JAIST Repository >
a. 知識科学研究科・知識科学系 >
a10. 学術雑誌論文等 >
a10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4729
|
タイトル: | An Approach to Concept Formation Based on Formal Concept Analysis |
著者: | Ho, Tu Bao |
キーワード: | machine learning concept formation formal concept analysis concept lattice concept hierarchy |
発行日: | 1995-05-20 |
出版者: | 電子情報通信学会 |
誌名: | IEICE TRANSACTIONS on Information and Systems |
巻: | E78-D |
号: | 5 |
開始ページ: | 553 |
終了ページ: | 559 |
抄録: | Computational approaches to concept formation often share a top-down, incremental, hill-climbing classification, and differ from each other in the concept representation and quality criteria. Each of them captures part of the rich variety of conceptual knowledge and many are well suited only when the object-attribute distribution is not sparse. Formal concept analysis is a set-theoretic model that mathematically formulates the human understanding of concepts, and investigates the algebraic structure, Galois lattice, of possible concepts in a given domain. Adopting the idea of representing concepts by mutual closed sets of objects and attributes as well as the Galois lattice structure for concepts from formal concept analysis, we propose an approach to concept formation and develop OSHAM, a method that forms concept hierarchies with high utility score, clear semantics and effective even with sparse object-attribute distributions. In this paper we describe OSHAM, and in an attempt to show its performance we present experimental studies on a number of data sets from the machine learning literature. |
Rights: | Copyright (C)1995 IEICE. Tu Bao HO, IEICE TRANSACTIONS on Information and Systems, E78-D(5), 1995, 553-559. http://www.ieice.org/jpn/trans_online/ |
URI: | http://hdl.handle.net/10119/4729 |
資料タイプ: | publisher |
出現コレクション: | a10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
9735.pdf | | 565Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|