JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/17247

タイトル: Blind Monaural Singing Voice Separation Using Rank-1 Constraint Robust Principal Component Analysis and Vocal Activity Detection
著者: Li, Feng
Akagi, Masato
キーワード: Blind monaural singing voice separation
Robust principal component analysis
Rank-1 constraint
Coalescent masking
Vocal activity detection
発行日: 2019-04-17
出版者: Elsevier
誌名: Neurocomputing
巻: 350
開始ページ: 44
終了ページ: 52
DOI: 10.1016/j.neucom.2019.04.030
抄録: In this paper, a novel blind separation method for monaural singing voice based on an extension of robust principal component analysis (RPCA) using a rank-1 constraint called Constraint RPCA (CRPCA) is proposed. Although the conventional RPCA is an effective method to separate singing voice from the mixed audio signal, it fails when one singular value (e.g., drum) is much larger than all others (e.g., other accompanying instruments). The proposed CRPCA method utilizes rank-1 constraint minimization of singular values in RPCA instead of minimizing the nuclear norm, which not only provides a solution robust to large dynamic range differences among instruments but also reduces the computation complexity. Further quality improvement is achieved by converting CRPCA to an ideal binary masking, combining it with harmonic masking to create a coalescent masking, and finally, combining with a vocal activity detection. Evaluation results on ccMixter and DSD100 datasets show that the proposed method achieves better separation performance than the previous methods.
Rights: Copyright (C)2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0). [http://creativecommons.org/licenses/by-nc-nd/4.0/] NOTICE: This is the author's version of a work accepted for publication by Elsevier. Feng Li and Masato Akagi, Neurocomputing, 350, 2019, 44-52, http://dx.doi.org/10.1016/j.neucom.2019.04.030
URI: http://hdl.handle.net/10119/17247
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
NeuroCom_Feng.pdf1617KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係