter, the triangle closed-loop of Purkinje cell-cerebellar nucleus-
inferior olive is also proposed to optimally control the coupling in two stages of
learning.

• Next, Chapter 4 demonstrates the feedback error learning in multi-joint arm con-
trol, and importantly, the adaptive patterns of controlling coupling between IO cells.
The evaluation methods such as mutual information and synchronization index are
also mentioned in this chapter.

• Purposes and procedure of thesis experiments are described in Chapter 5. Results
of learning, which are significantly enhanced by adaptive patterns, are also discussed
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in this chapter. Advantages of mutual information and synchronization index in two
stages of learning show novelty and correctness of the proposed hypothesis.

• Finally, the thesis describes summary, contributions as well as future works of our
research in Chapter 6.
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Chapter 2

Backgrounds

2.1 The cerebellar learning

The cerebellum is a small region of the brain that plays an important role in motor control.
It makes up about 10 percent of brain’s volume but contains more than 50 percent of the
neurons.

Figure 2.1: The cerebellum (source: Wikipedia)

Although the cerebellum is involved in some cognitive functions such as attention and
language but its primary function is to make precise, accurate motor commands in move-
ment control [1]. It detects the motor error by comparing the desired trajectory and the
actual trajectory, and through its projections to upper motor control parts in cerebral
cortex to reduce error as the learning proceeds. These corrections can be made both
during the course of the movement and as a form of motor learning.
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In general, there are two sources of information involved in cerebellar learning. The first
one is the pathway of mossy fiber - granule cell - parallel fiber - Purkinje cell which carries
many kinds of sensory inputs from cerebral cortex. The second source comes from Inferior
olive which act as a ”teacher” helping to correct motor commands produced by Purkinje
cells. Therefore, the cerebellar learning acts as a closed loop of supervised learning.

Figure 2.2: The cerebellar learning loop

Regardless of the complex structure of the cerebellar cortex, Purkinje cells form the
heart of the cerebellar learning among other cellular components of the cerebellar cortex
since they are its only output [1]. PCs receive two types of excitatory inputs: about
200,000 parallel fibers (PF) arising from Granule cells (GC), which have been shown
transfer sensory inputs and a sole but powerful climbing fiber (CB) originating from
inferior olive. Here, the climbing fiber transmits error signals from the IO. When PC is
conjointly activated by the two inputs, the climbing fiber causes the long term depression
(LTD) which decreases the influence of the parallel fiber-PC synapse transmission lasting
hours or longer, and according to recent findings, it also impairs climbing fiber synapse
transmission [2]. LTD occurs in many areas of the nervous system and it has been
hypothesized to be important for motor learning because if the Purkinje cells continuously
increase in strength, its synapses could reach the highest level of efficiency and thus inhibit
the encoding of new information [1]. Most theories that assign learning to the circuitry
of the cerebellum are derived from classical ideas of David Marr [5] and James Albus [6].
However, the challenges of modeling the cerebellum come from tremendous flexibility
of cerebello-olivary neuronal networks. For example, long-term potentiation (LTP), an
opposite process of LTD, also occurs at parallel fiber-Purkinje cell synapses as another
synaptic plasticity. Hence, there are at least two competitive forms of long-term plasticity
involved in cerebellar learning.

Once the signals are finally integrated in the PC, the cerebellar cortex output is con-
veyed by PC axons to cerebellar nucleus (CN) neurons which then forward motor com-
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mands to the thalamus from the dentate nucleus, and then to the motor cortex for move-
ment control [2].

Figure 2.3: Cerebellar learning at Purkinje cell synapses

2.2 Feedback error learning

Although structures of various regions of the cerebellum are somehow different, the com-
putational model for movement control in the brain is uniformed as Figure ??. First,
movement is planned at visual coordinates rather than muscle level. Next, the desired
trajectory must be transformed into body coordinates. Finally, the motor cortex produces
motor command (muscle torque) for actual movement. Consequently, the central nervous
system must presents these steps for motor control.

Among computational models of the cerebellum in movement control, the feedback
error learning model proposed by Kawato et al. [4] was ideally coherent with different
regions in the cerebellum. In this model, the cerebellum acquires an inverse model of
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Figure 2.4: A computational model for control of movement

the controlled object. That means the input and output of the inverse model correspond
to the output and input of the controlled object, respectively. Moreover, there exists a
teaching signal for correcting motor commands. However, in the realistic approach, the
teacher can not access to motor commands but only the desired high-level trajectory.
Thus, the feedback controller must convert such trajectory errors to motor errors in order
to train the inverse model. Hence, the climbing fiber is assumed to convey motor errors
rather than trajectory errors.

