JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/19083

タイトル: A Distributed Sensor-based Recursive Framework for DoA Estimation and Geolocation
著者: Jiang, Lei
Keerativoranan, Nopphon
Matsumoto, Tad
Takada, Jun-ichi
キーワード: Direction-of-arrival (DoA)
geolocation
tracking
extended Kalman filter (EKF)
subspace
eigenvalue decomposition (EVD)
factor graph (FG)
distributed sensors
low-rank adaptive filter (LORAF)
発行日: 2024-07-09
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
開始ページ: 1
終了ページ: 1
DOI: 10.1109/ACCESS.2024.3424216
抄録: This paper proposes a distributed sensor-based RECursive Subspace and Factor Graph (RECSaFG) framework for direction-of-arrival (DoA) estimation and geolocation of a fast-moving target. The whole framework includes two recursive processes: (1) DoA estimation and tracking by 2-dimensional (2D) smoothing-based recursive subspace technique using low rank adaptive filter (LORAF); (2) Factor graph (FG)-based geolocation and tracking network utilizing an extended Kalman filter (EKF) which takes into account the target’s position and velocity, and updates them as well as the acceleration information. In (1), the recursive subspace technique aims to fully utilize sample size insufficiency due to the fast-moving target and to recover the rank deficiency incurred by the coherent signal components. In (2), the estimated DoA and target velocity information obtained by (1) is considered as input to the unified FG implemented by EKF for geolocation and tracking (FG-GE-TR) of the target position. By integrating these two processes, the REC-SaFG framework promises significant improvements in the accuracy and efficiency of geolocation and tracking systems, particularly in environments characterized by a fast-moving target and the need for high-resolution tracking.
Rights: Lei Jiang, Nopphon Keerativoranan, Tad Matsumoto, Jun-ichi Takada, IEEE Access (Early Access), 2024. DOI: 10.1109/ACCESS.2024.3424216. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
URI: http://hdl.handle.net/10119/19083
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
T-MATSUMOTO-I-0709.pdf2871KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係