JAIST Repository >
a. 知識科学研究科・知識科学系 >
a10. 学術雑誌論文等 >
a10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/12870

タイトル: Which types of learning make a simple game complex?
著者: Hidaka, Shohei
Torii, Takuma
Masumi, Akira
発行日: 2015
出版者: Complex Systems Publications
誌名: Complex Systems
巻: 24
号: 1
開始ページ: 49
終了ページ: 74
抄録: The present study focuses on a class of games with reinforcement-learning agents that adaptively choose their actions to locally maximize their rewards. By analyzing a limit model with a special type of learning, previous studies suggested that dynamics of games with learners may become chaotic. We evaluated the generality of this model by analyzing the consistency of this limit model in comparison with two other approaches, agent-based simulation and the Markov process model. Our analysis showed inconsistency between the limit model and two other models with more general reinforcement learning. This suggests that reinforcement learning does not lead to complex dynamics in games with learners.
Rights: Copyright (C) 2015 Complex Systems Publications. Shohei Hidaka, Takuma Torii, Akira Masumi, Complex Systems, 24(1), 2015, 49-74. This material is posted here with permission of Complex Systems Publications.
URI: http://hdl.handle.net/10119/12870
資料タイプ: publisher
出現コレクション:a10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
21443.pdf5691KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係