JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/13764
|
タイトル: | On the Parameterized Complexity for Token Jumping on Graphs |
著者: | Ito, Takehiro Kaminski, Marcin Ono, Hirotaka Suzuki, Akira Uehara, Ryuuhei Yamanaka, Katsuhisa |
キーワード: | reconfiguration problem independent set token jumping PSPACE completeness FPT algorithm |
発行日: | 2014-04-11 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 8402 |
開始ページ: | 341 |
終了ページ: | 351 |
DOI: | 10.1007/978-3-319-06089-7_24 |
抄録: | Suppose that we are given two independent sets Io and Ir of a graph such that |Io|=|Ir|, and imagine that a token is placed on each vertex in Io. Then, the TOKEN JUMPING problem is to determine whether there exists a sequence of independent sets which transforms Io into Ir so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. Therefore, all independent sets in the sequence must be of the same cardinality. This problem is PSPACE-complete even for planar graphs with maximum degree three. In this paper, we first show that the problem is W[1]-hard when parameterized only by the number of tokens. We then give an FPT algorithm for general graphs when parameterized by both the number of tokens and the maximum degree. Our FPT algorithm can be modified so that it finds an actual sequence of independent sets between Io and Ir with the minimum number of token movements. |
Rights: | This is the author-created version of Springer, Takehiro Ito, Marcin Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa Yamanaka, Lecture Notes in Computer Science, 8402, 2014, 341-351. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-06089-7_24 |
URI: | http://hdl.handle.net/10119/13764 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
20138.pdf | | 125Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|