
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Improving accuracy of host load predictions on

computational grids by artificial neural networks

Author(s)
Duy, Truong Vinh Truong; Sato, Yukinori;

Inoguchi, Yasushi

Citation
International Journal of Parallel, Emergent and

Distributed Systems, 26(4): 275-290

Issue Date 2010-08-09

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9936

Rights

Copyright (C) 2010 Taylor & Francis. This is an

electronic version of an article published in

Truong Vinh Truong Duy, Yukinori Sato, and

Yasushi Inoguchi, International Journal of

Parallel, Emergent and Distributed Systems,

26(4), 2010, 275-290. International Journal of

Parallel, Emergent and Distributed Systems is

available online at:

http://dx.doi.org/10.1080/17445760.2010.481786

Description

Improving Accuracy of Host Load Predictions
on Computational Grids by Artificial Neural Networks

Truong Vinh Truong Duya* Yukinori Satob Yasushi Inoguchib

aSchool of Information Science,

bCenter for Information Science,
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan

(Received 20 July 2009; final version received 20 February 2010)

The capability to predict the host load of a system is significant for computational grids

to make efficient use of shared resources. This paper attempts to improve the accuracy of

host load predictions by applying a neural network predictor to reach the goal of best

performance and load balance. We describe the feasibility of the proposed predictor in a

dynamic environment, and perform experimental evaluation using collected load traces.

The results show that the neural network achieves consistent performance improvement

with surprisingly low overhead in most cases. Compared with the best previously

proposed method, our typical 20:10:1 network reduces the Mean of prediction errors by

approximately up to 79%. The training and testing time is extremely low, as this network

needs only a couple of seconds to be trained with more than 100,000 samples, in order to

make tens of thousands of accurate predictions within just a second.

Keywords: host load; neural networks; predictor; grid computing; scheduling;

1. Introduction

Grid computing [1] is designed to meet the needs of performing large numbers of
complex computations by aggregating heterogeneous resources located in different
places over a network using open standards. In order to achieve the best performance
in such an open and highly dynamic computing environment, efficient task scheduling
is essential in choosing which collection of distributed resources to use [2,3]. Also, by
using mechanisms such as CORBA [4], Java RMI [5], and emerging GridRPC [6], a
task can be scheduled to execute on any of the Grid nodes. Obviously, choosing a
node would become much easier if the scheduler could know the task’s running time
on the nodes beforehand.

*Corresponding author. Email: duytvt@jaist.ac.jp

In fact, the running time of a task, which varies as a result of CPU availability,
is directly related to the average host load. The running time was found to be almost
linearly correlated to the correspondingly measured host load during execution [7]. As
a result, the running time can be determined by predicting the host load of the system.

Fortunately, the host load is discovered to be consistently predictable to a very
useful degree from historical data and self-similarity [8]. There have been many
efforts to make reliable host load predictions from load history, ranging from
traditional linear models [9,10] to recently proposed tendency-based models [11,12].
Nonetheless, such predictions are unlikely to be accurate due to their limitations in
capturing all the underlying features of the host load history and the dynamic nature
of Grid computing systems.

In this paper, we aim to address the following three issues by applying
artificial neural networks to the task of host load prediction. First, we discuss whether
neural networks produce more accurate results than previously proposed linear
models and tendency-based models in this context. Second, we consider the cost,
namely the cost for training, validating and testing, to generate such good predictions.
Finally, and most importantly, we examine if an artificial-neural-network-based
solution is applicable in dynamic real-time settings, such as computational grids
facing tradeoffs between benefits and expenses.

We perform experimental evaluation and show that the neural network
predictor achieves consistent improvement over the competitors in predicting future
load values. After being trained for only a couple of seconds with all the load traces
collected over 10 days, our simple 20:10:1 network is able to predict load values over
the next 10 days with very low mean prediction errors, and without the need of being
trained again. The time required for producing thousands of predicted load values is
also just within a second, almost the same as other methods. The results strongly
support the feasibility of bringing a neural predictor to real world scheduling systems
to exploit its accurate prediction ability with surprisingly low overhead.

The remaining parts of this paper are organized as follows. Section 2
introduces background and related work. The neural network predictor is detailed in
Section 3. Section 4 analyzes experimental results when our neural predictor is
applied to actual measurements and compared to results of other previous work.
Finally, we conclude our study in Section 5.

2. Related work

Perhaps the most influential research on prediction-based real-time systems for
distributed interactive applications is the work by P. Dinda et al. [7,8]. In [7], the
authors improved understanding of how host load changes over time by collecting the
traces of Digital Unix, which uses a 5 second exponential average, on over 35

different machines. By analyzing the traces, they found that loads exhibit a high
degree of self-similarity, with Hurst parameters ranging from 0.73 to 0.99, and that
loads display epochal behaviour, with the local frequency content of the load signal
remaining quite stable for long periods.

