JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18788
|
タイトル: | RDIU-Net: Lightweight Medical Image Segmentation Network |
著者: | Kurosawa, Juon Elibol, Armagan Chong, Nak Young |
キーワード: | Medical Imaging Image Segmentation Deep Learning |
発行日: | 2023-10 |
出版者: | Institute of Control, Robotics and Systems (ICROS) |
誌名: | 2023 23rd International Conference on Control, Automation and Systems (ICCAS) |
開始ページ: | 964 |
終了ページ: | 968 |
DOI: | 10.23919/ICCAS59377.2023.10316983 |
抄録: | In recent years, medical image segmentation using deep learning methods has become more and more popular and developed with the aim of both reducing human-related errors and the time required for manual segmentation. One of the pioneers in deep learning-based biological image segmentation networks, U-Net was proposed back in 2015. Since then, several models have been proposed to extend U-Net. However, the trade-off between computational complexity and accuracy remains a major challenge. To address this trade-off, we use a new Involution kernel for spatial information and propose a model lightweight medical image segmentation network, Residual Involution U-Net (RDIU-Net). Involution, Residual, and Dense structures are incorporated into the U-Net model to extract both channel and spatial features. Evaluations have been carried out on three different datasets of ultrasound, X-ray, and dermoscopic images. The proposed model RDIU-Net showed superior results in accuracy, processing speed, training stability, and convergence compared to U-Net. |
Rights: | This is the author's version of the work. Copyright (C) ICROS. 2023 23rd International Conference on Control, Automation and Systems (ICCAS 2023), 2023, pp. 964-968. DOI: 10.23919/ICCAS59377.2023.10316983. Personal use of this material is permitted. This material is posted here with permission of Institute of Control, Robotics and Systems (ICROS). |
URI: | http://hdl.handle.net/10119/18788 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
N-CHONG-I-1122-2.pdf | | 631Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|