JAIST Repository >
Research Center for Integrated Science 2007-2016 >
Articles >
Journal Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10119/9069

Title: SAT in Monadic Gödel Logics: A Borderline between Decidability and Undecidability
Authors: Baaz, Matthias
Ciabattoni, Agata
Preining, Norbert
Keywords: Goedel logic
Satisfiability
Decidability
Many-valued logics
Issue Date: 2009
Publisher: Springer
Magazine name: Lecture Notes in Computer Science
Volume: 5514/2009
Start page: 113
End page: 123
DOI: 10.1007/978-3-642-02261-6_10
Abstract: We investigate satisfiability in the monadic fragment of first-order Gädel logics. These are a family of finite- and infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing 0 and 1. We identify conditions on the topological type of V that determine the decidability or undecidability of their satisfiability problem.
Rights: This is the author-created version of Springer, Matthias Baaz, Agata Ciabattoni, Norbert Preining, Lecture Notes in Computer Science, 5514/2009, 2009, 113-123. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-642-02261-6_10
URI: http://hdl.handle.net/10119/9069
Material Type: author
Appears in Collections:z4-10-1. 雑誌掲載論文 (Journal Articles)

Files in This Item:

File Description SizeFormat
15573-1.pdf318KbAdobe PDFView/Open

All items in DSpace are protected by copyright, with all rights reserved.

 


Contact : Library Information Section, JAIST (ir-sys[at]ml.jaist.ac.jp)