After that they presented a study on the performance of different linear models
for host load prediction based on these load traces [8]. Multiple linear models,
including AR, MA, ARMA, ARIMA, and ARFIMA models were rigorously
evaluated. The main conclusions were that load is consistently predictable to a very
useful degree, and that the simple AR model is the best model of this class, due to its
relatively good prediction ability and low overhead. However, these linear models
themselves are limited, and may not be able to capture some kinds of nonlinear
behaviour in the host loads.

Another more accurate approach uses tendency-based prediction techniques
[11,12]. Generally, these techniques assume that if the current value increases, the
next value will also increase, and vice versa. In [11], Yang et al. proposed a number
of one-step-ahead prediction strategies which give more weight to more recent
measurements than to other historical data, while paying attention to different
behaviours when “ascending” and “descending”. One better strategy based on
tendency with several backward steps was introduced by Zhang et al. in [12], using
polynomial fitting method to produce the prediction values. Although these models
generally perform well, they have a glaring error source, committing great errors
when the time series changes its direction.

We believe artificial neural networks are able to overcome those limitations.
They have many important advantages over the traditional statistical models, most
notably nonlinear generalization ability [13]. With this remarkable ability, they can
learn from data examples and capture the underlying functional relationships between
input and output values. Neural networks have been applied to modeling nonlinear
time series in various areas, for example, stock market [14], sports results [15], road
surface temperature [16] seasonal time series [17], quarterly time series [18] and even
scheduling problems [19].

In [19], a NARX neural network based load prediction was presented to define
data mappings appropriate for dynamic resources, with the aim of improving
scheduling decisions in grid environments. There are three major differences between
their approach and our approach. First, their method utilizes a recurrent network while
our method employs feedforward networks for the purpose of ensuring both high
performance and low overhead. Second, and more important, their work, as well as
other previous works, merely focused on performance, in particular the execution
time of applications running using the proposed scheduling method. Our novelty here

which is an important difference, is that we not only improve the performance, but we
also consider the cost, namely the cost for training, validating and testing, to examine
if such a neural network based solution is feasible in dynamic real-time settings. This
is very important because the solution may not be applicable in real time if it takes
hours or days for training. Third, their experiments were simply carried out with only
one network architecture, a constant learning rate of 0.2, and 20 minutes of the load
trace, whereas we used combinations of different architectures and learning rates with
4 load traces collected over tens of days.

3. Host load prediction with artificial neural networks

3.1. An overview of ANNs

Artificial neural network, originally developed to mimic biological neural networks, is
a computational model composed of a large number of highly interconnected simple
processing elements called neurons or nodes. Each node receives input signals
generated from other nodes or external inputs, processes them locally through an
activation function, and produces an output signal to other nodes or external outputs.
Given a training set of data, the ANN can learn the data with a learning algorithm, and
form a mapping between inputs and desired outputs from the training set through
learning. After the learning process has finished, it is able to understand the hidden
dependencies between the inputs and outputs and generalize to data never before seen.

In this work, multi-layer feedforward network [20], accompanied by
backpropagation, which is the most widely used training algorithm for multi-layer
networks, is chosen for predicting the host loads. It has been applied in a variety of
problems, especially in the field of prediction, because of its inherent capability of
arbitrary input–output mapping. More importantly, simplicity and fast convergence
ability make it feasible for deployment in a real-time dynamic setting. Also, the
availability of host load traces meets the needs of the multi-layer feedforward network
for input and output data.

3.2. Feedforward neural networks

Figure 1 depicts an example of a feedforward neural network in operation with a host
load time series. The network has 4 network inputs where external information is
received, and 1 output layer C with one node where the solution is obtained. The
network inputs and the output layer are separated by 2 hidden layers: layer A with 4
nodes, and layer B with 3 nodes. The connections between the nodes indicate the flow
of information from one node to the next, i.e., from left to right.

Each node has the same number of inputs as the number of nodes in the
preceding layer. Also shown in Figure 1, each connection is modified by a weight,

and each node has an extra input assumed to have a constant value of 1. The weight
that modifies this extra input is called the bias.

When the network is run, each node in the hidden layers and the output layer
performs the calculation in Equation 1 on its input, and transfers the result Oc to the
next layer.

where Oc is the output of the current node, n is the number of nodes in the previous
layer, xc,i is an input to the current node from the previous layer, wc,i is the weight
modifying the corresponding connection from xc,i, and bc is the bias. In addition, h(x)
is either a sigmoid activation function for hidden layer nodes, or a linear activation
function for the output layer nodes.

3.3. Backpropagation training

In order to make meaningful predictions, the neural network needs to be trained on an
appropriate data set. Basically, training is a process of determining the connection
weights in the network. Examples of training data sets are in the form of <input vector,
output vector> where input vector and output vector are equal in size to the number of

Network
Inputs

Layer A
Nodes

Layer B
Nodes

Output
Layer C

Node

1,cx

2,cx
3,cx
4,cx

cb

1,cw

2,cw
3,cw

4,cw
∑)(h cO

⎪⎩

⎪
⎨
⎧
+=

+=

−

=
∑

nodelayeroutputifx

nodelayerhiddenif
exhwhere

bwxhO

x

c

n

i
icicc

1
1

)(

)(
1

,,

Figure 1. A three-layer feedforward network.