For exploring this approach further, a computational model of the cerebellum based on
feedback error learning has been proposed as follows [4]. The total torque τ(t) fed into
controlled object is the sum of the feedback torque τc(t) and the feedforward torque τn(t)
calculated by feedforward controller which is an inverse model of the controlled object.

τ(t) = τn(t) + τc(t) (2.1)

The inverse model receives the desired trajectory θd, then the feedforward torque τn(t)
is computed from the desired trajectory θd and the synaptic weights w:

τn = Φ
(
d2θd/dt

2, dθd/dt, θd, w
)

(2.2)

Here, the shape of the function Φ depends on what kind of neural network actually
composes the feedforward controller.

The PDA feedback controller could be utilized to calculate feedback torque from desired
trajectory θd and actual trajectory θ by:

τc = KP (θd − θ) +KD(θ̇d − θ̇) +KA(θ̈d − θ̈) (2.3)

As the learning proceeds, the feedback motor command tends towards zero by the
synaptic modification rule:

dw/dt =

(
∂τn
∂w

)T

τc (2.4)
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Because the feedback motor command is used as the error signal, this model is called
feedback error learning. Moreover, the long term depression in Purkinje cells may be the
plasticity mechanism in feedback error learning. In this case, the output of a Purkinje
cell y is the linear weighted summation of parallel fiber input x:

y =
∑
n

wixi (2.5)

where wi is the synaptic weight of the ith parallel fiber-Purkinje cell synapse. Then, the
synaptic modification rule based on LTD is

dwi/dt = −xi (F − Fspont) (2.6)

where F is the firing rate of the climbing fiber input and Fspont is its spontaneous level.
This rule strictly agrees with the synaptic plasticity in Purkinje cells: if F is higher than
Fspont, wi decreases. This means the efficacy of the parallel fibers decreases in long term
depression. By contrast, if F is lower than Fspont, wi increases. This corresponds to the
long term potentiation which occurs when only parallel fibers are excited and the climbing
fibers are silent.

Figure 2.5: Feedback error learning model

2.3 Error transmission from Inferior olive

Purkinje cells receive input from climbing fibers that transmit error signal from IO. Al-
though the IO lies in other parts of brain, its output goes entirely to the cerebellum.
A climbing fiber also gives collaterals to the CN before entering the cerebellar cortex,
where it splits into about 10 terminal branches, each of which innervates a single Purkinje
cell [2]. In contrast to the 200,000 inputs from parallel fibers which cause simple spike
of PC, each Purkinje cell receives input from exactly one climbing fiber; but this single
fiber is so powerful that a single action potential from a climbing fiber induces a burst of
several action potentials in a target Purkinje cell, a complex spike. Therefore, it has been
widely accepted that climbing fiber plays an important role in cerebellar learning.
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Moreover, the IO must transmit error signals with high temporal resolution at a low
firing rate so that complex spikes encoding error signals do not interfere with simple
spikes carrying motor commands. That requirement must be met to realize efficient
motor control of the cerebellum.

Figure ?? illustrates error transmission scheme from Inferior olive. First, IO cells re-
ceive common inputs at high resolution. Like other types of neurons, when IO cells are
stimulated enough by their inputs, they will fire at different timings. Although the error
signal is not explicitly reconstructed, LTD can restore high-frequency information of the
error signal for PCs. If IO cells fire regularly and synchronously, they do not respond to
the remaining part of the input and thus IO cells exhibit a sharp peak shape waveform.
By contrast, if IO firing is irregular and desynchronized, the output signal is more similar
to the input waveform.

Figure 2.6: Error transmission from Inferior olive

However, how to realize such firing activities in coupled IO neurons? For resolution
of this problem, Schweighofer et al. proposed a chaotic resonance hypothesis in which
IO neurons are coupled via gap junctions to induce irregular or even chaotic spike fir-
ing [7]. There are two competing factors influencing synchronization in the IO activity:
common inputs make IO neurons synchronously fire, but the coupling between these cells
desynchronizes its firing activity. Therefore, a moderate coupling between IO cells could
increase information transmission in IO.

2.4 Challenges of controlling coupling between infe-

rior olive neurons

Recently, Tokuda et al. used a simplified model for the electrically coupled IO neurons
in order to accelerate motor learning in multi-joint arm simulation [8]. They found that
there exists an intermediate strength of coupling that maximizes the complexity of chaotic
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firings and simultaneously optimizes the information transmission. They also stated that
desynchronization of the neural firings is essential for realizing efficient information trans-
fer. However, in this study, the coupling strength is always fixed and no consideration
has been made on how to realize such a coupling mechanism in real IOs.

