|
JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/15360
|
タイトル: | Flat foldings of plane graphs with prescribed angles and edge lengths |
著者: | Abel, Zachary Demaine, Erik D. Demaine, Martin L. Eppstein, David Lubiw, Anna Uehara, Ryuhei |
キーワード: | graph folding paper folding graph algorithm |
発行日: | 2018 |
出版者: | Carleton University, Computational Geometry Laboratory |
誌名: | Journal of Computational Geometry |
巻: | 9 |
号: | 1 |
開始ページ: | 74 |
終了ページ: | 93 |
DOI: | 10.20382/jocg.v9i1a3 |
抄録: | When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180∘,360∘}) be folded flat to lie in an infinitesimally thick line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360∘, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states. |
Rights: | Copyright (C) 2018 Authors. Zachary Abel, Erik D. Demaine, Martin L. Demaine, David Eppstein, Anna Lubiw, and Ryuhei Uehara, Journal of Computational Geometry, 9(1), 2018, 74-93. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
URI: | http://hdl.handle.net/10119/15360 |
資料タイプ: | publisher |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
24092.pdf | | 1625Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|