JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4920
|
タイトル: | Tree Spanners for Bipartite Graphs and Probe Interval Graphs |
著者: | Brandstadt, Andreas Dragan, Feodor F. Le, Hoang-Oanh Le, Van Bang Uehara, Ryuhei |
キーワード: | Chordal bipartite graph Interval bigraph NP-completeness Probe interval graph Tree spanner |
発行日: | 2007-01 |
出版者: | Springer |
誌名: | Algorithmica |
巻: | 47 |
号: | 1 |
開始ページ: | 27 |
終了ページ: | 51 |
DOI: | 10.1007/s00453-006-1209-y |
抄録: | A tree t-spanner T in a graph G is a spanning tree of G such that the distance between every pair of vertices in T is at most t times their distance in G. The tree t-spanner problem asks whether a graph admits a tree t-spanner, given t. We first substantially strengthen the known results for bipartite graphs. We prove that the tree t-spanner problem is NP-complete even for chordal bipartite graphs for t ≥ 5, and every bipartite ATE–free graph has a tree 3-spanner, which can be found in linear time. The best known before results were NP-completeness for general bipartite graphs, and that every convex graph has a tree 3-spanner. We next focus on the tree t-spanner problem for probe interval graphs and related graph classes. The graph classes were introduced to deal with the physical mapping of DNA. From a graph theoretical point of view, the classes are natural generalizations of interval graphs. We show that these classes are tree 7-spanner admissible, and a tree 7-spanner can be constructed in O(m log n) time. |
Rights: | This is the author-created version of Springer, Andreas Brandstadt, Feodor F. Dragan, Hoang-Oanh Le, Van Bang Le and Ryuhei Uehara, Algorithmica, 47(1), 2007, 27-51. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/s00453-006-1209-y |
URI: | http://hdl.handle.net/10119/4920 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
C5432.pdf | | 205Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|