JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/4701

タイトル: Self-Reconfigurable Multi-Layer Neural Networks with Genetic Algorithms
著者: SUGAWARA, Eiko
FUKUSHI, Masaru
HORIGUCHI, Susumu
キーワード: self-reconfiguration
multi-layer neural network
weight training by genetic algorithm
FPGA
発行日: 2004-08-01
出版者: 電子情報通信学会
誌名: IEICE TRANSACTIONS on Information and Systems
巻: E87-D
号: 8
開始ページ: 2021
終了ページ: 2028
抄録: This paper addresses the issue of reconfiguring multi-layer neural networks implemented in single or multiple VLSI chips. The ability to adaptively reconfigure network configuration for a given application, considering the presence of faulty neurons, is a very valuable feature in a large scale neural network. In addition, it has become necessary to achieve systems that can automatically reconfigure a network and acquire optimal weights without any help from host computers. However, self-reconfigurable architectures for neural networks have not been studied sufficiently. In this paper, we propose an architecture for a self-reconfigurable multi-layer neural network employing both reconfiguration with spare neurons and weight training by GAs. This proposal offers the combined advantages of low hardware overhead for adding spare neurons and fast weight training time. To show the possibility of self-reconfigurable neural networks, the prototype system has been implemented on a field programmable gate array.
Rights: Copyright (C)2004 IEICE. Eiko Sugawara, Masaru Fukushi, Susumu Horiguchi, IEICE TRANSACTIONS on Information and Systems, E87-D(8), 2004, 2021-2028. http://www.ieice.org/jpn/trans_online/
URI: http://hdl.handle.net/10119/4701
資料タイプ: publisher
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
4725.pdf597KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係