JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/16235
|
タイトル: | Anonymization Technique based on SGD Matrix Factrization |
著者: | Mimoto, Tomoaki Hidano, Seira Kiyomoto, Shinsaku Miyaji, Atsuko |
キーワード: | time-sequence data anonymization matrix factorization privacy and utility |
発行日: | 2020-02-01 |
出版者: | 電子情報通信学会 |
誌名: | IEICE Transactions on Information and Systems |
巻: | E103-D |
号: | 2 |
開始ページ: | 299 |
終了ページ: | 308 |
DOI: | 10.1587/transinf.2019INP0013 |
抄録: | Time-sequence data is high dimensional and contains a lot of information, which can be utilized in various fields, such as insurance, finance, and advertising. Personal data including time-sequence data is converted to anonymized datasets, which need to strike a balance between both privacy and utility. In this paper, we consider low-rank matrix factorization as one of anonymization methods and evaluate its efficiency. We convert time-sequence datasets to matrices and evaluate both privacy and utility. The record IDs in time-sequence data are changed at regular intervals to reduce re-identification risk. However, since individuals tend to behave in a similar fashion over periods of time, there remains a risk of record linkage even if record IDs are different. Hence, we evaluate the re-identification and linkage risks as privacy risks of time-sequence data. Our experimental results show that matrix factorization is a viable anonymization method and it can achieve better utility than existing anonymization methods. |
Rights: | Copyright (C)2020 IEICE. Tomoaki Mimoto, Seira Hidano, Shinsaku Kiyomoto, and Atsuko Miyaji, IEICE Transactions on Information and Systems, E103-D(2), 2020, 299-308. https://www.ieice.org/jpn/trans_online/ |
URI: | http://hdl.handle.net/10119/16235 |
資料タイプ: | publisher |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
3073.pdf | | 1083Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|