JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4685
|
タイトル: | Effective Use of Geometric Information for Clustering and Related Topics |
著者: | ASANO, Tetsuo |
キーワード: | bipartite graph coloring computational geometry diameter duality transform geometric clustering intercluster distance maximum spanning tree separability Voronoi dia-gram |
発行日: | 2000-03-20 |
出版者: | 電子情報通信学会 |
誌名: | IEICE TRANSACTIONS on Information and Systems |
巻: | E83-D |
号: | 3 |
開始ページ: | 418 |
終了ページ: | 427 |
抄録: | This paper surveys how geometric information can be effectively used for efficient algorithms with focus on clustering problems. Given a complete weighted graph G of n vertices, is there a partition of the vertex set into k disjoint subsets so that the maximum weight of an innercluster edge (whose two endpoints both belong to the same subset) is minimized? This problem is known to be NP-complete even for k = 3. The case of k = 2, that is, bipartition problem is solvable in polynomial time. On the other hand, in geometric setting where vertices are points in the plane and weights of edges equal the distances between corresponding points, the same problem is solvable in polynomial time even for k ≧ 3 as far as k is a fixed constant. For the case k = 2, effective use of geometric property of an optimal solution leads to considerable improvement on the computational complexity. Other related topics are also discussed. |
Rights: | Copyright (C)2000 IEICE. T. Asano, IEICE TRANSACTIONS on Information and Systems, E83-D(3), 2000, 418-427. http://www.ieice.org/jpn/trans_online/ |
URI: | http://hdl.handle.net/10119/4685 |
資料タイプ: | publisher |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
677.pdf | | 440Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|