JAIST Repository >
f. 情報社会基盤研究センター >
f10. 学術雑誌論文等 >
f10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4663
|
タイトル: | High-Performance Training of Conditional Random Fields for Large-Scale Applications of Labeling Sequence Data |
著者: | PHAN, Xuan-Hieu NGUYEN, Le-Minh INOGUCHI, Yasushi HORIGUCHI, Susumu |
キーワード: | parallel computing probabilistic graphical models conditional random fields structured prediction text processing |
発行日: | 2007-01-01 |
出版者: | 電子情報通信学会 |
誌名: | IEICE TRANSACTIONS on Information and Systems |
巻: | E90-D |
号: | 1 |
開始ページ: | 13 |
終了ページ: | 21 |
DOI: | 10.1093/ietisy/e90-d.1.13 |
抄録: | Conditional random fields (CRFs) have been successfully applied to various applications of predicting and labeling structured data, such as natural language tagging & parsing, image segmentation & object recognition, and protein secondary structure prediction. The key advantages of CRFs are the ability to encode a variety of overlapping, non-independent features from empirical data as well as the capability of reaching the global normalization and optimization. However, estimating parameters for CRFs is very time-consuming due to an intensive forward-backward computation needed to estimate the likelihood function and its gradient during training. This paper presents a high-performance training of CRFs on massively parallel processing systems that allows us to handle huge datasets with hundreds of thousand data sequences and millions of features. We performed the experiments on an important natural language processing task (text chunking) on large-scale corpora and achieved significant results in terms of both the reduction of computational time and the improvement of prediction accuracy. |
Rights: | Copyright (C)2007 IEICE. Xuan-Hieu Phan, Le-Minh Nguyen, Yasushi Inoguchi and Susumu Horiguchi, IEICE TRANSACTIONS on Information and Systems, E90-D(1), 2007, 13-21. http://www.ieice.org/jpn/trans_online/ |
URI: | http://hdl.handle.net/10119/4663 |
資料タイプ: | publisher |
出現コレクション: | f10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
11463.pdf | | 343Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|