These challenges motivate us to find a realistic scheme for controlling coupling in real
IOs. Fortunately, a novel hypothesis of two-phase learning is currently proposed by
Kawato et al. [10]. The authors hypothesize that in the early stage of learning, the
strong and synchronously firing of IO cells and its innervated PCs is useful while weak
or no synchronization might be beneficial in the late phase of learning. They also sug-
gested the triangle circuit of PC-CN-IO for physiologically controlling coupling between
IO cells in cerebellar learning. Hence, our purposes are to test that hypothesis and then
construct a framework for coupling mechanism of real IOs in this thesis. Chapter 3
describes in details about hypothesis of two-phase learning. Then, our main effort contri-
bution of methods and experimental results are mentioned in Chapter 4 and Chapter
5, respectively.
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Chapter 3

The proposed two stages of
cerebellar learning

3.1 Hypothesis of two-phase-learning

Although the cerebello-olivary network is anatomically organized so complicated at cel-
lular levels, it is widely accepted that the main function of IO is to carry error signals via
climbing fibers to correct motor commands produced by PC. But, climbing fibers should
have high temporal resolution despite its low firing rate (just few Hz) so that complex
spikes encoding error signal do not interfere simple spikes carrying motor plans. To tackle
this issue, Schweighofer et al. showed that coupled IO neurons induced irregular or even
chaotic firing activities to enhance error transmission from IO [7]. Moreover, recent ex-
perimental data anatomically support the fact that only poorer error information can be
transmitted when IO cells are strongly coupled and oscillated in phase. However, pos-
sible functions of PC-CN-IO closed circuit for controlling IO coupling are quite unclear,
especially the inhibitory synapses on the dendrites of IO cells close to their gap junctions
within glomeruli.

For investigating inhibitory effect of CN, Kawato et al. hypothesized that the triangle
circuit and the inhibitory synapses from CN to IO are the neural mechanisms to optimally
control the coupling between IO cells in the two-stage learning as follows [10]. In the
early stage of learning, because the actual trajectories are quite different from the desired
trajectories, motor commands must be highly modulated, since error signals are large. If
many PCs fire synchronously and change their firings by almost the same error signals, the
learning should be very fast from the early stage due to huge changes of motor commands.
Thus both mossy fibers and climbing fibers are strongly active. Hence, both PC and IO
cells fire strenuously as the CN cell are depressed. The inhibitory synapses are inactive
within IO glomeruli, and the IO cells are strongly coupled. As a consequence, IO cells
and the innervated PCs are synchronously excited.

By contrast, in the late stage of learning, since the actual trajectories are precise and
close to those desired, both mossy fiber and climbing fiber inputs are weak. Hence, both
PC and IO cells rarely fire and the CN cell are strongly excited due to disinhibiting
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from PC. Because inhibitory synapses are active within the IO glomeruli, the IO cells are
only weakly coupled. Therefore, IO cells and innervated PCs are asynchronously fired.
Importantly, those firing might be chaotic as suggested from [7].

Figure 3.1 illustrates possible functions of the PC-CN-IO circuit for controlling the
coupling between IO cells in two stages of learning. Red neurons are excited, and blue
neurons are depressed. PC projects its outputs to CN as inhibitory signals, and CN
also sends GABAergic neurotransmitters to control electrical coupling between IO cells.
Neuronal activities of PC-CN-IO in two stages of learning are shown in the right raster
plot. The change of error signals and transmitted information of IO neurons during the
learning process is also schematically described in lower parts of Figure 3.1.

Figure 3.1: Schematic diagram illustrating possible functions of the PC-CN-IO closed
circuit in the two-stage learning.

As a summary, in the early learning stage, strong synchronization is useful for modu-
lating motor commands while weak or no synchronization might be advantageous in the
late learning stage.
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3.2 Purkinje cell-cerebellar nucleus-inferior olive cir-

cuit for controlling adaptive coupling

Based on hypothesis of two-stage learning in cerebellum, the thesis proposes a scenario
in which PC-CN-IO circuit controls electrical coupling between IO neurons. Initially, the
PF-PC synapses are relatively strong (before LTD), which activate the PC. This makes the
inhibitory effects from PC to CN strong and thus the CN activity is weak. Inhibited CN
cells innervate the dendrites of IO cells within glomeruli very close to the gap junctions.
As a consequence, the IO cells are excited and its firing rate is high, making the coupling
strength of the IO strong. As the learning proceeds, CN cells are excited and the IO
cells are not only inhibited but their electrical couplings become weaker and converge to
a possibly optimal value.
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Chapter 4

Methods

4.1 Inferior olive model

As an implementation of chaotic resonance hypothesis, Tokuda et al. proposed a simplified
µ-model for coupled IO neurons as follows [8]:

η1
dxi
dt

= −yi − µix
2
i

(
xi −

3

2

)
+ I + Ji

η2
dyi
dt

= −yi − µix
2
i

(4.1)

where

Ji =


g(x2 + xN − 2x1) (i = 1)
g(xi+1 + xi−1 − 2xi) (i = 2, ..., N − 1)
g(x1 + xN−1 − 2xN) (i = N)

(4.2)

xi and yi represent the membrane potential and ion channel activity of the ith neuron (i
= 1, 2, ..., N ), N is the total number of the neurons, µ is a system parameter, η1 and η2

are time constants, g is the coupling strength of the gap junctions, and I is an external
input.