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=

⎟
⎠

⎞
⎜
⎝

⎛
+=

−

=
∑

nodelayeroutputifx

nodelayerhiddenif
exhwhere

bwxhO

x

c

n

i
icicc

1
1

1
,,

(1)

network inputs and outputs, respectively. Then, for each example, the
backpropagation training process involves the following steps.

Step 1: An input vector is fed to the network inputs and the network is run:
Equation 1 is computed sequentially forward from left to right until eventually the
network output activation values are found.

Step 2: The error term for the output layer nodes, i.e., the difference between
the desired output Dc (the output vector) and the actual network output Oc, is
computed with Equation 2.

Then these errors are propagated sequentially backward from right to left to
calculate errors for hidden layer nodes based on Equation 3.

where Oc is the output of the current hidden layer node, n is the number of nodes in
the next layer, δi is the error for a node in the next layer and wi,c is the weight
modifying the corresponding connection from the current node to that node.

Step 3: For each connection, the change in the weight modifying the
connection from node c to node p is computed using Equation 4 and added to the
weight.

where α is the learning rate of the network, δc is the error of node c and Op is the
output of node p. The learning rate controls how quickly and how finely the network
converges to a solution. The network was trained with different learning rate values
ranging from 0.01 to 0.3 in our experiments.

After the training process has been performed for every example of the
training data set, one epoch occurs. The final goal is to find the weights that minimize
a certain overall error measure, such as the sum of squared errors or mean squared
errors. We evaluate the accuracy of our predictions using the widely used normalized
mean squared errors (NMSE) defined as follows:

where σ2 is the variance of the time series in the period with N examples, and Oi and
Di are, respectively, the predicted and the desired outputs at time i.

ccc OD −=δ

()∑
=

−=
n

i
ciiccc wOO

1
,1 δδ

pcpc Ow αδ=Δ ,

(2)

(3)

(4)

()∑
=

−=
N

i
ii DO

N
NMSE

1

2
2
1

σ
(5)

4. Experimental evaluation

4.1. Input parameters

A neural predictor was developed with the aim of evaluating performance of neural
network in host load prediction. Even though there are many neural network
applications freely and commercially available, we developed our own program to
customize and extend various features and parameters using Microsoft Visual Studio
C++ 6.0. Moreover, we believe that development is the best way to gain a deep
understanding of its internal operation.

A number of experiments were conducted with several input parameters. A
challenging parameter which must be identified before running is the appropriate
network architecture, i.e., the number of hidden layers, and the number of nodes for
each layer. Unfortunately, there is no rule for choosing exact numbers in neural
networks. In this paper, we followed the trial-and-error method for obtaining
knowledge about a network architecture which could promise both high performance
and low overhead.

The trial-and-error process proceeded as follows. First, we tested the networks
with several numbers of hidden layers. The more hidden layers there were, the longer
time it usually took for training, which may last hours in the case of three or more
hidden layers. We came to a conclusion that two hidden layers would probably meet
the requirements. After deciding to stick to two-hidden-layer-architecture, we started
to figure out suitable numbers of inputs. The networks were tested with a wide range
of inputs, from a few to thousands of inputs. The outcome showed that hundreds of
inputs would result in hours of training, too long to fit a dynamic environment.
However, less than ten inputs were deemed insufficient to produce good results.
Lastly, the number of output layer nodes was the easiest, since it is necessarily one.
Therefore, the networks that were tested are 20:10:1, 30:10:1, 50:20:1 and 60:30:1.
Another important parameter is the value of learning rate. In the experiments, we
evaluated each of these networks with learning rates valued at 0.01, 0.05, 0.1, 0.2, and
0.3.

Table 1. Descriptions of 4 load traces.

Name Description Collected load
traces Mean Standard

Deviation

axp0 heavily loaded, highly
variable interactive machine

1,296,000
(in 75 days) 1 0.54

axp7 lightly loaded batch machine 1,123,200
(in 65 days) 0.12 0.14

sahara moderately loaded, big
memory computing server

345,600
(in 20 days) 0.22 0.33

themis moderately loaded desktop
machine

345,600
(in 20 days) 0.49 0.5

Once the network parameters were determined, we were able to feed the data
series to the networks for evaluation. The time series we chose here are the 4 most
interesting load traces: axp0, axp7, sahara, and themis in a number of load traces on
Unix systems collected by Dinda [23]. The load is the number of processes that are
running or are ready to run, which is the length of the ready queue maintained by the
scheduler. The kernel samples the length of the ready queue at some rate, and
averages a number of previous samples to produce a load average which can be
captured by a user program. These 4 load traces represent diversity both in capture
periods and machine types, as displayed in Table 1.

