JAIST Repository >
科学技術開発戦略センター 2003~2008 >
z2-70. JAIST PRESS 発行誌等 >
IFSR 2005 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/3830

タイトル: Merging fuzzy statistical data with imprecise prior information - application in solving complex decision problems
著者: Olgierd, Hryniewicz
キーワード: Bayes decision-making
imprecise information
fuzzy statistical data
possibilistic decisions
発行日: Nov-2005
出版者: JAIST Press
抄録: Solving complex decision problems requires the usage of information from different sources. Usually this information is uncertain and statistical or probabilistic methods are needed for its processing. However, in many cases a decision maker faces not only uncertainty of a random nature but also imprecision in the description of input data that is rather of linguistic nature. Therefore, there is a need to merge uncertainties of both types into one mathematical model. In the paper we present methodology of merging information from imprecisely reported statistical data and imprecisely formulated fuzzy prior information. Moreover, we also consider the case of imprecisely defined loss functions. The proposed methodology may be considered as the application of fuzzy statistical methods for the decision making in the systems analysis.
記述: The original publication is available at JAIST Press http://www.jaist.ac.jp/library/jaist-press/index.html
IFSR 2005 : Proceedings of the First World Congress of the International Federation for Systems Research : The New Roles of Systems Sciences For a Knowledge-based Society : Nov. 14-17, 2040, Kobe, Japan
Symposium 4, Session 2 : Meta-synthesis and Complex Systems Complex Problem Solving (I)
言語: ENG
URI: http://hdl.handle.net/10119/3830
ISBN: 4-903092-02-X
出現コレクション:IFSR 2005

このアイテムのファイル:

ファイル 記述 サイズ形式
20076.pdf99KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係