An advantage of this model is its weak dependence on parameter value. Here, µ is only
the parameter that control dynamics of the neurons. Moreover, proper value for µ to
generate spiking dynamics is also well understood [8].

As seen in Figure 4.1, the membrane potential activity of population of neurons is
equivalent to only one neuron without coupling (g = 0). But it becomes irregular, anti-
phase oscillators within an intermediate coupling strength (g = 0.05). Hence, this model is
easy on applying coupling mechanism for adaptive patterns by equation 4.2. The spiking
activity of the kth IO neuron is defined as a membrane potential that exceeds a threshold
value. This threshold value is set as xth = 0.75 because the couplings are always fixed
in [8]. However, since the coupling is adaptively changed when the learning proceeds in
the thesis, a coupling table of thresholds is correspondingly scheduled adaptive.
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Figure 4.1: Comparison of membrane potential activity of two coupling strengths.

4.2 Feedback error learning control

Feedback error learning model is a very famous model of cerebellar learning which was
proposed by Kawato et al. [3], [4]. In this model, the cerebellar cortex is simply composed
by Granule cells and Purkinje cells and it learns as an inverse dynamics of controlled
object which is a physical entity such as hands, legs, etc.

The desired trajectory is given to the inverse model which produces feedforward motor
commands for movement goals. The feedback controller transforms trajectory error, which
is difference between the desired and actual trajectories, into feedback motor command
which is then utilized to train the inverse model. As a consequence, at the end of the
learning the actual trajectory will be close to the desired trajectory.

Figure 4.2: Feedback error learning control

The processing flow of this model is as follows. Granule cells receive desired state
vectors s = [θe, θs, θ̇e, θ̇s, θ̈e, θ̈s] then sends its output to Purkinje cells

GCj = tanh

(∑
i

vjisi

)
(4.3)

19



PCk =
∑
j

wkjGCj (4.4)

where GCj is the j th granule cell activity, PCk is the kth Purkinje cell activity, v repre-
sents the fixed weights from the desired state input to the granule cells, w represents the
modifiable weights from the granule cells to the Purkinje cells. The only output of feedfor-
ward controller, feedforward motor command, is accumulated from PC activities. Then
the vectors of motor commands are given by the sum of the feedback and feedforward
motor commands, τfb and τff , respectively:

τ = τff + τfb (4.5)

A simple PD feedback controller is used for calculating feedback motor commands:

τfb = KP · (θd − θsensed) +KD ·
(
θ̇d − θ̇sensed

)
(4.6)

where θd and θsensed are the vectors of the desired and sensed joint position.
The feedback motor commands are integrated as the learning error when the learning

proceeds:

error =

∫ t1

t0

τfb · dt (4.7)

t0, t1 are initial and final time of each learning trial, respectively, and dt is the time step.
To inject proposed inferior olive model into feedback error learning, feedback motor

commands are fed into IO cells as their input signals. Then, IO cells produce output
signals, which represent to climbing fiber, to adjust modifiable weights of parallel fiber-
Purkinje cell synapses. The learning of feedback error model is applied by the following
rule:

wkj = wkj + α · (IOk − IOmean) ·GCj (4.8)

where IOk is the spiking activity of the kth IO neuron and α is a learning rate. The
spiking activity IO is determined by the threshold and is mathematically defined as{

IOk = 1, xk ≥ threshold

IOk = 0, otherwise
(4.9)

Here, the error input to the IO cells is given by I = I0 + β · τfb, where I0 and β are the
minimal input and the input gain, respectively. The mean firing rate IOmean is averaged
from firing rates of all IO cells with constant input I = I0.

In order for calculating threshold value and average spiking rate IOmean in case of
adaptive coupling, the coupling table is constructed. Please refer to the last section of
this chapter for more details about procedures of the coupling table.
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Figure 4.3: IO activities in feedback error learning.

4.3 Synchrony

In order to detect synchronized activity of the neurons, the order parameter R in Ku-
ramoto model [17] has been utilized. The order parameter is a quantity that can be
interpreted as the collective rhythm produced by the population of neurons.

R exp(iΦ) =
1

N

N∑
j=1

exp(iφj) (4.10)

where φj is the phase of j th neuron given by angle φj = arctan
(

xj(t−0.2)

xj(t)

)
. The order

parameter take values between 0 and 1, where a large value close to R=1 implies strong
synchronization and a small value close to R=0 implies desynchronization.

