JAIST Repository >
科学技術開発戦略センター 2003~2008 >
z2-70. JAIST PRESS 発行誌等 >
KSS'2007 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4145
|
タイトル: | Currency Crisis Forecasting with a Multi-Resolution Neural Network Learning Approach |
著者: | Yu, Lean Wang, Shouyang Lai, Kin Keung Cong, Guodong |
キーワード: | Artificial neural networks empirical mode decomposition multi-resolution learning currency crisis forecasting |
発行日: | Nov-2007 |
出版者: | JAIST Press |
抄録: | In this study, an empirical mode decomposition (EMD) based multi-resolution neural network learning paradigm via Hilbert-Huang transform (HHT) is proposed to predict currency crisis for early-warning purpose. In the proposed learning paradigm, the original currency exchange rate series are first decomposed into various independent intrinsic mode components (IMCs) with a multi-resolution Hilbert-EMD algorithm. Then these IMCs with different scales are input into an artificial neural network (ANN) for training purpose. Using the trained ANN, the future currency crisis conditions can be predicted based on the historical data. For verification, two typical currencies — South Korean Won and Thai Baht — are used to test the effectiveness of the proposed multi-resolution neural learning paradigm. |
記述: | The original publication is available at JAIST Press http://www.jaist.ac.jp/library/jaist-press/index.html Proceedings of KSS'2007 : The Eighth International Symposium on Knowledge and Systems Sciences : November 5-7, 2007, [Ishikawa High-Tech Conference Center, Nomi, Ishikawa, JAPAN] Organized by: Japan Advanced Institute of Science and Technology |
言語: | ENG |
URI: | http://hdl.handle.net/10119/4145 |
ISBN: | 9784903092072 |
出現コレクション: | KSS'2007
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
40.pdf | | 115Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|