JAIST Repository >
a. 知識科学研究科・知識科学系 >
a10. 学術雑誌論文等 >
a10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/15263

タイトル: A semi-supervised tensor regression model for siRNA efficacy prediction
著者: Thang, Bui Ngoc
Ho, Bao Tu
Kanda, Tatsuo
キーワード: RNAi
siRNA
siRNA design rule
Tensor
Bilinear tensor regression
Semi–supervised learning
発行日: 2015-03-13
出版者: BMC Central
誌名: BMC Bioinformatics
巻: 16
開始ページ: 80
DOI: 10.1186/s12859-015-0495-2
抄録: Background: Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation.Results: This work aims to develop a generic framework to enhance siRNA knockdown efficacy prediction. The key idea is first to enrich siRNA sequences by incorporating them with rules found for designing effective siRNAs and representing them as enriched matrices, then to employ the bilinear tensor regression to predict knockdown efficacy of those matrices. Experiments show that the proposed method achieves better results than existing models in most cases. Conclusions: Our model not only provides a suitable siRNA representation but also can predict siRNA efficacy more accurate and stable than most of state–of–the–art models. Source codes are freely available on the web at: http://www.jaist.ac.jp/~bao/BiLTR/.
Rights: Thang et al. BMC Bioinformatics (2015) 16:80, DOI : 10.1186/s12859-015-0495-2 © 2015 Thang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
URI: http://hdl.handle.net/10119/15263
資料タイプ: publisher
出現コレクション:a10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
23948.pdf875KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係