JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/13761
|
タイトル: | Flat Foldings of Plane Graphs with Prescribed Angles and Edge |
著者: | Abel, Zachary Demaine, Erik D. Demaine, Martin Eppstein, David Lubiw, Anna Ryuhei Uehara |
キーワード: | plane graph folding problem single-vertex flat origami |
発行日: | 2014-09-24 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 8871 |
開始ページ: | 272 |
終了ページ: | 283 |
DOI: | 10.1007/978-3-662-45803-7_23 |
抄録: | When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180°, 360°}) be folded at to lie in an infinitesimally thick line, without crossings? This problem generalizes the classic theory of single-vertex at origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such at-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360°, and every face of the graph must itself be at foldable. This characterization leads to a linear-time algorithm for testing at foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states. |
Rights: | This is the author-created version of Springer, Zachary Abel, Erik D. Demaine, Martin Demaine, David Eppstein, Anna Lubiw and Ryuhei Uehara, Lecture Notes in Computer Science, 8871, 2014, 272-283. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-662-45803-7_23 |
URI: | http://hdl.handle.net/10119/13761 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
20593.pdf | | 1414Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|