JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/14768

タイトル: Unfolding and Dissection of Multiple Cubes
著者: Abel, Zach
Ballinger, Bran
Demaine, Erik D
Demaine, Martin L
Erickson, Jeff
Hesterberg, Adam
Ito, Hiro
Kostitsyana, Irina
Lynch, Jayson
Uehara, Ryuhei
キーワード: polyomino
rep-tile
rep-cube
development of cube
発行日: 2016
出版者: 19th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2016)
誌名: 19th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2016)
抄録: A polyomino is a “simply connected” set of unit squares introduced by Solomon W. Golomb in 1954. Since then, a set of polyominoes has been playing an important role in puzzle society (see, e.g., [3, 1]). In Figure 82 in [1], it is shown that a set of 12 pentominoes exactly covers a cube that is the square root of 10 units on the side. In 1962, Golomn also proposed an interesting notion called “rep-tiles”: a polygon is a reptile of order k if it can be divided into k replicas congruent to one another and similar to the original (see [2, Chap 19]). These notions lead us to the following natural question: is there any polyomino that can be folded to a cube and divided into k polyominoes such that each of them can be folded to a (smaller) cube for some k? That is, a polyomino is a rep-cube of order k if it is a net of a cube, and it can be divided into k polyominoes such that each of them can be folded to a cube. If each of these k polyominoes has the same size, we call the original polyomino regular rep-cube of order k. In this paper, we give an affirmative answer. We first give some regular rep-cubes of order k for some specific k. Based on this idea, we give a constructive proof for a series of regular rep-cubes of order 36gk'^2 for any positive integer k' and an integer g in {2; 4; 5; 8; 10; 50}. That is, there are infinitely many k that allow regular rep-cubes of order k. We also give some non-regular rep-cubes and its variants.
Rights: Zach Abel, Bran Ballinger, Erik D. Demaine, Martin L. Demaine, Jeff Erickson, Adam Hesterberg, Hiro Ito, Irina Kostitsyana, Jayson Lynch, and Ryuhei Uehara, 19th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2016), 2016.
URI: http://hdl.handle.net/10119/14768
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
22610.pdf275KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係