In addition, the load traces have to be normalized to a suitable range of values
because the sigmoid activation function h(x) has output of the range [0, 1]. Also,
normalization tends to make the training process better by improving the numerical
condition and ensuring that various default values involved in initialization and
termination are appropriate. There are several different ways to normalize the network
inputs well suited to different ranges of input values and applications. By observing
the Means and Standard Deviations of the load traces, we confirmed that all of the
load traces are positive and most of them are distributed over an interval of [0, 1].

Figure 2. The normalized load traces.

Hence, rescaling these values to a range of [0.1, 0.9] is expected to maintain the
original conditions and does not discard much information. The following
normalization formula is applied to every x in each load trace.

where xmax and xmin are the maximum and minimum value of the load trace, LWB is
the lower bound, and UPB is the upper bound of the interval [0.1, 0.9]. The 4
normalized load traces are presented in Figure 2.

Finally, each normalized load trace is divided into 3 sets: learning set,
validating set and testing set, and each accounts for a percentage of 50%, 30%, and
20% of the total number of traces, respectively, as detailed in Table 2. The learning
set is fed to the neural networks to fit their connection weights during the learning
process. The normalized mean squared error is measured using the validating set and
used to validate whether to finish the learning process or not. If the current error is
20% higher than the minimum error, the backpropagation training process will be
stopped and weights shall be restored to the previous values. The last set, the testing
set, is then used for assessing the performance of the neural networks.

4.2. Host load prediction results

Figure 3 shows the first experimental results, the normalized mean squared error
(NMSE) of the prediction errors for those 4 testing sets with 4 different network
architectures and 5 different values for learning rate. The prediction error for each
load value in the testing set is calculated using the following equation:

where N is the number of load values in the testing set, and Oi and Di are the
predicted and the actual values at the ith trace, respectively.

As can be seen from the charts, NMSE has values in the range [3.4%, 3.9%] in
axp0, [3.8%, 5.1%] in axp7, [3.5%, 7.5%] in sahara, and [0.7%, 1.2%] in themis.
Such low values of these error terms imply that the neural network has successfully
captured hidden behaviour of the host load and made highly accurate predictions. We

)(
minmax

min LWBUPB
xx

xxLWBx i
i −

−
−

+= (6)

%100||1error Prediction
1

×
−

= ∑
=

N

i i

ii

D
DO

N
(7)

Table 2. Load trace partitioning
Name Training set Validating set Testing set Total
axp0 648,000 388,800 259,200 1,296,000
axp7 561,600 336,960 224,640 1,123,200

sahara 172,800 103,680 69,120 345,600
themis 172,800 103,680 69,120 345,600

find that no combination of learning rate and network architecture is the best for all
the load traces, as values of NMSE keep changing with the changes in learning rate
and network architecture, although the variation is quite small. However, the learning
rate of 0.3 appears to play an important role in generating the lowest values of NMSE,
in other words, the most accurate results. On 3 out of the 4 load traces, the networks
of 60:30:1, 20:10:1, 50:20:1 and the learning rate of 0.3 produce the best values of
NMSE on axp0, axp7, and sahara, respectively. The only exception is themis, where
the network of 20:10:1 with the learning rate of 0.01 shows the best performance. As
a result, the learning rate of 0.3 can be a good candidate for solutions aimed at high
prediction accuracy.

Another significant factor which directly affects prediction accuracy is the
shape of the load traces. The range of NMSE on themis is the smallest while this
range on sahara is the largest. In the middle range are the ranges of NMSE on axp0
and axp7. If we look back at Figure 2 and Table 2 for the shapes and partitioning of

Figure 3. Normalized mean squared error (NMSE) of the prediction errors.

the load traces, we can easily recognize that the testing set of themis is actually
repeated as one part of the training set, though they are not exactly the same. This
repetition makes it easier for the neural network to predict the values which it has
been trained with and results in the highest accuracy. In contrast, the testing set of
sahara has some special patterns that can be found nowhere in the training set. This
lack of repeating patterns causes a slightly lower degree of prediction accuracy on
sahara. However, the situation can be improved considerably, providing we increase
the size of the training set so that it covers non-repeating patterns of the corresponding
testing set. These results once again have proved a strong relationship between the
degree of self-similarity exhibited in the load traces and the degree of prediction
accuracy.

Similar results are obtained with the Mean and Standard Deviation (SD) of the
prediction errors, as displayed in Table 3. The Mean has values in the range [2.6%,
3.2%] in axp0, [1.1%, 1.8%] in axp7, [5.5%, 12.8%] in sahara, and [1.6%, 3.7%] in
themis. Likewise, SD has values in the range [5.1%, 5.7%] in axp0, [4.8%, 5.2%] in
axp7, [7.8%, 8.5%] in sahara, and [2.5%, 3.3%] in themis. The choices of learning
rate and network architecture, again, do not affect the variation, since it is quite small.

