JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/18788

タイトル: RDIU-Net: Lightweight Medical Image Segmentation Network
著者: Kurosawa, Juon
Elibol, Armagan
Chong, Nak Young
キーワード: Medical Imaging
Image Segmentation
Deep Learning
発行日: 2023-10
出版者: Institute of Control, Robotics and Systems (ICROS)
誌名: 2023 23rd International Conference on Control, Automation and Systems (ICCAS)
開始ページ: 964
終了ページ: 968
DOI: 10.23919/ICCAS59377.2023.10316983
抄録: In recent years, medical image segmentation using deep learning methods has become more and more popular and developed with the aim of both reducing human-related errors and the time required for manual segmentation. One of the pioneers in deep learning-based biological image segmentation networks, U-Net was proposed back in 2015. Since then, several models have been proposed to extend U-Net. However, the trade-off between computational complexity and accuracy remains a major challenge. To address this trade-off, we use a new Involution kernel for spatial information and propose a model lightweight medical image segmentation network, Residual Involution U-Net (RDIU-Net). Involution, Residual, and Dense structures are incorporated into the U-Net model to extract both channel and spatial features. Evaluations have been carried out on three different datasets of ultrasound, X-ray, and dermoscopic images. The proposed model RDIU-Net showed superior results in accuracy, processing speed, training stability, and convergence compared to U-Net.
Rights: This is the author's version of the work. Copyright (C) ICROS. 2023 23rd International Conference on Control, Automation and Systems (ICCAS 2023), 2023, pp. 964-968. DOI: 10.23919/ICCAS59377.2023.10316983. Personal use of this material is permitted. This material is posted here with permission of Institute of Control, Robotics and Systems (ICROS).
URI: http://hdl.handle.net/10119/18788
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
N-CHONG-I-1122-2.pdf631KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係