JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/19964

タイトル: Shortcut-enhanced Multimodal Backdoor Attack in Vision-guided Robot Grasping
著者: Li, Chenghao
Gao, Ziyan
Chong, Nak Young
キーワード: Backdoor attack
robot grasping
shortcut learning
multimodality
AI security
human-robot interaction
発行日: 2025-07-16
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Transactions on Automation Science and Engineering
開始ページ: 1
終了ページ: 1
DOI: 10.1109/TASE.2025.3589764
抄録: Integrating the Artificial Intelligence (AI) vision module into the robot grasping system can significantly improve its generalizability, thereby enhancing the efficiency of Human-Robot Interaction (HRI). However, the inherent lack of interpretability in AI also opens the gate to external threats. In this work, we reveal a novel safety risk in this vision-guided robot grasping system by proposing the Shortcut-enhanced Multimodal Backdoor Attack (SEMBA), which can manipulate the grasp quality score using the backdoor trigger leading to a misguided grasping sequence. The SEMBA may thus cause potentially hazardous grasping and pose a threat to human safety in HRI. Specifically, we initially present the Multimodal Shortcut Searching Algorithm (MSSA) to find the pixel value that deviates the most from the mean and standard deviation of the multimodal dataset, along with the pivotal pixel position for individual images. This will guarantee that the proposed attack is effective in complex, multi-class object scenarios. Next, based on MSSA, we devise the Multimodal Trigger Generator (MTG) to create diverse multimodal backdoor triggers and integrate them into the dataset, ensuring that our attack has the multimodality attribute. We conduct extensive experiments on the benchmark datasets and a cobot, showing the effectiveness of the proposed method both in the digital and physical worlds. Our demo videos are available in supplementary items.
Rights: Copyright (c) 2025 Authors. Chenghao Li, Ziyan Gao, and Nak Young Chong. IEEE Transactions on Automation Science and Engineering (Early Access), 2025. This is an Open Access article distributed under the terms of Creative Commons Licence CC-BY [https://creativecommons.org/licenses/by/4.0/]. Original publication is available on IEEE Xplore via https://doi.org/10.1109/TASE.2025.3589764.
URI: http://hdl.handle.net/10119/19964
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
N-CHONG-I-0722-2.pdf40236KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問合せ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係 (ir-sys[at]ml.jaist.ac.jp)