JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/15360

タイトル: Flat foldings of plane graphs with prescribed angles and edge lengths
著者: Abel, Zachary
Demaine, Erik D.
Demaine, Martin L.
Eppstein, David
Lubiw, Anna
Uehara, Ryuhei
キーワード: graph folding
paper folding
graph algorithm
発行日: 2018
出版者: Carleton University, Computational Geometry Laboratory
誌名: Journal of Computational Geometry
巻: 9
号: 1
開始ページ: 74
終了ページ: 93
DOI: 10.20382/jocg.v9i1a3
抄録: When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180∘,360∘}) be folded flat to lie in an infinitesimally thick line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360∘, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.
Rights: Copyright (C) 2018 Authors. Zachary Abel, Erik D. Demaine, Martin L. Demaine, David Eppstein, Anna Lubiw, and Ryuhei Uehara, Journal of Computational Geometry, 9(1), 2018, 74-93. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/10119/15360
資料タイプ: publisher
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
24092.pdf1625KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係