The learning rate and network architecture have a significant impact on the
networks’ training time, as shown in Table 4. With the same training set and the same
network architecture, the lowest learning rate of 0.01 always results in the longest

Table 3. Mean and Standard Deviation (SD) of the prediction errors.
(a) axp0

Mean
and SD

Learning Rate
0.01 0.05 0.1 0.2 0.3

20:10:1Mean 2.9% 2.9% 3.0% 3.0% 3.0%
20:10:1SD 5.6% 5.5% 5.7% 5.4% 5.6%
30:10:1Mean 2.8% 2.6% 2.8% 3.0% 2.6%
30:10:1SD 5.7% 5.4% 5.5% 5.6% 5.2%
50:20:1Mean 3.0% 3.2% 3.0% 2.9% 3.0%
50:20:1SD 5.4% 5.6% 5.1% 5.3% 5.1%
60:30:1Mean 3.1% 2.9% 2.8% 2.8% 3.1%
60:30:1SD 5.2% 5.7% 5.5% 5.2% 5.3%

(b) axp7
Mean

and SD
Learning Rate

0.01 0.05 0.1 0.2 0.3
20:10:1Mean 1.2% 1.4% 1.4% 1.3% 1.1%
20:10:1SD 4.9% 4.9% 4.9% 4.8% 4.8%
30:10:1Mean 1.4% 1.4% 1.3% 1.3% 1.6%
30:10:1SD 5.0% 5.0% 5.0% 5.0% 5.2%
50:20:1Mean 1.4% 1.6% 1.7% 1.6% 1.5%
50:20:1SD 5.1% 5.1% 5.2% 5.2% 5.2%
60:30:1Mean 1.3% 1.7% 1.6% 1.8% 1.6%
60:30:1SD 5.0% 5.0% 4.9% 4.9% 4.8%

(c) sahara
Mean

and SD
Learning Rate

0.01 0.05 0.1 0.2 0.3
20:10:1Mean 7.8% 8.1% 6.5% 5.5% 5.9%
20:10:1SD 8.5% 8.3% 8.1% 8.1% 8.2%
30:10:1Mean 7.5% 7.1% 7.6% 7.0% 6.1%
30:10:1SD 8.1% 8.1% 8.2% 8.4% 8.4%
50:20:1Mean 8.8% 8.7% 9.5% 6.5% 6.1%
50:20:1SD 8.0% 8.0% 8.2% 7.9% 7.8%
60:30:1Mean 11% 12% 10% 9.4% 6.6%
60:30:1SD 8.2% 8.8% 8.1% 8.1% 8.0%

(d) themis
Mean

and SD
Learning Rate

0.01 0.05 0.1 0.2 0.3
20:10:1Mean 1.6% 3.0% 2.1% 2.7% 2.3%
20:10:1SD 3.0% 3.3% 3.0% 3.2% 3.1%
30:10:1Mean 1.6% 2.1% 2.2% 2.1% 2.1%
30:10:1SD 3.0% 3.0% 3.0% 3.0% 3.0%
50:20:1Mean 2.5% 2.5% 1.9% 3.7% 2.3%
50:20:1SD 3.0% 3.0% 2.9% 2.5% 2.8%
60:30:1Mean 1.8% 1.9% 1.9% 1.9% 2.1%
60:30:1SD 3.0% 3.0% 3.0% 3.0% 2.9%

times, while the highest learning rate of 0.3 is involved in most cases with the shortest
times. Similarly, it is easy to see that with the same training set and learning rate,
there is usually a connection between cases with the longest times and the largest
network architecture of 60:30:1. In contrast, the smallest network architecture,
20:10:1, proves to contribute substantially to time reduction in most cases linked to
the shortest times, when the learning rate is kept unchanged in the same training set.
Hence, a mixture of learning rate of 0.3 and network architecture of 20:10:1 can be
the most efficient choice for reduction in training time.

We also note that the size of training set obviously has a strong effect on the
time needed to train the networks. The training time sharply increases from only a
couple of seconds to several days as the size of the training set is increased. For
example, the size of training set ranges from 172,800 (sahara and themis) to 648,000
(axp0), as shown in Table 2. Selection of the training set size is a tradeoff between
accuracy and time; a training set which is too large takes the network a long time to
complete, while a very small set is inadequate to get a complete picture of the load
traces. The outcome suggests that a training size of about 100,000, equivalent to the
amount of load over 5 days, is reasonable to make it possible for the network to
quickly respond with correct solutions in dynamic real-time grid environments.

Table 4. Training time (in seconds).

