JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/17054

タイトル: A TOA-DOA Hybrid Factor Graph-Based Technique for Multi-Target Geolocation and Tracking
著者: Jiang, Lei
Cheng, Meng
Matsumoto, Tad
キーワード: Factor graph (FG)
time of arrival (TOA)
direction of arrival (DOA)
geolocation
extend Kalman filter (EKF)
tracking
sensor association
発行日: 2021-01-18
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
巻: 9
開始ページ: 14203
終了ページ: 14215
DOI: 10.1109/ACCESS.2021.3052233
抄録: In this article, we propose a new distributed sensors-based multi-target geolocation and tracking technique. The proposed technique is a joint time-of-arrival (TOA) and direction-of-arrival (DOA) factor graph (FG) for multi-target geolocation (FG-GE), which is further combined with another FG for extend Kalman filtering (FG-GE-EKF) for tracking. Two-dimensional (2D) and three-dimensional (3D) scenarios are considered. In the FG-GE part, a new sensor association technique is proposed to solve the matching problem, which makes the right correspondence between the DOA/TOA information gathered by the distributed sensors and each target. With the proposed sensor association technique, the measured signals from targets can adequately be matched to their corresponding FGs. Thereby, the multi-target geolocation can be reduced to multiple independent single target geolocation. In addition, in the 3D scenario, each target is projected onto three orthogonal planes in the (x,y,z) coordinate. With this operation, the 3D geolocation is decomposed into three 2D geolocation problems. In the FG-GE-EKF part, the whole tracking system can be divided into two steps: prediction step and update step. In the prediction step, the predicted state is obtained from the previous state. Then, we utilize the predicted state as a prior information, and also to update the message exchanged in FG-GE. In the update step, the estimates obtained by FG-GE are regarded as observation state which is used to refine the predicted state, and acquire the current state. With proposed the FG-GE-EKF, the position estimation accuracy and tracking performance can be improved dramatically, without requiring excessively high computational effort.
Rights: Lei Jiang, Meng Cheng, Tad Matsumoto, IEEE Access, 9, 2021, 14203-14215, DOI:10.1109/ACCESS.2021.3052233. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
URI: http://hdl.handle.net/10119/17054
資料タイプ: publisher
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
3422.pdf1547KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係