Figure 4.4: Geometric interpretation of the order parameter

4.4 Mutual information

As a basic study to evaluate the information transmission of the IO network, the simula-
tion measures the mutual information between an input signal and the spike responses.
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Input signal is the error input to the IO cells in feedback error control. The output rep-
resents a time sequence of a number of spikes generated from the population of neurons.

The mutual information were given from the formula

MI(X;Y ) = H(X) +H(Y )−H(X, Y ) (4.11)

whereX and Y are 50-bin-discretized input and output signals, H(X), H(Y ) andH(X, Y )
are marginal and joint entropies of inputs and outputs, respectively.

Figure 4.5: Mutual information of IO cells

Mutual information measures error transmission from IO as follows. The mutual in-
formation take values between 0 and 1, where a large value close to 1 implies effficiently
transmission from IO and a small value close to 0 means IO poorly transmits the error
signal.

4.5 Dependences of learning results on the fixed cou-

pling

Using feedback error learning control, Tokuda et al investigated learning results of fixed
coupling strengths [8]. Figure 4.6, which shows learning error, recommends that the
coupling should be scheduled to decline as the learning proceeds. Initially, the strong
coupling is useful for correcting motor errors since the error signals are large. But when
the learning errors are small, weak coupling between IO cells could realize an efficient
learning.

Figure 4.7 and Figure 4.8 shows dependences of mutual information and synchroniza-
tion index on the coupling strength g ∈ [0, 0.4], respectively. As seen in these figures,
there existed an intermediate coupling around g = 0.05 which maximize the information
transmission from IO. These results suggested that weak couplings should be utilized as
desynchronization of coupled IO neurons in order to enhance error transmission from IO.

In order to evaluate enhancements of adaptive patterns, the learning results of adaptive
coupling are compared with fixed coupling strength g = 0.05 which minimize the learning
error as seen in Figure 4.6.
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Figure 4.6: Dependence of learning error on the coupling strength.

Figure 4.7: Dependence of mutual information on the coupling strength.

4.6 Adaptive coupling

In the thesis, two adaptive patterns of coupling are investigated in order to fully under-
stand about effect of adaptive coupling on enhancement of learning. Then, a computa-
tional model of PC-CN-IO circuit is proposed to control the coupling in a realistic way.
Due to adaptive changes of coupling, a coupling table of thresholds and mean firing rates
is also scheduled before the learning.
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Figure 4.8: Dependence of synchronization index on the coupling strength.

4.6.1 Pattern #1: linear function of learning time

Firstly, the coupling is a linear function of learning time. As a correspondence to the
hypothesis two-stage learning, in the early stage of learning the IO cells are strongly
coupled, thus the coupling is strong. When the learning proceeds, the coupling decreases
linearly to a very small value g = 0.005 and maintain this value during the late stage of
learning. This simple pattern can be formulated by the adaptive pattern #1:

g#1 =

{
a · t + b (t < 400[sec])
0.005 otherwise

(4.12)

4.6.2 Pattern #2: linear function of error

Next, the coupling is scheduled to decline as a linear function of error. The concept of
this pattern is to use error for training the learning system. In the early stage, since the
error signals are large, the learning speed is expected to decrease quickly. Then in the late
phase, because the error is small we can use a very small value to realize a sophisticated
learning. The second pattern can be formulated by the adaptive pattern #2:

g#2 =

{
c · error + d (error > 0.85)

0.005 otherwise
(4.13)

4.6.3 Pattern #3: Computational model of PC-CN-IO circuit

Based on hypothesis of two-stage learning, the thesis proposes a computational model
to physiologically control the adaptive coupling between IO neurons. Our scenario is as
follows:
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• In the beginning (before LTD), the parallel fibers are not yet depressed and strong in-
puts come from GC, thus PC is active. Due to inhibition from PC to CN, strong PC
activity makes CN less active. This makes the inhibitory synapses on the dendrites
of IO cells within glomeruli weak or just a small amount of GABAergic conduc-
tance has been transmitted. As a result, IO activity gets relatively high, producing
a strong coupling among IO cells.

• As the learning proceeds, LTD weakens the PC activity. The suppressed PC makes
CN more excited, thus the GABAergic conductance gets large, and as a consequence
the IO coupling becomes weak.

