JAIST Repository >
a. 知識科学研究科・知識科学系 >
a10. 学術雑誌論文等 >
a10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/12870
|
タイトル: | Which types of learning make a simple game complex? |
著者: | Hidaka, Shohei Torii, Takuma Masumi, Akira |
発行日: | 2015 |
出版者: | Complex Systems Publications |
誌名: | Complex Systems |
巻: | 24 |
号: | 1 |
開始ページ: | 49 |
終了ページ: | 74 |
抄録: | The present study focuses on a class of games with reinforcement-learning agents that adaptively choose their actions to locally maximize their rewards. By analyzing a limit model with a special type of learning, previous studies suggested that dynamics of games with learners may become chaotic. We evaluated the generality of this model by analyzing the consistency of this limit model in comparison with two other approaches, agent-based simulation and the Markov process model. Our analysis showed inconsistency between the limit model and two other models with more general reinforcement learning. This suggests that reinforcement learning does not lead to complex dynamics in games with learners. |
Rights: | Copyright (C) 2015 Complex Systems Publications. Shohei Hidaka, Takuma Torii, Akira Masumi, Complex Systems, 24(1), 2015, 49-74. This material is posted here with permission of Complex Systems Publications. |
URI: | http://hdl.handle.net/10119/12870 |
資料タイプ: | publisher |
出現コレクション: | a10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
21443.pdf | | 5691Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|