Name Learning Rate
0.01 0.05 0.1 0.2 0.3

20:10:1axp0 725,681 68,548 49,436 26,880 18,641
30:10:1axp0 589,741 89,564 48,653 65,483 15,867
50:20:1axp0 1,356,874 75,648 85,671 20,458 21,534
60:30:1axp0 1,132,568 86,579 84,567 38,956 17,589
20:10:1axp7 163,102 9,510 7,402 2,490 2,492
30:10:1axp7 67,728 9,657 5,756 5,363 578
50:20:1axp7 218,219 8,182 1,238 1,199 1,203
60:30:1axp7 235,868 6,408 6,420 4,181 4,185
20:10:1sahara 80 20 30 14 10
30:10:1sahara 183 43 26 14 9
50:20:1sahara 248 56 42 109 68
60:30:1sahara 223 48 48 71 71
20:10:1themis 16,752 56 57 6 7
30:10:1themis 21,431 95 56 14 14
50:20:1themis 1,036 207 207 235 82
60:30:1themis 130,086 1,027 1,033 464 218

Unlike the training time, which heavily depends on the network architecture
and learning rate, the validating and testing times behave in a different way and
remain fairly stable. Figure 4 shows the average validating and testing time for each
load trace in proportion to the network architecture, since the learning rate has almost
no effect. The bigger the data set is, the longer the validating and testing time is. The
lines representing sahara and themis nearly overlap each other owing to use of the
same size data set. With the same set, larger network architecture causes a larger
increase in the validating and testing times. However, in general this time is trivial
compared with the training time. In the cases of sahara and themis, for instance, the
predicted results for about 70,000 future load values can be obtained within a second.

4.3. Performance comparison

We compare the performance of the neural predictor with that of two previously
proposed prediction methods in terms of Mean and Standard Deviation of the
prediction errors. Based on our experimental results in the previous section, we
selected the networks of 20:10:1 and 30:10:1, both with the same learning rate of 0.3,
which provide both high degree of prediction accuracy and short training time. Their
performances are compared to those taken from the previously published papers. One
method (Yang et al.) is a tendency-based strategy which has been proven to
outperform the widely used NWS method [11]. The other (Zhang et al.) is also based
on tendency observation of the load traces proposed by Zhang et al. in [12]. This
approach predicts the future load using a polynomial fitting method on several past
load values and previous similar patterns. At the time of making this performance
comparison, it was still the best performer in host load prediction.

Table 5 displays the results of performance comparison. The methods were
evaluated with all the load traces, with the amount of data ranging from 1 day to the
total available amount of collected traces.

Figure 4. Validating and testing time.

Table 5. Performance comparison in terms of Mean and Standard Deviation (SD) of
prediction errors, with the best for each case displayed in boldface.

axp0
1 day 5 days 10 days 15 days 20 days 75 days

Mean
(%) SD Mean

(%) SD Mean
(%) SD Mean

(%) SD Mean
(%) SD Mean

(%) SD

Yang et al.
[11] 10.58 0.43 13.73 0.54 15.93 0.4 16.32 0.47 16.8 0.48 18.99 0.44

Zhang et
al.[12] 6.54 0.20 7.86 0.22 8.31 0.33 9.33 0.28 10.14 0.39 10.57 0.37

20:10:1
Network 6.26 0.1 6.32 0.11 3.51 0.06 3.7 0.06 3.51 0.06 3.00 0.05

30:10:1
Network 4.56 0.09 5.68 0.1 3.2 0.06 3.23 0.06 3.23 0.06 3.15 0.05

axp7
1 day 5 days 10 days 15 days 20 days 65 days

Mean
(%) SD Mean

(%) SD Mean
(%) SD Mean

(%) SD Mean
(%) SD Mean

(%) SD

Yang et al.
[11] 20.45 0.22 18.0 0.26 17.02 0. 39 15.34 0.29 20.45 0.32 15.02 0.38

Zhang et
al.[12] 3.14 0.16 3.06 0.23 2.92 0. 13 2.83 0.07 2.81 0.08 2.73 0.08

20:10:1
Network 1.98 0.08 1.26 0.05 1.77 0.07 1.36 0.05 1.77 0.06 1.11 0.05

30:10:1
Network 2.36 0.08 1.8 0.05 3.87 0.07 1.68 0.05 1.54 0.06 1.6 0.05

sahara
1 day 5 days 10 days 15 days 20 days

Mean
(%) SD Mean

(%) SD Mean
(%) SD Mean

(%) SD Mean
(%) SD

Yang et al.
[11] 23.59 0.33 20.9 0.35 20.2 0.26 18.74 0.34 18.28 0.37

Zhang et
al.[12] 7.54 0.25 9.86 0.31 10.31 0.12 11.33 0.21 9.2 0.23

20:10:1
Network 6.36 0.17 6.65 0.15 10.3 0.1 6.25 0.08 5.95 0.08

30:10:1
Network 5.86 0.16 6.04 0.14 9.03 0.1 6.66 0.08 6.12 0.08

themis
1 day 5 days 10 days 15 days 20 days

Mean
(%) SD Mean

(%) SD Mean
(%) SD Mean

(%) SD Mean
(%) SD

Yang et al.
[11] 3.13 0.05 20.3 0.55 25.85 0.34 27.48 0.51 27.37 0.48

Zhang et
al.[12] 1.97 0.05 8.93 0.4 9.51 0.04 11.39 0.14 10.6 0.25

20:10:1
Network 1.78 0.05 3.11 0.19 3.16 0.18 3.41 0.21 2.34 0.03

30:10:1
Network 4.65 0.1 27.37 0.17 11.39 0.09 7.86 0.07 2.18 0.03

We notice that the neural network has achieved consistent improvement over
the competitors in predicting future load values of the load traces in most cases due to
its nonlinear generalization, which is eminently suitable for capturing nonlinear
behaviour in the host loads. Also, the neural predictor tends to produce more accurate
results, provided there are more data in the data sets, mainly because of better training.
For all the load traces, most of the best results are included in the total available
amount of collected traces with both networks. This observation, however, does not
appear in other methods, as they merely look ahead only one step based on the current
tendency of data. They seem to usually commit a high degree of errors when the
tendency changes direction.

