JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/14707
|
タイトル: | On principles between ∑1- and ∑2-induction, and monotone enumerations |
著者: | Kreuzer, Alexander P. Yokoyama, Keita |
キーワード: | fragments of arithmetics reverse mathematics Ackermann function Paris Harrington theorem ordinal numbers |
発行日: | 2016-06-30 |
出版者: | World Scientific Publishing |
誌名: | Journal of Mathematical Logic |
巻: | 16 |
号: | 1 |
開始ページ: | 1650004-1 |
終了ページ: | 1650004-21 |
DOI: | 10.1142/S0219061316500045 |
抄録: | We show that many principles of first-order arithmetic, previously only known to lie strictly between ∑_1-induction and ∑_2-induction, are equivalent to the well-foundedness of ω^ω. Among these principles are the iteration of partial functions (P∑_1) of Hajek and Paris, the bounded monotone enumerations principle (non-iterated, BME_1) by Chong, Slaman, and Yang, the relativized Paris-Harrington principle for pairs, and the totality of the relativized Ackermann-Peter function. With this we show that the well-foundedness of ω^ω is a far more widespread than usually suspected. Further, we investigate the k-iterated version of the bounded monotone iterations principle (BME_k), and show that it is equivalent to the well-foundedness of the k + 1-height -tower ω⋰ω. |
Rights: | Electronic version of an article published as Journal of Mathematical Logic, 16(1), 2016, 1650004-1-1650004-21. DOI:10.1142/S0219061316500045. Copyright World Scientific Publishing Company, http://dx.doi.org/10.1142/S0219061316500045 |
URI: | http://hdl.handle.net/10119/14707 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
22907.pdf | | 513Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|