|
JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/18808
|
タイトル: | S3M: Semantic Segmentation Sparse Mapping for UAVs with RGB-D Camera |
著者: | Canh, Thanh Nguyen Nguyen, Van-Truong Van, Xiem Hoang Elibol, Armagan Chong, Nak Young |
キーワード: | Semantic Mapping S3M UAVs ROS SLAM |
発行日: | 2024-01-08 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | 2024 IEEE/SICE International Symposium on System Integration (SII) |
開始ページ: | 899 |
終了ページ: | 905 |
DOI: | 10.1109/SII58957.2024.10417379 |
抄録: | Unmanned Aerial Vehicles (UAVs) hold immense potential for critical applications, such as search and rescue operations, where accurate perception of indoor environments is paramount. However, the concurrent amalgamation of localization, 3D reconstruction, and semantic segmentation presents a notable hurdle, especially in the context of UAVs equipped with constrained power and computational resources. This paper presents a novel approach to address challenges in semantic information extraction and utilization within UAV operations. Our system integrates state-of-the-art visual SLAM to estimate a comprehensive 6-DoF pose and advanced object segmentation methods at the back end. To improve the computational and storage efficiency of the framework, we adopt a streamlined voxel-based 3D map representation - OctoMap to build a working system. Furthermore, the fusion algorithm is incorporated to obtain the semantic information of each frame from the front-end SLAM task, and the corresponding point. By leveraging semantic information, our framework enhances the UAV’s ability to perceive and navigate through indoor spaces, addressing challenges in pose estimation accuracy and uncertainty reduction. Through Gazebo simulations, we validate the efficacy of our proposed system and successfully embed our approach into a Jetson Xavier AGX unit for real-world applications. |
Rights: | This is the author's version of the work. Copyright (C) 2024 IEEE. 2024 IEEE/SICE International Symposium on System Integration (SII), Ha Long, Vietnam, 2024, pp. 899-905, DOI: 10.1109/SII58957.2024.10417379. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
URI: | http://hdl.handle.net/10119/18808 |
資料タイプ: | author |
出現コレクション: | b11-1. 会議発表論文・発表資料 (Conference Papers)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
N-CHONG-I-0116.pdf | | 9018Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|