JAIST Repository

https://dspace.jaist.ac.jp/

Title	[技術報告] RBS (ラザフォード後方散乱分析装置)
Author(s)	伊藤,暢晃
Citation	国立大学法人北陸先端科学技術大学院大学技術サービ ス部業務報告集 : 平成20年度: 72-83
Issue Date	2009-11
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/9997
Rights	
Description	

Japan Advanced Institute of Science and Technology

本学RBS装置の概要 2					
De Ba	管理者	堀田准教授 伊藤技術職員			
	機能	非破壊で、元素ごとの粒子の 数と深さ情報を得ることが できる。			
	特徴	他の装置では分からない、 以下のような測定が可能 ・重金属原子の絶対量測定 ・結晶性の深さ方向依存性 ・混合結晶中の不純物原子が 入っている場所の特定			
製造会社:日新ハイボルテージ(株) 現:(株)NHVコーポレーション	測定所要 時間	1試料当たりの測定時間は 30分程度。ただしビーム調整を 含めると8時間程度かかる。			
構入年度 : 平成6年 ビームエネルギー :最大 3.4 MeV(一価) 最大 5.1 MeV(二価) 測定可能最大膜厚:約1 μm	特記事項	京都・先端ナノテク支援ネット ワーク該当装置であり、その フォーマットに則った外部依頼 も受け付けている。			
分解能 : 約 30 keV、10 nm相当					

最近の主なメンテナンス事例 7					
日付	故障個所	内容	紹介		
2004年8月	冷却水フィルタ交換	カートリッジの寿命			
2004年11月	真空計	イオン源のLi汚染が原因			
2005年2月	ロータリーポンプ修理	オイル漏れ			
2005年11月	チラーユニット修理	冷媒漏れ			
2005年11月	プレアンプ修理	分解能が低下したため修理			
2006年2月	アンプ修理	へ、 半導体検出器の寿命 も併発。			
2006年11月	加速器修理	MGベアリングの破損	スライド8		
2007年12月	ポテンショメータ交換	操作盤ツマミの寿命			
2007年12月	TMP電源交換	内部半導体の寿命			
2008年3月	加速器修理2	内部抵抗が劣化により破裂	スライド9		
2008年11月	Qレンズ電源交換	電源の寿命	スライド10,11		
2009年2月	加速器異常	発電電圧計(GVM)の異常	スライド12		

