JAIST Repository >
a. 知識科学研究科・知識科学系 >
a10. 学術雑誌論文等 >
a10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/5025

タイトル: An agent-based approach for predictions based on multi-dimensional complex data
著者: Ma, Tieju
Nakamori, Yoshiteru
キーワード: agent-based approach
membership function
prediction
発行日: 2006-05-08
出版者: Elsevier
誌名: Information Sciences
巻: 176
号: 9
開始ページ: 1156
終了ページ: 1174
DOI: 10.1016/j.ins.2005.07.011
抄録: This paper presents an agent-based approach to the identification of prediction models for continuous values from multi-dimensional data, both numerical and categorical. A simple description of the approach is: a number of agents are sent to the data space to be investigated. At the micro-level, each agent tries to build a local linear model with multi-linear regression by competing with others; then at the macro-level all surviving agents build the global model by introducing membership functions. Three tests were carried out and the performance of the approach was compared with a neural network. The results of the three tests show that the agent-based approach can achieve good performance for some data sets. The approach complements rather than competes with existing Soft Computing methods.
Rights: NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Tieju Ma, Yoshiteru Nakamori and Wei Huang, Information Sciences, 176(9), 2006, 1156-1174, http://dx.doi.org/10.1016/j.ins.2005.07.011
URI: http://hdl.handle.net/10119/5025
資料タイプ: author
出現コレクション:a10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
C10100.pdf585KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係