JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/15854
|
タイトル: | Deep df-pn and Its Efficient Implementations |
著者: | Song, Zhang Iida, Hiroyuki Herik, Jaap van den |
キーワード: | df-pn seesaw effect parameters Connect6 |
発行日: | 2017-12-22 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 10664 |
開始ページ: | 73 |
終了ページ: | 89 |
DOI: | 10.1007/978-3-319-71649-7_7 |
抄録: | Depth-first proof-number search (df-pn) is a powerful variant of proof-number search algorithms, widely used for AND/OR tree search or solving games. However, df-pn suffers from the seesaw effect, which strongly hampers the efficiency in some situations. This paper proposes a new proof number algorithm called Deep depth-first proof-number search (Deep df-pn) to reduce the seesaw effect in df-pn. The difference between Deep df-pn and df-pn lies in the proof number or disproof number of unsolved nodes. It is 1 in df-pn, while it is a function of depth with two parameters in Deep df-pn. By adjusting the value of the parameters, Deep df-pn changes its behavior from searching broadly to searching deeply. The paper shows that the adjustment is able to reduce the seesaw effect convincingly. For evaluating the performance of Deep df-pn in the domain of Connect6, we implemented a relevance-zone-oriented Deep df-pn that worked quite efficiently. The experimental results indicate that improving efficiency by the same adjustment technique is also possible in other domains. |
Rights: | This is the author-created version of Springer, Song Zhang, Hiroyuki Iida, H. Jaap van den Herik, Lecture Notes in Computer Science, 10664, 2017, 73-89. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-71649-7_7 |
URI: | http://hdl.handle.net/10119/15854 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
23404.pdf | | 958Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|