JAIST Repository >
科学技術開発戦略センター 2003~2008 >
z2-70. JAIST PRESS 発行誌等 >
IFSR 2005 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/3892

タイトル: Subscriber Number Forecasting Tool Based on Subscriber Attribute Distribution for Evaluating Improvement Strategies
著者: Hiramatsu, Ayako
Shono, Yuji
Oiso, Hiroaki
Komoda, Norihisa
キーワード: simulation
modeling
customer retention
発行日: Nov-2005
出版者: JAIST Press
抄録: In this paper, a subscriber number forecasting tool that evaluates quiz game mobile content improvement strategies is developed. Unsubscription rates depend on such subscriber attributes such as consecutive months, stages, rankings, and so on. In addition, content providers can anticipate change in unsubscription rates for each content improvement strategy. However, subscriber attributes change dynamically. Therefore, a method that deals with dynamic subscriber attribute changes is proposed. According to the features of content improvement strategies, content providers decide the conditions and the rates of unsubscription changes. Then the unsubscription rate for each segment is recalculated. In the period doing which a content improvement strategy has not been launched, prediction accuracy in the following there months of the proposed (subscriber-based) prediction method was compared with the segment-based prediction method.
記述: The original publication is available at JAIST Press http://www.jaist.ac.jp/library/jaist-press/index.html
IFSR 2005 : Proceedings of the First World Congress of the International Federation for Systems Research : The New Roles of Systems Sciences For a Knowledge-based Society : Nov. 14-17, 2102, Kobe, Japan
Symposium 3, Session 6 : Intelligent Information Technology and Applications Knowledge Management
言語: ENG
URI: http://hdl.handle.net/10119/3892
ISBN: 4-903092-02-X
出現コレクション:IFSR 2005

このアイテムのファイル:

ファイル 記述 サイズ形式
20189.pdf201KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係