JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/15854

タイトル: Deep df-pn and Its Efficient Implementations
著者: Song, Zhang
Iida, Hiroyuki
Herik, Jaap van den
キーワード: df-pn
seesaw effect
parameters
Connect6
発行日: 2017-12-22
出版者: Springer
誌名: Lecture Notes in Computer Science
巻: 10664
開始ページ: 73
終了ページ: 89
DOI: 10.1007/978-3-319-71649-7_7
抄録: Depth-first proof-number search (df-pn) is a powerful variant of proof-number search algorithms, widely used for AND/OR tree search or solving games. However, df-pn suffers from the seesaw effect, which strongly hampers the efficiency in some situations. This paper proposes a new proof number algorithm called Deep depth-first proof-number search (Deep df-pn) to reduce the seesaw effect in df-pn. The difference between Deep df-pn and df-pn lies in the proof number or disproof number of unsolved nodes. It is 1 in df-pn, while it is a function of depth with two parameters in Deep df-pn. By adjusting the value of the parameters, Deep df-pn changes its behavior from searching broadly to searching deeply. The paper shows that the adjustment is able to reduce the seesaw effect convincingly. For evaluating the performance of Deep df-pn in the domain of Connect6, we implemented a relevance-zone-oriented Deep df-pn that worked quite efficiently. The experimental results indicate that improving efficiency by the same adjustment technique is also possible in other domains.
Rights: This is the author-created version of Springer, Song Zhang, Hiroyuki Iida, H. Jaap van den Herik, Lecture Notes in Computer Science, 10664, 2017, 73-89. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-71649-7_7
URI: http://hdl.handle.net/10119/15854
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
23404.pdf958KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係