JAIST Repository >
d. 融合科学系 >
d10. 学術雑誌論文等 >
d10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/18238

タイトル: Analyses of Tabular AlphaZero on Strongly-Solved Stochastic Games
著者: HSUEH, CHU-HSUAN
IKEDA, KOKOLO
WU, I-CHEN
CHEN, JR-CHANG
HSU, TSAN-SHENG
キーワード: AlphaZero
board games
Chinese dark chess
EinStein würfelt nicht!
reinforcement learning
stochastic games
tabular
発行日: 2023-02-21
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
巻: 11
開始ページ: 18157
終了ページ: 18182
DOI: 10.1109/ACCESS.2023.3246638
抄録: The AlphaZero algorithm achieved superhuman levels of play in chess, shogi, and Go by learning without domain-specific knowledge except for game rules. This paper targets stochastic games and investigates whether AlphaZero can learn theoretical values and optimal play. Since the theoretical values of stochastic games are expected win rates, not a simple win, loss, or draw, it is worth investigating the ability of AlphaZero to approximate expected win rates of positions. This paper also thoroughly studies how AlphaZero is influenced by hyper-parameters and some implementation details. The analyses are mainly based on AlphaZero learning with lookup tables. Deep neural networks (DNNs) like the ones in the original AlphaZero are also experimented and compared. The tested stochastic games include reduced and stronglysolved variants of Chinese dark chess and EinStein würfelt nicht!. The experiments showed that AlphaZero could learn policies that play almost optimally against the optimal player and could learn values accurately. In more detail, such good results were achieved by different hyper-parameter settings in a wide range, though it was observed that games on larger scales tended to have a little narrower range of proper hyper-parameters. In addition, the results of learning with DNNs were similar to lookup tables.
Rights: CHU-HSUAN HSUEH, KOKOLO IKEDA, I-CHEN WU, JR-CHANG CHEN, and TSAN-SHENG HSU, IEEE Access, 11, 2023, 18157-18182. DOI: 10.1109/ACCESS.2023.3246638. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
URI: http://hdl.handle.net/10119/18238
資料タイプ: publisher
出現コレクション:d10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
I-IKEDA-K0405-13.pdf3874KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係