JAIST Repository >
科学技術開発戦略センター 2003~2008 >
z2-70. JAIST PRESS 発行誌等 >
IFSR 2005 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/3907

タイトル: The Word Clustering Method for Lexical Knowledge Acquisition from Domain-Specific Documents
著者: SAITO, Takahiro
WATANABE, Isamu
MATSUI, Kunio
TERADA, Akira
SAITO, Takashi
キーワード: clustering
graph
similarity-measure
mutual-substitutability
発行日: Nov-2005
出版者: JAIST Press
抄録: In this paper, we introduce a new similarity measure between words, and a graph-based word clustering method using this similarity measure. Our similarity measure is a quantification of the “mutual substitutability” of two words, and our graph-based word clustering method is composed of two steps. The first step is a building pairs of terms whose similarity measures are high into the connected graphs, and the second step is a division of the connected graphs by estimating the density of their edges. Here we report on the results of experiments in which we compared our method with existing techniques. In these experiments, we attempted to acquire the lexical knowledge from aviation incident reports. To conclude, we show that our similarity measure is more suitable for this purpose than the cosine measure, a popular similarity measure, and show that our clustering method creates more meaningful clusters than the k-means clustering method, a popular clustering method.
記述: The original publication is available at JAIST Press http://www.jaist.ac.jp/library/jaist-press/index.html
IFSR 2005 : Proceedings of the First World Congress of the International Federation for Systems Research : The New Roles of Systems Sciences For a Knowledge-based Society : Nov. 14-17, 2117, Kobe, Japan
Symposium 5, Session 2 : Data/Text Mining from Large Databases Text Mining
言語: ENG
URI: http://hdl.handle.net/10119/3907
ISBN: 4-903092-02-X
出現コレクション:IFSR 2005

このアイテムのファイル:

ファイル 記述 サイズ形式
20078.pdf140KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係