JAIST Repository >
科学技術開発戦略センター 2003~2008 >
z2-70. JAIST PRESS 発行誌等 >
IFSR 2005 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/3909
|
タイトル: | Sentence Extraction with Support Vector Machine Ensemble |
著者: | Minh, Le Nguyen Shimazu, Akira Xuan, Hieu Phan Tu, Bao Ho Horiguchi, Susumu |
キーワード: | Text summarization sentence extraction SVM Ensemble learning SVM ensemble |
発行日: | Nov-2005 |
出版者: | JAIST Press |
抄録: | This paper addresses a support vector machine model for text summarization problem. First, we formulate the text summarization problem as the problem of extracting a set of importance sentences. We then employ a support vector model for sloving that problem. Although the SVM are shown to be very suitable for sentence extraction because of the abillty in dealing with a very large of feature demision. The limitation of it is that in practical some approxiamtion algorithm are used. It might reduce the accuracy of classification. To overcome the above drawback, a SVM ensemble is clearly sutiable. This was because when combining each individual SVM has been traiend independently from the random chosen training samples and the correctly classifed area in the sapce of data samples of each SVM becomes limited to a certain area. We can expect that a combination of several SVMs will exapand the correctly classified area incrementlly. This paper initialy presents the use of ensemble SVM to text summarization and shows that the performance of SVM ensemble will be better than that of convential SVM. |
記述: | The original publication is available at JAIST Press http://www.jaist.ac.jp/library/jaist-press/index.html IFSR 2005 : Proceedings of the First World Congress of the International Federation for Systems Research : The New Roles of Systems Sciences For a Knowledge-based Society : Nov. 14-17, 2119, Kobe, Japan Symposium 5, Session 2 : Data/Text Mining from Large Databases Text Mining |
言語: | ENG |
URI: | http://hdl.handle.net/10119/3909 |
ISBN: | 4-903092-02-X |
出現コレクション: | IFSR 2005
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
20073.pdf | | 163Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|