Figure 4.9: Schematic diagram of PC-CN-IO circuitry

In our study, the PC activity was measured as a summation of the parallel fibers which
is preresented by synaptic weights from GC to PC. Because of the LTD, the parallel
fibers become smaller and smaller taking negative values as the learning proceeds. In
order to make a good correspondence to PC activity, which should take a positive value,
a threshold was inserted as follows:

PCactivity = PCthreshold +
∑
i,j

wi,j (4.14)

According to our scenario, GABAergic conductance from CN to IO should be inversely
proportional to the PC activity. So, the GABAergic conductance was simply modeled as:

ginhibitory =
ω

PCactivity

(4.15)
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where ω is a positive constant. Finally, under simplifying assumptions, effective coupling
conductance between coupled IO cells is computed from gap junction conductance gjunction,
conductance of inhibitory synapses ginhibitory and from spine neck conductance gspine as
Onizuka’ equation [14]:

g#3 =
gjunction · gspine

gspine + ginhibitory

(4.16)

Thus if the inhibitory synaptic conductance is large, the effective coupling conductance
decreases because of shunting inhibitory.

In our proposed computational model of PC-CN-IO circuit, the gap junction conduc-
tance and spine neck conductance are given as gjunction = 2.0, gspine = 0.65. Other pa-
rameters of adaptive patterns are set as PCthreshold = 17, ω = 27, a = −0.012, b = 0.6,
c = 0.0372 and d = −1.575.

4.6.4 Coupling table

In this study, the coupling is controlled by adaptive patterns which leads to changes of
firing threshold and IOmean. To overcome this issue, the simulation calculates a coupling
table in which thresholds and mean firing rates are computed as following procedure:

• 1) Before learning, compute the maximum amplitude with constant input I0 for
various coupling.

• 2) Set the threshold as 80% of the maximum amplitude and compute the average
firing rate of IO cells for various coupling.

Based on 1) and 2), we can construct a table for threshold and IOmean for various
coupling values which are set as fixed strengths from g = 0.005 to g = 1.0.

As the learning proceeds, every time the coupling value is changed, the simulation looks
for the table to find the threshold and IOmean associated with the coupling value close
to the one used at the actual moment of learning. These values are then applied in the
learning loop.
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Chapter 5

Experiments and Results

5.1 Experiments

The experiment simulates multi-joint arm movement using feedback error learning con-
trol described in Appendix A. Purpose of the experiment is to show enhancements of
proposed adaptive patterns in feedback error learning by comparing with fixed coupling
g = 0.05 which has been shown to minimize the learning error in [8]. Moreover, reason-
able interpretations of learning results are also very important. Hence, mutual information
and synchronization index are computed to show correctness of results in two stages of
learning. Synchronization index gets close to 1 when IO neurons are strongly coupled,
and it gets close to 0 when IO neurons are weakly coupled. Besides, error transmission
should have a good correspondence with mutual information: the higher value of mutual
information is, the much better of information transfer from IO is.

5.2 Results and discussions

This section shows experimental results of simulation in 100 learning steps. In order to
reduce the dependence of the neural dynamics on the random initial conditions, 50 simu-
lations were run to compute the average quantities of learning error, mutual information
and synchronization index. This requirement is one of the most important criteria of
evaluating dynamics of IO neurons.

5.2.1 Coupling table

In the simulation, the coupling table is scheduled before the learning. Figure 5.1 and
Figure 5.2 show thresholds and IOmean of fixed coupling strengths from g = 0.005 to
g = 1.0, respectively.

Since the thresholds are computed from maximum amplitudes of IO neurons, Figure 5.1
shows the decrease of thresholds depends upon the coupling strength. It is because the
membrane potentials get high when IO cells strongly coupled. Moreover, the percentage
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80% of maximum amplitudes is also tested to be a reasonable value for computing thresh-
olds. Based on these thresholds, the IOmean resulted as the same value in the range of
g ∈ [0.005, 0.9]. This makes a fair circumstance in comparison between adaptive couplings
and fixed coupling: although IOmean does not change as the learning proceeds, the change
of thresholds ideally control the firing rate of IO cells.

Table 5.1 list out thresholds and average spiking rate of fixed couplings in range of
g ∈ [0.005, 1.0].

Table 5.1: Coupling table
Coupling (g) Threshold Average spiking rate (spikes/sec)

0.005 0.7788 0.0310
0.01 0.7798 0.0310
0.02 0.7770 0.0310
0.03 0.7833 0.0310
0.04 0.7837 0.0310
0.05 0.7834 0.0309
0.06 0.7798 0.0309
0.07 0.7888 0.0310
0.08 0.7875 0.0309
0.09 0.7900 0.0310
0.1 0.7879 0.0310
0.2 0.7946 0.0310
0.3 0.7961 0.0309
0.4 0.7964 0.0309
0.5 0.7973 0.0310
0.6 0.7977 0.0310
0.7 0.7961 0.0310
0.8 0.7974 0.0310
0.9 0.7951 0.0310
1.0 0.7927 0.0320

5.2.2 Learning error

Figure 5.3 shows three adaptive patterns of coupling compared with fixed coupling g =
0.05. The coupling strength of all adaptive couplings are initially set around g = 0.6. This
initial coupling is examined to maximize the learning speed in the early stage of learning.
By contrast, the final coupling g = 0.005 provides sophisticated learning since the errors
are small. These adaptive couplings strictly agree with hypothesis of two-phase learning.
As a consequence, the learning error of all adaptive patterns are significant enhanced not
only in the early stage of learning with quickly decay of error, but also the final error
(Figure 5.4).

