JAIST Repository >
科学技術開発戦略センター 2003~2008 >
z2-70. JAIST PRESS 発行誌等 >
KSS'2007 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/4145

タイトル: Currency Crisis Forecasting with a Multi-Resolution Neural Network Learning Approach
著者: Yu, Lean
Wang, Shouyang
Lai, Kin Keung
Cong, Guodong
キーワード: Artificial neural networks
empirical mode decomposition
multi-resolution learning
currency crisis forecasting
発行日: Nov-2007
出版者: JAIST Press
抄録: In this study, an empirical mode decomposition (EMD) based multi-resolution neural network learning paradigm via Hilbert-Huang transform (HHT) is proposed to predict currency crisis for early-warning purpose. In the proposed learning paradigm, the original currency exchange rate series are first decomposed into various independent intrinsic mode components (IMCs) with a multi-resolution Hilbert-EMD algorithm. Then these IMCs with different scales are input into an artificial neural network (ANN) for training purpose. Using the trained ANN, the future currency crisis conditions can be predicted based on the historical data. For verification, two typical currencies — South Korean Won and Thai Baht — are used to test the effectiveness of the proposed multi-resolution neural learning paradigm.
記述: The original publication is available at JAIST Press http://www.jaist.ac.jp/library/jaist-press/index.html
Proceedings of KSS'2007 : The Eighth International Symposium on Knowledge and Systems Sciences : November 5-7, 2007, [Ishikawa High-Tech Conference Center, Nomi, Ishikawa, JAPAN]
Organized by: Japan Advanced Institute of Science and Technology
言語: ENG
URI: http://hdl.handle.net/10119/4145
ISBN: 9784903092072
出現コレクション:KSS'2007

このアイテムのファイル:

ファイル 記述 サイズ形式
40.pdf115KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係