 On axp0 and sahara, both networks of 20:10:1 and 30:10:1 always outclass
the other methods in all cases. The neural predictor reduces the average prediction
error rate by approximately 4% to 72% on axp0 while on sahara it can predict up to
45% more accurately than the Zhang method. On axp7 where both Yang method and
Zhang method were especially effective, except for the case of 10 days where the
network of 30:10:1 cuts SD by half but is about 33% worse than the Zhang method in
terms of Mean, both neural networks perform better, with prediction error reduction
ratio ranging from 25% to 59% for all other cases. Lastly, the 30:10:1 network, again,
suffers low degrees of prediction accuracy for cases of 1 day, 5 days, and 10 days on
themis, but eventually improves greatly in other cases to achieve the best reduction
ratio from 31% to 79%. Overall, the 20:10:1 network is superior to other methods in
all cases (100%), and the 30:10:1 network is better than other methods in 18/22 cases
(82%).

4.4. Performance with load traces collected on contemporary systems

So far we have used the load traces by Dinda, which are increasingly obsolete, and
hence, experiments on contemporary systems are required to confirm if there exist
any differences from those load traces. In this section, we validate the efficacy of our
method with load traces collected on more modern systems [24]. As shown in Figure

Figure 5. The load traces collected on more modern systems.

5, abyss.cs.uchicago.edu has very low CPU load with Mean and Standard Deviation
equal to 0.08 and 0.18, respectively. Meanwhile, mystere.ucsd.edu has Mean of 0.4,
divided into two parts and standard deviations are 0.08 and 0.15 for each part. Both
have the same size of 10,000 samples, quite small compared to those by Dinda but
good enough for our validation.

We ran several experiments to evaluate the selected networks of 20:10:1 and
30:10:1 with a constant learning rate of 0.3 on these two load traces, along with axp0
as the representative of Dinda’s load traces, for cases of 10,000 and 5,000 samples.
The experimental results are shown in Table 6, where abyss and mystere stand for
abyss.cs.uchicago.edu and mystere.ucsd.edu respectively. As expected, both networks
have exhibited high prediction accuracy and low overhead with not much difference
between the new traces and the older ones. NMSE is maintained in the range of
[1.53%, 7.56%] and the training time is virtually only a few seconds. The longest time
needed for training is 56 seconds for 10,000 samples on abyss. The results strongly
encourage feasibility of applying the neural predictor in a wide variety of computing
resources. No matter how modern the computing systems are, their load traces
basically share similar characteristics which the neural networks can capitalize on to
predict their future load.

5. Conclusion

In this paper, we have studied the performance and cost of a neural network predictor
by applying it to load trace analysis in the area of host load prediction. Experimental
evaluation has shown that the neural network consistently improves performance
compared with previously proposed linear models and tendency-based models on the
load traces in most cases. For example, the 20:10:1 network with a learning rate of 0.3

Table 6. NMSE (%), Mean (%), Standard Deviation (SD) of the prediction errors and
training time (T. Time), validating and testing time (V. Time) of the networks (in
seconds) with the best for each case displayed in boldface.

abyss
10,000 samples 5,000 samples

NMSE Mean SD T. Time V. Time NMSE Mean SD T. Time V. Time
20:10:1 2.52 8.45 0.13 ≈ 0 ≈ 0 2.98 8.47 0.07 ≈ 0 ≈ 0
30:10:1 7.5 4.95 0.11 1 ≈ 0 5.24 13.14 0.05 ≈ 0 ≈ 0

mystere
10,000 samples 5,000 samples

NMSE Mean SD T. Time V. Time NMSE Mean SD T. Time V. Time
20:10:1 5.49 8.7 0.08 4 ≈ 0 1.53 7.7 0.07 13 ≈ 0
30:10:1 4.23 6.82 0.07 56 ≈ 0 3.17 11.92 0.09 1 ≈ 0

axp0
10,000 samples 5,000 samples

NMSE Mean SD T. Time V. Time NMSE Mean SD T. Time V. Time
20:10:1 7.56 5.06 0.09 5 ≈ 0 8.73 6.9 0.09 1 ≈ 0
30:10:1 6.92 5.05 0.09 5 ≈ 0 9.9 7.44 0.1 1 ≈ 0

always outperforms the method which remained the best until the time of writing, by
reducing the Mean of the prediction error by up to 79%. The cost, particularly the
training time, is extremely low, as this network needs only a few seconds to be trained
with more than 100,000 samples, and then makes tens of thousands of accurate
predictions within a second.