Importantly, as seen in Figure 5.3, coupling functions of three patterns are same to-
gether. This is because the second and the third patterns are designed to map with the
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Figure 5.1: Firing thresholds of coupling table.

Figure 5.2: Means of IO firing of coupling table.
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first pattern as the learning proceeds. The purpose of these adaptive couplings is not to
show advantages of different patterns, but the coupling could be controlled by different
patterns for enhanced learning. These experiments are very important in order to realize
deeply understandings about the cerebellar learning.

Figure 5.3: Coupling functions

In order to check whether adaptive coupling could realize efficient learning compared
with fixed coupling, the thesis do a hypothesis testing to compute significant difference
of the final errors between adaptive coupling pattern #1 and fixed coupling g = 0.05 at
the 0.05 significance level. Statistical data of the experiment is as Table 5.2.

Table 5.2: Statistical data of the hypothesis testing
Statistical data Fixed coupling g = 0.05 Adaptive coupling #1

Mean of final errors X1 = 0.8023 X2 = 0.7724
Standard deviation s1 = 0.0032 s2 = 0.0037
Number of samples n1 = 50 n2 = 50

The hypotheses are stated as:

• null hypothesis H0: X1 −X2 = 0

• alternative hypothesis H1: X1 > X2
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Figure 5.4: Learning error

The t-value of this test is given by:

t =
(X1 −X2)√

s21
n1

+
s22
n2

= 43.22 (5.1)

The degrees of freedom df of the test is computed by:

df =

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

= 96.01 (5.2)

Because the p value of this test is very small and close to 0 (p=2.7366e-64), thus the test
rejects the null hypothesis at the significance level 0.05. That means there is a sufficient
evidence to make a conclusion about significant improvement of the final error of the
adaptive pattern compared with fixed coupling g = 0.05.

5.2.3 Error transmission

The results of mutual information in Figure 5.5 also support our hypothesis of two-stage
learning. In the beginning of learning, since the error signals are large, the synchronized
IO cells concentrate to modulate the motor commands that are much more than level
of trajectory errors. Thus the learning is quite quick although the mutual information

31



of adaptive patterns are smaller than the fixed coupling g = 0.05 in the early stage of
learning. But the adaptive patterns maintain a very small value g = 0.005 in the late
phase of learning. Hence, the mutual information of adaptive couplings gets higher than
the fixed coupling to realize an efficient learning. As a consequence, the learning error
continues to decreases further and the final error of adaptive patterns gets small.

Figure 5.5: Mutual information

5.2.4 Synchronization index

Initial learning procedure is comparable between the fixed coupling and the adaptive
coupling patterns. In the final stage of learning, adaptive couplings show lower error
than the fixed coupling. As seen in Figure 5.6, the adaptive couplings initially give rise
to synchronous neuronal activities for quick learning. Then, as the learning proceeds,
the synchronization indices become smaller to make the learning more efficient as final
sophisticated learning. In the contrary, the synchronization index is flat for the fixed
coupling. This might be one of the reasons why the adaptive couplings provide better
learning than the fixed coupling and strictly agrees with our scenario.

5.2.5 Discussions

Learning results of adaptive patterns show advantages of adaptive coupling on enhance-
ment of cerebellar learning. With respect to synchronization, there are two competing
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Figure 5.6: Synchronization index

factors: (i) common input to induce synchrony among the neurons, and (ii) intermediate
coupling to destroy synchrony among the neurons.

By applying three adaptive patterns, the cerebellar learning successfully integrated two
competing factors in a plausible circumstance. In the initial stage of learning, the input
signal is large because the error is large. This induces a strong synchrony among the
neurons. To destroy the synchrony, a strong or intermediate coupling is utilized. As the
learning proceeds to the final stage, the input signal becomes small, because the error
is decreased. This weakens the effect of inducing the neural synchronization. Therefore,
it does not need a too strong coupling for destroying synchronization. That is why a
considered g = 0.005 is chosen for the final learning.

