JAIST Repository >
JAIST >
Theses >
Doctor of Philosophy(Knowledge Science) >
R06) (Jun.2024 - Mar.2025 >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10119/19378
|
Title: | COVID-19による混乱状況下での日次需要予測のためのハイブリッドモデルに関する研究: タイ王国における電力消費量の予測応用 |
Authors: | Lalitpat, Aswanuwath |
Authors(alternative): | らりぱっと, あさわぬわっと |
Keywords: | hybrid approach daily peak load forecasting disrupted situation VMD EDM FFT similar day selection method stepwise regression artificial neural network long short-term memory COVID-19 |
Issue Date: | Sep-2024 |
Description: | Supervisor:HUYNH, Van Nam 先端科学技術研究科 博士 |
Title(English): | A Study on Hybrid Models for Daily Demand Forecasting in Disrupted Situations: Application to Predict Thailand's Electricity Consumption During COVID-19 |
Authors(English): | Lalitpat, Aswanuwath |
Language: | eng |
URI: | http://hdl.handle.net/10119/19378 |
Academic Degrees and number: | 甲第1479号 |
Degree-granting date: | 2024-09-24 |
Degree name: | 博士(知識科学) |
Degree-granting institutions: | 北陸先端科学技術大学院大学 |
Appears in Collections: | D-KS. 2024年度(R06) (Jun.2024 - Mar.2025)
|
Files in This Item:
File |
Description |
Size | Format |
abstract.pdf | 要旨 | 101Kb | Adobe PDF | View/Open | paper.pdf | 本文 | 2100Kb | Adobe PDF | View/Open | summary.pdf | 内容の要旨及び論文審査の結果の要旨 | 221Kb | Adobe PDF | View/Open |
|
All items in DSpace are protected by copyright, with all rights reserved.
|