The prediction ability and low overhead convincingly demonstrate application
feasibility of the neural predictor in dynamic computing environments such as
computational grids and clouds. Inspired by these positive signals, we are now in the
process of integrating the neural predictor into a real-time scheduler in a GridRPC
computing system using NetSolve and GridSolve. We also plan to improve efficiency
in other areas beyond the area of host load predictions, for instance, in relation to
network traffic and latency, etc.

Acknowledgements

We would like to thank Dinda and Yang for the use of their collected load traces. Thanks are also due

to the anonymous reviewers for their valuable comments to help improve this work. This research has

been partially supported by Ministry of Education, Culture, Sports, Science and Technology of Japan

under the “21st Century COE Program”.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, San Francisco, 1999.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-Level
Scheduling on Distributed Heterogeneous Network, Supercomputing'96, Pittsburgh,
1996.

[3] S. Jang, X. Wu, V. Taylor, Using Performance Prediction to Allocate Grid
Resources, GriPhyN Technical Report 2004-25, 2004, pp. 1-11.

[4] A. S. Gokhale, and B. Natarajan, GriT: A CORBA-based Grid Middleware
Architecture, 36th Annual Hawaii International Conference on System Sciences,
Hawaii, 2003.

[5] M. Alt, and S. Gorlatch, Adapting Java RMI for Grid Computing, Parallel
computing technologies, Vol. 21, Issue 5 (2005), pp. 699 – 707.

[6] Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi, Design, implementation
and performance evaluation of GridRPC programming middleware for a large-scale
computational Grid, 5th IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, 2004.

[7] P. Dinda, The Statistical Properties of Host Load, Scientific Programming, 7:3-4
(1999).

[8] P. Dinda, and D. O'Hallaron, Host Load Prediction Using Linear Models, Cluster
Computing, Volume 3, Number 4 (2000).

[9] P. Dinda, A prediction-based real-time scheduling advisor, 16th International
Parallel and Distributed Processing Symposium, Fort Lauderdale, 2002.

[10] R. Wolski, Dynamically forecasting network performance using the network
weather service, Journal of Cluster Computing, Vol.1 (1998), pp.119-132.

[11] L. Yang, I. Foster, and J. Schopf, Homeostatic and Tendency-based CPU Load
Prediction, International Parallel and Distributed Processing Symposium, Nice, 2003.

[12] Y. Zhang, W. Sun, and Y. Inoguchi, CPU Load Predictions on the Computational
Grid, IEEE International Symposium on Cluster Computing and the Grid, Singapore,
2006.

[13] G. Zhang, B.E. Patuwo, and M.Y. Hu, Forecasting with artificial neural networks:
The State of the Art, International Journal of Forecasting, 14-1 (1998), pp. 35-62.

[14] B. W. Wah, and M. L. Qian, Constrained formulations and algorithms for
predicting stock prices by recurrent FIR neural networks, International Journal of
Information Technology & Decision Making, Vol.5, No. 4 (2006), pp. 639-658.

[15] B. G. Aslan, and M. M. Inceoglu, A Comparative Study on Neural Network based
Soccer Result Prediction, Seventh International Conference on Intelligent Systems
Design and Applications, Rio de Janeiro, 2007.

[16] F. Liping, H. Behzad, F. Yumei, and K. Valeri, Forecasting of Road Surface
Temperature Using Time Series, Artificial Neural Networks, and Linear Regression
Models, Transportation Research Board 87th Annual Meeting, 2008.

[17] S. F. Crone, and R. Dhawan, Forecasting Seasonal Time Series with Neural
Networks: A Sensitivity Analysis of Architecture Parameters, International Joint
Conference on Neural Networks, Orlando, 2007.

[18] G. P. Zhang, and D. M. Kline, Quarterly time-series forecasting with neural
networks, IEEE Trans. on Neural Networks, Vol. 17, No. 6 (2007), pp. 1800-1814.

[19] J. Huang, H. Jin, X. Xie, and Q. Zhang, Using NARX Neural Network based Load
Prediction to Improve Scheduling Decision in Grid Environments, Third International
Conference on Natural Computation, Hainan, 2007.

[20] Reed, R. D., and R. J. Marks, Neural Smithing, The MIT Press, Cambridge, 1999.
[21] Husmeier, D., Neural Networks for Conditional Probability Estimation, Springer,

London, 1999.
[22] Witten, I. H., and E. Frank, Data Mining – Practical Machine Learning Tools and

Techniques, 2nd Edition, MK Publishers, San Francisco, 2005.
[23] P. Dinda , Load Traces Archive. Available at

http://www.cs.northwestern.edu/~pdinda/LoadTraces/
[24] L. Yang, Load. Available at http://people.cs.uchicago.edu/~lyang/Load/

