|
JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/9176
|
タイトル: | Efficient Enumeration of All Ladder Lotteries and Its Application |
著者: | Yamanaka, Katsuhisa Nakano, Shin-ichi Matsui, Yasuko Uehara, Ryuhei Nakada, Kento |
キーワード: | Enumeration algorithm Family tree Ladder lottery Pseudoline arrangement |
発行日: | 2010-01-13 |
出版者: | Elsevier |
誌名: | Theoretical Computer Science |
巻: | 411 |
号: | 16-18 |
開始ページ: | 1714 |
終了ページ: | 1722 |
DOI: | 10.1016/j.tcs.2010.01.002 |
抄録: | A ladder lottery, known as “Amidakuji” in Japan, is a common way to choose a permutation randomly. A ladder lottery L corresponding to a given permutation π is optimal if L has the minimum number of horizontal lines among the ladder lotteries corresponding to π. In this paper we show that for any two optimal ladder lotteries L_1 and L_2 of a permutation, there exists a sequence of local modifications which transforms L_1 into L_2. We also give an algorithm to enumerate all optimal ladder lotteries of a given permutation. By setting π=(n,n−1,…,1), the algorithm enumerates all arrangements of n pseudolines efficiently. By implementing the algorithm we compute the number of arrangements of n pseudolines for each n≤11. |
Rights: | NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Katsuhisa Yamanaka, Shin-ichi Nakano, Yasuko Matsui, Ryuhei Uehara, and Kento Nakada, Theoretical Computer Science, 411(16-18), 2010, 1714-1722, http://dx.doi.org/10.1016/j.tcs.2010.01.002 |
URI: | http://hdl.handle.net/10119/9176 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
15049.pdf | | 162Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|