JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4711
|
タイトル: | Generating Chordal Graphs Included in Given Graphs |
著者: | KIYOMI, Masashi UNO, Takeaki |
キーワード: | chordal graph enumeration constant time |
発行日: | 2006-02-01 |
出版者: | 電子情報通信学会 |
誌名: | IEICE TRANSACTIONS on Information and Systems |
巻: | E89-D |
号: | 2 |
開始ページ: | 763 |
終了ページ: | 770 |
DOI: | 10.1093/ietisy/e89-d.2.763 |
抄録: | A chordal graph is a graph which contains no chordless cycle of at least four edges as an induced subgraph. The class of chordal graphs contains many famous graph classes such as trees, interval graphs, and split graphs, and is also a subclass of perfect graphs. In this paper, we address the problem of enumerating all labeled chordal graphs included in a given graph. We think of some variations of this problem. First we introduce an algorithm to enumerate all connected labeled chordal graphs in a complete graph of n vertices. Next, we extend the algorithm to an algorithm to enumerate all labeled chordal graphs in a n-vertices complete graph. Then, we show that we can use, with small changes, these algorithms to generate all (connected or not necessarily connected) labeled chordal graphs in arbitrary graph. All our algorithms are based on reverse search method, and time complexities to generate a chordal graph are O(1), and also O(1) delay. Additionally, we present an algorithm to generate every clique of a given chordal graph in constant time. Using these algorithms we obtain combinatorial Gray code like sequences for these graph structures in which the differences between two consecutive graphs are bounded by a constant size. |
Rights: | Copyright (C)2006 IEICE. Masahi Kiyomi and Takeaki Uno, IEICE TRANSACTIONS on Information and Systems, E89-D(2), 2006, 763-770. http://www.ieice.org/jpn/trans_online/ |
URI: | http://hdl.handle.net/10119/4711 |
資料タイプ: | publisher |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
10153.pdf | | 263Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|