JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/13762
|
タイトル: | Folding a Paper Strip to Minimize Thickness |
著者: | Demaine, Erik D. Eppstein, David Hesterberg, Adam Ito, Hiro Lubiw, Anna Uehara, Ryuhei Uno, Yushi |
キーワード: | computational origami crease width paper folding NP completeness |
発行日: | 2015-02-26 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 8973 |
開始ページ: | 113 |
終了ページ: | 124 |
DOI: | 10.1007/978-3-319-15612-5_11 |
抄録: | In this paper, we study how to fold a specified origami crease pattern in order to minimize the impact of paper thickness. Specifically, origami designs are often expressed by a mountain-valley pattern (plane graph of creases with relative fold orientations), but in general this specification is consistent with exponentially many possible folded states. We analyze the complexity of finding the best consistent folded state according to two metrics: minimizing the total number of layers in the folded state (so that a "flat folding" is indeed close to flat), and minimizing the total amount of paper required to execute the folding (where "thicker" creases consume more paper). We prove both problems strongly NPcomplete even for 1D folding. On the other hand, we prove both problems fixed-parameter tractable in 1D with respect to the number of layers. |
Rights: | This is the author-created version of Springer, Erik D. Demaine, David Eppstein, Adam Hesterberg, Hiro Ito, Anna Lubiw, Ryuhei Uehara and Yushi Uno, Lecture Notes in Computer Science, 8973, 2015, 113-124. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-15612-5_11 |
URI: | http://hdl.handle.net/10119/13762 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
21301.pdf | | 235Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|