Finally, improved learning results of the third adaptive pattern provide a promising
scheme for control the firing activities of IO cells for enhancement of cerebellar learning.
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Chapter 6

Conclusion

6.1 Summary

Concerning firing activity of neurons in cerebellar learning, the thesis implemented a
hypothesis of two-stage learning, in which PC-CN-IO circuit is proposed to optimally
control the coupling between IO neurons. In the early stage of learning, the IO cells and
innervated PCs are strongly and synchronously fire in order to correct the error signals
quickly. Then in the late phase of learning, inhibitory synapses from excited CN make IO
cells are only weakly coupled for sophisticated learning.

To test above hypothesis, the thesis implemented three adaptive patterns of couplings:

• Pattern #1: the coupling is a linear function of learning time.

• Pattern #2: the coupling is scheduled to decline as a linear function of error.

• Pattern #3: a computational model of PC-CN-IO circuit was proposed to optimally
control firing activities of coupled IO cells.

Improved results from experiments of adaptive patterns compared with the intermediate
coupling g = 0.05 are suited with observations of mutual information which represents
error transmission from IO and synchronization index which represents synchronized firing
activities of IO cells. Not only the final error but also the quick decay of error in beginning
of learning can be realized. Moreover, mutual information and synchronization index also
supported interpretations in two stages of learning. They recommended that hypothesis
of two-stage learning is ideally a plausible approach for controlling firing activities of IO
cells in long lasting learning.

6.2 Contributions

The most important contribution of the thesis is to show effects of adaptive coupling on
enhancement of cerebellar learning by implement hypothesis of two-stage learning. A
simple computational model of PC-CN-IO circuit is also proposed to optimally control
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the adaptive coupling between IO cells. The thesis also provides a solid framework of
cerebellar learning for resolution of more generalization problems.

6.3 Future works

In the thesis, the learning results of adaptive patterns are significant enhanced compared
with fixed coupling. However, optimized pattern of adaptive coupling might increase
performance of learning results. Hence, we will concentrate on optimizing adaptive pattern
by artificially changing the coupling between IO neurons.

Besides, our proposed model of Purkinje cell-cerebellar nucleus-inferior olive is not
completely a realistic model of the cerebellum, since CN activity is utilized to control
the coupling of IO neurons via the PC-CN-IO pathway. As a future work of this thesis,
we will propose a computational model of PC-CN-IO as a physiological framework for
controlling firing activities of IO cells for enhanced cerebellar learning.

35



Appendix A

Two degree-of-freedom human arms
movement

In the simulation, the feedback motor learning controller controls a two degree-of-freedom
human arm as in [8]. The arm which is composed by the shoulder and the elbow tends to
reach four targets forming a square of 20× 20 cm on a horizontal plane with a movement
time of 2s. The center location of the square is [0,0.4] m, where the shoulder is located
at [0,0].

Figure A.1: Two degree-of-freedom human arms movement
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The arm dynamics is given by

M(θ)θ̈ + C(θ̇, θ)θ̇ = τ (A.1)

where θ is the vector of the arm joint angles and τ is the motor command. The inertial
and Coriolis matrices M and C are given by

M11 = I1 + I2 + 2W2L1 cos(θe) +W1L
2
1,

M12 = M21 = I2 +W2L1 cos(θe),M22 = I2,

C11 = −2W2L1 sin(θe)θ̇s,

C12 = −C21 = −W2L1 sin(θe)θ̇s, C22 = 0

(A.2)

where θe and θs are the elbow and shoulder joint angles, L1 and L2 are segment lengths,
I1 and I2 are inertia parameters, and W1 and W2 are other parameters.

The controller receives a desired minimum jerk trajectory in joint coordinates as in [19]:

x(t) = x0 + (x0 − xf )
(
15τ 4 − 6τ 5 − 10τ 3

)
y(t) = y0 + (y0 − yf )

(
15τ 4 − 6τ 5 − 10τ 3

) (A.3)

where τ = t/tf , x0, y0 are the initial hand position coordinates at t = 0, and xf , yf are
the final hand position coordinates at t = tf .
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Appendix B

Simulation parameters

In the simulation, fixed weights from desired state to granule cells are initialized by random
variables N(0,1), when the modifiable weights of parallel fiber-Purkinje cell synapses are
initially set to zero. The simulation has 50 Purkinje cells per each joint that produce
feedfoward motor commands for shoulder and elbow independently. The µ-values for the
IO neurons are set inhomogeneously as µ ∈ [0.99 · 1.65, 1.01 · 1.65]. Other simulation
parameters are given as Table B.1.

Table B.1: Simulation parameters
Parameter Value Unit

η1 0.04
η2 0.04
I0 0.05
β 0.03
α 0.005
L1 0.33 m
L2 0.34 m
I1 0.067 kg ·m2

I2 0.97 kg ·m2

W1 1.52 kg
W2 0.34 kg ·m
KP 100
KD 1
dt 0.02 s
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